github.com/tidwall/go@v0.0.0-20170415222209-6694a6888b7d/src/cmd/compile/internal/gc/syntax.go (about) 1 // Copyright 2009 The Go Authors. All rights reserved. 2 // Use of this source code is governed by a BSD-style 3 // license that can be found in the LICENSE file. 4 5 // “Abstract” syntax representation. 6 7 package gc 8 9 import ( 10 "cmd/compile/internal/syntax" 11 "cmd/compile/internal/types" 12 "cmd/internal/obj" 13 "cmd/internal/src" 14 ) 15 16 // A Node is a single node in the syntax tree. 17 // Actually the syntax tree is a syntax DAG, because there is only one 18 // node with Op=ONAME for a given instance of a variable x. 19 // The same is true for Op=OTYPE and Op=OLITERAL. See Node.mayBeShared. 20 type Node struct { 21 // Tree structure. 22 // Generic recursive walks should follow these fields. 23 Left *Node 24 Right *Node 25 Ninit Nodes 26 Nbody Nodes 27 List Nodes 28 Rlist Nodes 29 30 // most nodes 31 Type *types.Type 32 Orig *Node // original form, for printing, and tracking copies of ONAMEs 33 34 // func 35 Func *Func 36 37 // ONAME, OTYPE, OPACK, OLABEL, some OLITERAL 38 Name *Name 39 40 Sym *types.Sym // various 41 E interface{} // Opt or Val, see methods below 42 43 // Various. Usually an offset into a struct. For example: 44 // - ONAME nodes that refer to local variables use it to identify their stack frame position. 45 // - ODOT, ODOTPTR, and OINDREGSP use it to indicate offset relative to their base address. 46 // - OSTRUCTKEY uses it to store the named field's offset. 47 // - OXCASE and OXFALL use it to validate the use of fallthrough. 48 // - Named OLITERALs use it to to store their ambient iota value. 49 // Possibly still more uses. If you find any, document them. 50 Xoffset int64 51 52 Pos src.XPos 53 54 flags bitset32 55 56 Esc uint16 // EscXXX 57 58 Op Op 59 Etype types.EType // op for OASOP, etype for OTYPE, exclam for export, 6g saved reg, ChanDir for OTCHAN, for OINDEXMAP 1=LHS,0=RHS 60 Class Class // PPARAM, PAUTO, PEXTERN, etc 61 Embedded uint8 // ODCLFIELD embedded type 62 Walkdef uint8 // tracks state during typecheckdef; 2 == loop detected 63 Typecheck uint8 // tracks state during typechecking; 2 == loop detected 64 Initorder uint8 65 Likely int8 // likeliness of if statement 66 hasVal int8 // +1 for Val, -1 for Opt, 0 for not yet set 67 } 68 69 // IsAutoTmp indicates if n was created by the compiler as a temporary, 70 // based on the setting of the .AutoTemp flag in n's Name. 71 func (n *Node) IsAutoTmp() bool { 72 if n == nil || n.Op != ONAME { 73 return false 74 } 75 return n.Name.AutoTemp() 76 } 77 78 const ( 79 nodeHasBreak = 1 << iota 80 nodeIsClosureVar 81 nodeIsOutputParamHeapAddr 82 nodeNoInline // used internally by inliner to indicate that a function call should not be inlined; set for OCALLFUNC and OCALLMETH only 83 nodeAssigned // is the variable ever assigned to 84 nodeAddrtaken // address taken, even if not moved to heap 85 nodeImplicit 86 nodeIsddd // is the argument variadic 87 nodeLocal // type created in this file (see also Type.Local) 88 nodeDiag // already printed error about this 89 nodeColas // OAS resulting from := 90 nodeNonNil // guaranteed to be non-nil 91 nodeNoescape // func arguments do not escape; TODO(rsc): move Noescape to Func struct (see CL 7360) 92 nodeBounded // bounds check unnecessary 93 nodeAddable // addressable 94 nodeUsed // for variable/label declared and not used error 95 nodeHasCall // expression contains a function call 96 ) 97 98 func (n *Node) HasBreak() bool { return n.flags&nodeHasBreak != 0 } 99 func (n *Node) IsClosureVar() bool { return n.flags&nodeIsClosureVar != 0 } 100 func (n *Node) NoInline() bool { return n.flags&nodeNoInline != 0 } 101 func (n *Node) IsOutputParamHeapAddr() bool { return n.flags&nodeIsOutputParamHeapAddr != 0 } 102 func (n *Node) Assigned() bool { return n.flags&nodeAssigned != 0 } 103 func (n *Node) Addrtaken() bool { return n.flags&nodeAddrtaken != 0 } 104 func (n *Node) Implicit() bool { return n.flags&nodeImplicit != 0 } 105 func (n *Node) Isddd() bool { return n.flags&nodeIsddd != 0 } 106 func (n *Node) Local() bool { return n.flags&nodeLocal != 0 } 107 func (n *Node) Diag() bool { return n.flags&nodeDiag != 0 } 108 func (n *Node) Colas() bool { return n.flags&nodeColas != 0 } 109 func (n *Node) NonNil() bool { return n.flags&nodeNonNil != 0 } 110 func (n *Node) Noescape() bool { return n.flags&nodeNoescape != 0 } 111 func (n *Node) Bounded() bool { return n.flags&nodeBounded != 0 } 112 func (n *Node) Addable() bool { return n.flags&nodeAddable != 0 } 113 func (n *Node) Used() bool { return n.flags&nodeUsed != 0 } 114 func (n *Node) HasCall() bool { return n.flags&nodeHasCall != 0 } 115 116 func (n *Node) SetHasBreak(b bool) { n.flags.set(nodeHasBreak, b) } 117 func (n *Node) SetIsClosureVar(b bool) { n.flags.set(nodeIsClosureVar, b) } 118 func (n *Node) SetNoInline(b bool) { n.flags.set(nodeNoInline, b) } 119 func (n *Node) SetIsOutputParamHeapAddr(b bool) { n.flags.set(nodeIsOutputParamHeapAddr, b) } 120 func (n *Node) SetAssigned(b bool) { n.flags.set(nodeAssigned, b) } 121 func (n *Node) SetAddrtaken(b bool) { n.flags.set(nodeAddrtaken, b) } 122 func (n *Node) SetImplicit(b bool) { n.flags.set(nodeImplicit, b) } 123 func (n *Node) SetIsddd(b bool) { n.flags.set(nodeIsddd, b) } 124 func (n *Node) SetLocal(b bool) { n.flags.set(nodeLocal, b) } 125 func (n *Node) SetDiag(b bool) { n.flags.set(nodeDiag, b) } 126 func (n *Node) SetColas(b bool) { n.flags.set(nodeColas, b) } 127 func (n *Node) SetNonNil(b bool) { n.flags.set(nodeNonNil, b) } 128 func (n *Node) SetNoescape(b bool) { n.flags.set(nodeNoescape, b) } 129 func (n *Node) SetBounded(b bool) { n.flags.set(nodeBounded, b) } 130 func (n *Node) SetAddable(b bool) { n.flags.set(nodeAddable, b) } 131 func (n *Node) SetUsed(b bool) { n.flags.set(nodeUsed, b) } 132 func (n *Node) SetHasCall(b bool) { n.flags.set(nodeHasCall, b) } 133 134 // Val returns the Val for the node. 135 func (n *Node) Val() Val { 136 if n.hasVal != +1 { 137 return Val{} 138 } 139 return Val{n.E} 140 } 141 142 // SetVal sets the Val for the node, which must not have been used with SetOpt. 143 func (n *Node) SetVal(v Val) { 144 if n.hasVal == -1 { 145 Debug['h'] = 1 146 Dump("have Opt", n) 147 Fatalf("have Opt") 148 } 149 n.hasVal = +1 150 n.E = v.U 151 } 152 153 // Opt returns the optimizer data for the node. 154 func (n *Node) Opt() interface{} { 155 if n.hasVal != -1 { 156 return nil 157 } 158 return n.E 159 } 160 161 // SetOpt sets the optimizer data for the node, which must not have been used with SetVal. 162 // SetOpt(nil) is ignored for Vals to simplify call sites that are clearing Opts. 163 func (n *Node) SetOpt(x interface{}) { 164 if x == nil && n.hasVal >= 0 { 165 return 166 } 167 if n.hasVal == +1 { 168 Debug['h'] = 1 169 Dump("have Val", n) 170 Fatalf("have Val") 171 } 172 n.hasVal = -1 173 n.E = x 174 } 175 176 func (n *Node) Iota() int64 { 177 return n.Xoffset 178 } 179 180 func (n *Node) SetIota(x int64) { 181 n.Xoffset = x 182 } 183 184 // mayBeShared reports whether n may occur in multiple places in the AST. 185 // Extra care must be taken when mutating such a node. 186 func (n *Node) mayBeShared() bool { 187 switch n.Op { 188 case ONAME, OLITERAL, OTYPE: 189 return true 190 } 191 return false 192 } 193 194 // Name holds Node fields used only by named nodes (ONAME, OTYPE, OPACK, OLABEL, some OLITERAL). 195 type Name struct { 196 Pack *Node // real package for import . names 197 Pkg *types.Pkg // pkg for OPACK nodes 198 Defn *Node // initializing assignment 199 Curfn *Node // function for local variables 200 Param *Param // additional fields for ONAME, OTYPE 201 Decldepth int32 // declaration loop depth, increased for every loop or label 202 Vargen int32 // unique name for ONAME within a function. Function outputs are numbered starting at one. 203 Funcdepth int32 204 205 flags bitset8 206 } 207 208 const ( 209 nameCaptured = 1 << iota // is the variable captured by a closure 210 nameReadonly 211 nameByval // is the variable captured by value or by reference 212 nameNeedzero // if it contains pointers, needs to be zeroed on function entry 213 nameKeepalive // mark value live across unknown assembly call 214 nameAutoTemp // is the variable a temporary (implies no dwarf info. reset if escapes to heap) 215 ) 216 217 func (n *Name) Captured() bool { return n.flags&nameCaptured != 0 } 218 func (n *Name) Readonly() bool { return n.flags&nameReadonly != 0 } 219 func (n *Name) Byval() bool { return n.flags&nameByval != 0 } 220 func (n *Name) Needzero() bool { return n.flags&nameNeedzero != 0 } 221 func (n *Name) Keepalive() bool { return n.flags&nameKeepalive != 0 } 222 func (n *Name) AutoTemp() bool { return n.flags&nameAutoTemp != 0 } 223 224 func (n *Name) SetCaptured(b bool) { n.flags.set(nameCaptured, b) } 225 func (n *Name) SetReadonly(b bool) { n.flags.set(nameReadonly, b) } 226 func (n *Name) SetByval(b bool) { n.flags.set(nameByval, b) } 227 func (n *Name) SetNeedzero(b bool) { n.flags.set(nameNeedzero, b) } 228 func (n *Name) SetKeepalive(b bool) { n.flags.set(nameKeepalive, b) } 229 func (n *Name) SetAutoTemp(b bool) { n.flags.set(nameAutoTemp, b) } 230 231 type Param struct { 232 Ntype *Node 233 Heapaddr *Node // temp holding heap address of param 234 235 // ONAME PAUTOHEAP 236 Stackcopy *Node // the PPARAM/PPARAMOUT on-stack slot (moved func params only) 237 238 // ONAME PPARAM 239 Field *types.Field // TFIELD in arg struct 240 241 // ONAME closure linkage 242 // Consider: 243 // 244 // func f() { 245 // x := 1 // x1 246 // func() { 247 // use(x) // x2 248 // func() { 249 // use(x) // x3 250 // --- parser is here --- 251 // }() 252 // }() 253 // } 254 // 255 // There is an original declaration of x and then a chain of mentions of x 256 // leading into the current function. Each time x is mentioned in a new closure, 257 // we create a variable representing x for use in that specific closure, 258 // since the way you get to x is different in each closure. 259 // 260 // Let's number the specific variables as shown in the code: 261 // x1 is the original x, x2 is when mentioned in the closure, 262 // and x3 is when mentioned in the closure in the closure. 263 // 264 // We keep these linked (assume N > 1): 265 // 266 // - x1.Defn = original declaration statement for x (like most variables) 267 // - x1.Innermost = current innermost closure x (in this case x3), or nil for none 268 // - x1.IsClosureVar() = false 269 // 270 // - xN.Defn = x1, N > 1 271 // - xN.IsClosureVar() = true, N > 1 272 // - x2.Outer = nil 273 // - xN.Outer = x(N-1), N > 2 274 // 275 // 276 // When we look up x in the symbol table, we always get x1. 277 // Then we can use x1.Innermost (if not nil) to get the x 278 // for the innermost known closure function, 279 // but the first reference in a closure will find either no x1.Innermost 280 // or an x1.Innermost with .Funcdepth < Funcdepth. 281 // In that case, a new xN must be created, linked in with: 282 // 283 // xN.Defn = x1 284 // xN.Outer = x1.Innermost 285 // x1.Innermost = xN 286 // 287 // When we finish the function, we'll process its closure variables 288 // and find xN and pop it off the list using: 289 // 290 // x1 := xN.Defn 291 // x1.Innermost = xN.Outer 292 // 293 // We leave xN.Innermost set so that we can still get to the original 294 // variable quickly. Not shown here, but once we're 295 // done parsing a function and no longer need xN.Outer for the 296 // lexical x reference links as described above, closurebody 297 // recomputes xN.Outer as the semantic x reference link tree, 298 // even filling in x in intermediate closures that might not 299 // have mentioned it along the way to inner closures that did. 300 // See closurebody for details. 301 // 302 // During the eventual compilation, then, for closure variables we have: 303 // 304 // xN.Defn = original variable 305 // xN.Outer = variable captured in next outward scope 306 // to make closure where xN appears 307 // 308 // Because of the sharding of pieces of the node, x.Defn means x.Name.Defn 309 // and x.Innermost/Outer means x.Name.Param.Innermost/Outer. 310 Innermost *Node 311 Outer *Node 312 313 // OTYPE 314 // 315 // TODO: Should Func pragmas also be stored on the Name? 316 Pragma syntax.Pragma 317 Alias bool // node is alias for Ntype (only used when type-checking ODCLTYPE) 318 } 319 320 // Func holds Node fields used only with function-like nodes. 321 type Func struct { 322 Shortname *types.Sym 323 Enter Nodes // for example, allocate and initialize memory for escaping parameters 324 Exit Nodes 325 Cvars Nodes // closure params 326 Dcl []*Node // autodcl for this func/closure 327 Inldcl Nodes // copy of dcl for use in inlining 328 Closgen int 329 Outerfunc *Node // outer function (for closure) 330 FieldTrack map[*types.Sym]struct{} 331 Ntype *Node // signature 332 Top int // top context (Ecall, Eproc, etc) 333 Closure *Node // OCLOSURE <-> ODCLFUNC 334 Nname *Node 335 lsym *obj.LSym 336 337 Inl Nodes // copy of the body for use in inlining 338 InlCost int32 339 Depth int32 340 341 Label int32 // largest auto-generated label in this function 342 343 Endlineno src.XPos 344 WBPos src.XPos // position of first write barrier 345 346 Pragma syntax.Pragma // go:xxx function annotations 347 348 flags bitset8 349 } 350 351 const ( 352 funcDupok = 1 << iota // duplicate definitions ok 353 funcWrapper // is method wrapper 354 funcNeedctxt // function uses context register (has closure variables) 355 funcReflectMethod // function calls reflect.Type.Method or MethodByName 356 funcIsHiddenClosure 357 funcNoFramePointer // Must not use a frame pointer for this function 358 funcHasDefer // contains a defer statement 359 ) 360 361 func (f *Func) Dupok() bool { return f.flags&funcDupok != 0 } 362 func (f *Func) Wrapper() bool { return f.flags&funcWrapper != 0 } 363 func (f *Func) Needctxt() bool { return f.flags&funcNeedctxt != 0 } 364 func (f *Func) ReflectMethod() bool { return f.flags&funcReflectMethod != 0 } 365 func (f *Func) IsHiddenClosure() bool { return f.flags&funcIsHiddenClosure != 0 } 366 func (f *Func) NoFramePointer() bool { return f.flags&funcNoFramePointer != 0 } 367 func (f *Func) HasDefer() bool { return f.flags&funcHasDefer != 0 } 368 369 func (f *Func) SetDupok(b bool) { f.flags.set(funcDupok, b) } 370 func (f *Func) SetWrapper(b bool) { f.flags.set(funcWrapper, b) } 371 func (f *Func) SetNeedctxt(b bool) { f.flags.set(funcNeedctxt, b) } 372 func (f *Func) SetReflectMethod(b bool) { f.flags.set(funcReflectMethod, b) } 373 func (f *Func) SetIsHiddenClosure(b bool) { f.flags.set(funcIsHiddenClosure, b) } 374 func (f *Func) SetNoFramePointer(b bool) { f.flags.set(funcNoFramePointer, b) } 375 func (f *Func) SetHasDefer(b bool) { f.flags.set(funcHasDefer, b) } 376 377 type Op uint8 378 379 // Node ops. 380 const ( 381 OXXX = Op(iota) 382 383 // names 384 ONAME // var, const or func name 385 ONONAME // unnamed arg or return value: f(int, string) (int, error) { etc } 386 OTYPE // type name 387 OPACK // import 388 OLITERAL // literal 389 390 // expressions 391 OADD // Left + Right 392 OSUB // Left - Right 393 OOR // Left | Right 394 OXOR // Left ^ Right 395 OADDSTR // +{List} (string addition, list elements are strings) 396 OADDR // &Left 397 OANDAND // Left && Right 398 OAPPEND // append(List); after walk, Left may contain elem type descriptor 399 OARRAYBYTESTR // Type(Left) (Type is string, Left is a []byte) 400 OARRAYBYTESTRTMP // Type(Left) (Type is string, Left is a []byte, ephemeral) 401 OARRAYRUNESTR // Type(Left) (Type is string, Left is a []rune) 402 OSTRARRAYBYTE // Type(Left) (Type is []byte, Left is a string) 403 OSTRARRAYBYTETMP // Type(Left) (Type is []byte, Left is a string, ephemeral) 404 OSTRARRAYRUNE // Type(Left) (Type is []rune, Left is a string) 405 OAS // Left = Right or (if Colas=true) Left := Right 406 OAS2 // List = Rlist (x, y, z = a, b, c) 407 OAS2FUNC // List = Rlist (x, y = f()) 408 OAS2RECV // List = Rlist (x, ok = <-c) 409 OAS2MAPR // List = Rlist (x, ok = m["foo"]) 410 OAS2DOTTYPE // List = Rlist (x, ok = I.(int)) 411 OASOP // Left Etype= Right (x += y) 412 OCALL // Left(List) (function call, method call or type conversion) 413 OCALLFUNC // Left(List) (function call f(args)) 414 OCALLMETH // Left(List) (direct method call x.Method(args)) 415 OCALLINTER // Left(List) (interface method call x.Method(args)) 416 OCALLPART // Left.Right (method expression x.Method, not called) 417 OCAP // cap(Left) 418 OCLOSE // close(Left) 419 OCLOSURE // func Type { Body } (func literal) 420 OCMPIFACE // Left Etype Right (interface comparison, x == y or x != y) 421 OCMPSTR // Left Etype Right (string comparison, x == y, x < y, etc) 422 OCOMPLIT // Right{List} (composite literal, not yet lowered to specific form) 423 OMAPLIT // Type{List} (composite literal, Type is map) 424 OSTRUCTLIT // Type{List} (composite literal, Type is struct) 425 OARRAYLIT // Type{List} (composite literal, Type is array) 426 OSLICELIT // Type{List} (composite literal, Type is slice) 427 OPTRLIT // &Left (left is composite literal) 428 OCONV // Type(Left) (type conversion) 429 OCONVIFACE // Type(Left) (type conversion, to interface) 430 OCONVNOP // Type(Left) (type conversion, no effect) 431 OCOPY // copy(Left, Right) 432 ODCL // var Left (declares Left of type Left.Type) 433 434 // Used during parsing but don't last. 435 ODCLFUNC // func f() or func (r) f() 436 ODCLFIELD // struct field, interface field, or func/method argument/return value. 437 ODCLCONST // const pi = 3.14 438 ODCLTYPE // type Int int or type Int = int 439 440 ODELETE // delete(Left, Right) 441 ODOT // Left.Sym (Left is of struct type) 442 ODOTPTR // Left.Sym (Left is of pointer to struct type) 443 ODOTMETH // Left.Sym (Left is non-interface, Right is method name) 444 ODOTINTER // Left.Sym (Left is interface, Right is method name) 445 OXDOT // Left.Sym (before rewrite to one of the preceding) 446 ODOTTYPE // Left.Right or Left.Type (.Right during parsing, .Type once resolved); after walk, .Right contains address of interface type descriptor and .Right.Right contains address of concrete type descriptor 447 ODOTTYPE2 // Left.Right or Left.Type (.Right during parsing, .Type once resolved; on rhs of OAS2DOTTYPE); after walk, .Right contains address of interface type descriptor 448 OEQ // Left == Right 449 ONE // Left != Right 450 OLT // Left < Right 451 OLE // Left <= Right 452 OGE // Left >= Right 453 OGT // Left > Right 454 OIND // *Left 455 OINDEX // Left[Right] (index of array or slice) 456 OINDEXMAP // Left[Right] (index of map) 457 OKEY // Left:Right (key:value in struct/array/map literal) 458 OSTRUCTKEY // Sym:Left (key:value in struct literal, after type checking) 459 OLEN // len(Left) 460 OMAKE // make(List) (before type checking converts to one of the following) 461 OMAKECHAN // make(Type, Left) (type is chan) 462 OMAKEMAP // make(Type, Left) (type is map) 463 OMAKESLICE // make(Type, Left, Right) (type is slice) 464 OMUL // Left * Right 465 ODIV // Left / Right 466 OMOD // Left % Right 467 OLSH // Left << Right 468 ORSH // Left >> Right 469 OAND // Left & Right 470 OANDNOT // Left &^ Right 471 ONEW // new(Left) 472 ONOT // !Left 473 OCOM // ^Left 474 OPLUS // +Left 475 OMINUS // -Left 476 OOROR // Left || Right 477 OPANIC // panic(Left) 478 OPRINT // print(List) 479 OPRINTN // println(List) 480 OPAREN // (Left) 481 OSEND // Left <- Right 482 OSLICE // Left[List[0] : List[1]] (Left is untypechecked or slice) 483 OSLICEARR // Left[List[0] : List[1]] (Left is array) 484 OSLICESTR // Left[List[0] : List[1]] (Left is string) 485 OSLICE3 // Left[List[0] : List[1] : List[2]] (Left is untypedchecked or slice) 486 OSLICE3ARR // Left[List[0] : List[1] : List[2]] (Left is array) 487 ORECOVER // recover() 488 ORECV // <-Left 489 ORUNESTR // Type(Left) (Type is string, Left is rune) 490 OSELRECV // Left = <-Right.Left: (appears as .Left of OCASE; Right.Op == ORECV) 491 OSELRECV2 // List = <-Right.Left: (apperas as .Left of OCASE; count(List) == 2, Right.Op == ORECV) 492 OIOTA // iota 493 OREAL // real(Left) 494 OIMAG // imag(Left) 495 OCOMPLEX // complex(Left, Right) 496 OALIGNOF // unsafe.Alignof(Left) 497 OOFFSETOF // unsafe.Offsetof(Left) 498 OSIZEOF // unsafe.Sizeof(Left) 499 500 // statements 501 OBLOCK // { List } (block of code) 502 OBREAK // break 503 OCASE // case Left or List[0]..List[1]: Nbody (select case after processing; Left==nil and List==nil means default) 504 OXCASE // case List: Nbody (select case before processing; List==nil means default) 505 OCONTINUE // continue 506 ODEFER // defer Left (Left must be call) 507 OEMPTY // no-op (empty statement) 508 OFALL // fallthrough (after processing) 509 OXFALL // fallthrough (before processing) 510 OFOR // for Ninit; Left; Right { Nbody } 511 OFORUNTIL // for Ninit; Left; Right { Nbody } ; test applied after executing body, not before 512 OGOTO // goto Left 513 OIF // if Ninit; Left { Nbody } else { Rlist } 514 OLABEL // Left: 515 OPROC // go Left (Left must be call) 516 ORANGE // for List = range Right { Nbody } 517 ORETURN // return List 518 OSELECT // select { List } (List is list of OXCASE or OCASE) 519 OSWITCH // switch Ninit; Left { List } (List is a list of OXCASE or OCASE) 520 OTYPESW // List = Left.(type) (appears as .Left of OSWITCH) 521 522 // types 523 OTCHAN // chan int 524 OTMAP // map[string]int 525 OTSTRUCT // struct{} 526 OTINTER // interface{} 527 OTFUNC // func() 528 OTARRAY // []int, [8]int, [N]int or [...]int 529 530 // misc 531 ODDD // func f(args ...int) or f(l...) or var a = [...]int{0, 1, 2}. 532 ODDDARG // func f(args ...int), introduced by escape analysis. 533 OINLCALL // intermediary representation of an inlined call. 534 OEFACE // itable and data words of an empty-interface value. 535 OITAB // itable word of an interface value. 536 OIDATA // data word of an interface value in Left 537 OSPTR // base pointer of a slice or string. 538 OCLOSUREVAR // variable reference at beginning of closure function 539 OCFUNC // reference to c function pointer (not go func value) 540 OCHECKNIL // emit code to ensure pointer/interface not nil 541 OVARKILL // variable is dead 542 OVARLIVE // variable is alive 543 OINDREGSP // offset plus indirect of REGSP, such as 8(SP). 544 545 // arch-specific opcodes 546 ORETJMP // return to other function 547 OGETG // runtime.getg() (read g pointer) 548 549 OEND 550 ) 551 552 // Nodes is a pointer to a slice of *Node. 553 // For fields that are not used in most nodes, this is used instead of 554 // a slice to save space. 555 type Nodes struct{ slice *[]*Node } 556 557 // Slice returns the entries in Nodes as a slice. 558 // Changes to the slice entries (as in s[i] = n) will be reflected in 559 // the Nodes. 560 func (n Nodes) Slice() []*Node { 561 if n.slice == nil { 562 return nil 563 } 564 return *n.slice 565 } 566 567 // Len returns the number of entries in Nodes. 568 func (n Nodes) Len() int { 569 if n.slice == nil { 570 return 0 571 } 572 return len(*n.slice) 573 } 574 575 // Index returns the i'th element of Nodes. 576 // It panics if n does not have at least i+1 elements. 577 func (n Nodes) Index(i int) *Node { 578 return (*n.slice)[i] 579 } 580 581 // First returns the first element of Nodes (same as n.Index(0)). 582 // It panics if n has no elements. 583 func (n Nodes) First() *Node { 584 return (*n.slice)[0] 585 } 586 587 // Second returns the second element of Nodes (same as n.Index(1)). 588 // It panics if n has fewer than two elements. 589 func (n Nodes) Second() *Node { 590 return (*n.slice)[1] 591 } 592 593 // Set sets n to a slice. 594 // This takes ownership of the slice. 595 func (n *Nodes) Set(s []*Node) { 596 if len(s) == 0 { 597 n.slice = nil 598 } else { 599 // Copy s and take address of t rather than s to avoid 600 // allocation in the case where len(s) == 0 (which is 601 // over 3x more common, dynamically, for make.bash). 602 t := s 603 n.slice = &t 604 } 605 } 606 607 // Set1 sets n to a slice containing a single node. 608 func (n *Nodes) Set1(n1 *Node) { 609 n.slice = &[]*Node{n1} 610 } 611 612 // Set2 sets n to a slice containing two nodes. 613 func (n *Nodes) Set2(n1, n2 *Node) { 614 n.slice = &[]*Node{n1, n2} 615 } 616 617 // Set3 sets n to a slice containing three nodes. 618 func (n *Nodes) Set3(n1, n2, n3 *Node) { 619 n.slice = &[]*Node{n1, n2, n3} 620 } 621 622 // MoveNodes sets n to the contents of n2, then clears n2. 623 func (n *Nodes) MoveNodes(n2 *Nodes) { 624 n.slice = n2.slice 625 n2.slice = nil 626 } 627 628 // SetIndex sets the i'th element of Nodes to node. 629 // It panics if n does not have at least i+1 elements. 630 func (n Nodes) SetIndex(i int, node *Node) { 631 (*n.slice)[i] = node 632 } 633 634 // SetFirst sets the first element of Nodes to node. 635 // It panics if n does not have at least one elements. 636 func (n Nodes) SetFirst(node *Node) { 637 (*n.slice)[0] = node 638 } 639 640 // SetSecond sets the second element of Nodes to node. 641 // It panics if n does not have at least two elements. 642 func (n Nodes) SetSecond(node *Node) { 643 (*n.slice)[1] = node 644 } 645 646 // Addr returns the address of the i'th element of Nodes. 647 // It panics if n does not have at least i+1 elements. 648 func (n Nodes) Addr(i int) **Node { 649 return &(*n.slice)[i] 650 } 651 652 // Append appends entries to Nodes. 653 func (n *Nodes) Append(a ...*Node) { 654 if len(a) == 0 { 655 return 656 } 657 if n.slice == nil { 658 s := make([]*Node, len(a)) 659 copy(s, a) 660 n.slice = &s 661 return 662 } 663 *n.slice = append(*n.slice, a...) 664 } 665 666 // Prepend prepends entries to Nodes. 667 // If a slice is passed in, this will take ownership of it. 668 func (n *Nodes) Prepend(a ...*Node) { 669 if len(a) == 0 { 670 return 671 } 672 if n.slice == nil { 673 n.slice = &a 674 } else { 675 *n.slice = append(a, *n.slice...) 676 } 677 } 678 679 // AppendNodes appends the contents of *n2 to n, then clears n2. 680 func (n *Nodes) AppendNodes(n2 *Nodes) { 681 switch { 682 case n2.slice == nil: 683 case n.slice == nil: 684 n.slice = n2.slice 685 default: 686 *n.slice = append(*n.slice, *n2.slice...) 687 } 688 n2.slice = nil 689 }