github.com/tidwall/go@v0.0.0-20170415222209-6694a6888b7d/src/cmd/compile/internal/ssa/gen/generic.rules (about) 1 // Copyright 2015 The Go Authors. All rights reserved. 2 // Use of this source code is governed by a BSD-style 3 // license that can be found in the LICENSE file. 4 5 // Simplifications that apply to all backend architectures. As an example, this 6 // Go source code 7 // 8 // y := 0 * x 9 // 10 // can be translated into y := 0 without losing any information, which saves a 11 // pointless multiplication instruction. Other .rules files in this directory 12 // (for example AMD64.rules) contain rules specific to the architecture in the 13 // filename. The rules here apply to every architecture. 14 // 15 // The code for parsing this file lives in rulegen.go; this file generates 16 // ssa/rewritegeneric.go. 17 18 // values are specified using the following format: 19 // (op <type> [auxint] {aux} arg0 arg1 ...) 20 // the type, aux, and auxint fields are optional 21 // on the matching side 22 // - the type, aux, and auxint fields must match if they are specified. 23 // - the first occurrence of a variable defines that variable. Subsequent 24 // uses must match (be == to) the first use. 25 // - v is defined to be the value matched. 26 // - an additional conditional can be provided after the match pattern with "&&". 27 // on the generated side 28 // - the type of the top-level expression is the same as the one on the left-hand side. 29 // - the type of any subexpressions must be specified explicitly (or 30 // be specified in the op's type field). 31 // - auxint will be 0 if not specified. 32 // - aux will be nil if not specified. 33 34 // blocks are specified using the following format: 35 // (kind controlvalue succ0 succ1 ...) 36 // controlvalue must be "nil" or a value expression 37 // succ* fields must be variables 38 // For now, the generated successors must be a permutation of the matched successors. 39 40 // constant folding 41 (Trunc16to8 (Const16 [c])) -> (Const8 [int64(int8(c))]) 42 (Trunc32to8 (Const32 [c])) -> (Const8 [int64(int8(c))]) 43 (Trunc32to16 (Const32 [c])) -> (Const16 [int64(int16(c))]) 44 (Trunc64to8 (Const64 [c])) -> (Const8 [int64(int8(c))]) 45 (Trunc64to16 (Const64 [c])) -> (Const16 [int64(int16(c))]) 46 (Trunc64to32 (Const64 [c])) -> (Const32 [int64(int32(c))]) 47 (Cvt64Fto32F (Const64F [c])) -> (Const32F [f2i(float64(i2f32(c)))]) 48 (Cvt32Fto64F (Const32F [c])) -> (Const64F [c]) // c is already a 64 bit float 49 (Round32F x:(Const32F)) -> x 50 (Round64F x:(Const64F)) -> x 51 52 (Trunc16to8 (ZeroExt8to16 x)) -> x 53 (Trunc32to8 (ZeroExt8to32 x)) -> x 54 (Trunc32to16 (ZeroExt8to32 x)) -> (ZeroExt8to16 x) 55 (Trunc32to16 (ZeroExt16to32 x)) -> x 56 (Trunc64to8 (ZeroExt8to64 x)) -> x 57 (Trunc64to16 (ZeroExt8to64 x)) -> (ZeroExt8to16 x) 58 (Trunc64to16 (ZeroExt16to64 x)) -> x 59 (Trunc64to32 (ZeroExt8to64 x)) -> (ZeroExt8to32 x) 60 (Trunc64to32 (ZeroExt16to64 x)) -> (ZeroExt16to32 x) 61 (Trunc64to32 (ZeroExt32to64 x)) -> x 62 (Trunc16to8 (SignExt8to16 x)) -> x 63 (Trunc32to8 (SignExt8to32 x)) -> x 64 (Trunc32to16 (SignExt8to32 x)) -> (SignExt8to16 x) 65 (Trunc32to16 (SignExt16to32 x)) -> x 66 (Trunc64to8 (SignExt8to64 x)) -> x 67 (Trunc64to16 (SignExt8to64 x)) -> (SignExt8to16 x) 68 (Trunc64to16 (SignExt16to64 x)) -> x 69 (Trunc64to32 (SignExt8to64 x)) -> (SignExt8to32 x) 70 (Trunc64to32 (SignExt16to64 x)) -> (SignExt16to32 x) 71 (Trunc64to32 (SignExt32to64 x)) -> x 72 73 (ZeroExt8to16 (Const8 [c])) -> (Const16 [int64( uint8(c))]) 74 (ZeroExt8to32 (Const8 [c])) -> (Const32 [int64( uint8(c))]) 75 (ZeroExt8to64 (Const8 [c])) -> (Const64 [int64( uint8(c))]) 76 (ZeroExt16to32 (Const16 [c])) -> (Const32 [int64(uint16(c))]) 77 (ZeroExt16to64 (Const16 [c])) -> (Const64 [int64(uint16(c))]) 78 (ZeroExt32to64 (Const32 [c])) -> (Const64 [int64(uint32(c))]) 79 (SignExt8to16 (Const8 [c])) -> (Const16 [int64( int8(c))]) 80 (SignExt8to32 (Const8 [c])) -> (Const32 [int64( int8(c))]) 81 (SignExt8to64 (Const8 [c])) -> (Const64 [int64( int8(c))]) 82 (SignExt16to32 (Const16 [c])) -> (Const32 [int64( int16(c))]) 83 (SignExt16to64 (Const16 [c])) -> (Const64 [int64( int16(c))]) 84 (SignExt32to64 (Const32 [c])) -> (Const64 [int64( int32(c))]) 85 86 (Neg8 (Const8 [c])) -> (Const8 [int64( -int8(c))]) 87 (Neg16 (Const16 [c])) -> (Const16 [int64(-int16(c))]) 88 (Neg32 (Const32 [c])) -> (Const32 [int64(-int32(c))]) 89 (Neg64 (Const64 [c])) -> (Const64 [-c]) 90 (Neg32F (Const32F [c])) && i2f(c) != 0 -> (Const32F [f2i(-i2f(c))]) 91 (Neg64F (Const64F [c])) && i2f(c) != 0 -> (Const64F [f2i(-i2f(c))]) 92 93 (Add8 (Const8 [c]) (Const8 [d])) -> (Const8 [int64(int8(c+d))]) 94 (Add16 (Const16 [c]) (Const16 [d])) -> (Const16 [int64(int16(c+d))]) 95 (Add32 (Const32 [c]) (Const32 [d])) -> (Const32 [int64(int32(c+d))]) 96 (Add64 (Const64 [c]) (Const64 [d])) -> (Const64 [c+d]) 97 (Add32F (Const32F [c]) (Const32F [d])) -> 98 (Const32F [f2i(float64(i2f32(c) + i2f32(d)))]) // ensure we combine the operands with 32 bit precision 99 (Add64F (Const64F [c]) (Const64F [d])) -> (Const64F [f2i(i2f(c) + i2f(d))]) 100 (AddPtr <t> x (Const64 [c])) -> (OffPtr <t> x [c]) 101 (AddPtr <t> x (Const32 [c])) -> (OffPtr <t> x [c]) 102 103 (Sub8 (Const8 [c]) (Const8 [d])) -> (Const8 [int64(int8(c-d))]) 104 (Sub16 (Const16 [c]) (Const16 [d])) -> (Const16 [int64(int16(c-d))]) 105 (Sub32 (Const32 [c]) (Const32 [d])) -> (Const32 [int64(int32(c-d))]) 106 (Sub64 (Const64 [c]) (Const64 [d])) -> (Const64 [c-d]) 107 (Sub32F (Const32F [c]) (Const32F [d])) -> 108 (Const32F [f2i(float64(i2f32(c) - i2f32(d)))]) 109 (Sub64F (Const64F [c]) (Const64F [d])) -> (Const64F [f2i(i2f(c) - i2f(d))]) 110 111 (Mul8 (Const8 [c]) (Const8 [d])) -> (Const8 [int64(int8(c*d))]) 112 (Mul16 (Const16 [c]) (Const16 [d])) -> (Const16 [int64(int16(c*d))]) 113 (Mul32 (Const32 [c]) (Const32 [d])) -> (Const32 [int64(int32(c*d))]) 114 (Mul64 (Const64 [c]) (Const64 [d])) -> (Const64 [c*d]) 115 (Mul32F (Const32F [c]) (Const32F [d])) -> 116 (Const32F [f2i(float64(i2f32(c) * i2f32(d)))]) 117 (Mul64F (Const64F [c]) (Const64F [d])) -> (Const64F [f2i(i2f(c) * i2f(d))]) 118 119 (And8 (Const8 [c]) (Const8 [d])) -> (Const8 [int64(int8(c&d))]) 120 (And16 (Const16 [c]) (Const16 [d])) -> (Const16 [int64(int16(c&d))]) 121 (And32 (Const32 [c]) (Const32 [d])) -> (Const32 [int64(int32(c&d))]) 122 (And64 (Const64 [c]) (Const64 [d])) -> (Const64 [c&d]) 123 124 (Or8 (Const8 [c]) (Const8 [d])) -> (Const8 [int64(int8(c|d))]) 125 (Or16 (Const16 [c]) (Const16 [d])) -> (Const16 [int64(int16(c|d))]) 126 (Or32 (Const32 [c]) (Const32 [d])) -> (Const32 [int64(int32(c|d))]) 127 (Or64 (Const64 [c]) (Const64 [d])) -> (Const64 [c|d]) 128 129 (Xor8 (Const8 [c]) (Const8 [d])) -> (Const8 [int64(int8(c^d))]) 130 (Xor16 (Const16 [c]) (Const16 [d])) -> (Const16 [int64(int16(c^d))]) 131 (Xor32 (Const32 [c]) (Const32 [d])) -> (Const32 [int64(int32(c^d))]) 132 (Xor64 (Const64 [c]) (Const64 [d])) -> (Const64 [c^d]) 133 134 (Div8 (Const8 [c]) (Const8 [d])) && d != 0 -> (Const8 [int64(int8(c)/int8(d))]) 135 (Div16 (Const16 [c]) (Const16 [d])) && d != 0 -> (Const16 [int64(int16(c)/int16(d))]) 136 (Div32 (Const32 [c]) (Const32 [d])) && d != 0 -> (Const32 [int64(int32(c)/int32(d))]) 137 (Div64 (Const64 [c]) (Const64 [d])) && d != 0 -> (Const64 [c/d]) 138 (Div8u (Const8 [c]) (Const8 [d])) && d != 0 -> (Const8 [int64(int8(uint8(c)/uint8(d)))]) 139 (Div16u (Const16 [c]) (Const16 [d])) && d != 0 -> (Const16 [int64(int16(uint16(c)/uint16(d)))]) 140 (Div32u (Const32 [c]) (Const32 [d])) && d != 0 -> (Const32 [int64(int32(uint32(c)/uint32(d)))]) 141 (Div64u (Const64 [c]) (Const64 [d])) && d != 0 -> (Const64 [int64(uint64(c)/uint64(d))]) 142 (Div32F (Const32F [c]) (Const32F [d])) -> (Const32F [f2i(float64(i2f32(c) / i2f32(d)))]) 143 (Div64F (Const64F [c]) (Const64F [d])) -> (Const64F [f2i(i2f(c) / i2f(d))]) 144 145 // Convert x * 1 to x. 146 (Mul8 (Const8 [1]) x) -> x 147 (Mul16 (Const16 [1]) x) -> x 148 (Mul32 (Const32 [1]) x) -> x 149 (Mul64 (Const64 [1]) x) -> x 150 151 // Convert x * -1 to -x. 152 (Mul8 (Const8 [-1]) x) -> (Neg8 x) 153 (Mul16 (Const16 [-1]) x) -> (Neg16 x) 154 (Mul32 (Const32 [-1]) x) -> (Neg32 x) 155 (Mul64 (Const64 [-1]) x) -> (Neg64 x) 156 157 // Convert multiplication by a power of two to a shift. 158 (Mul8 <t> n (Const8 [c])) && isPowerOfTwo(c) -> (Lsh8x64 <t> n (Const64 <types.UInt64> [log2(c)])) 159 (Mul16 <t> n (Const16 [c])) && isPowerOfTwo(c) -> (Lsh16x64 <t> n (Const64 <types.UInt64> [log2(c)])) 160 (Mul32 <t> n (Const32 [c])) && isPowerOfTwo(c) -> (Lsh32x64 <t> n (Const64 <types.UInt64> [log2(c)])) 161 (Mul64 <t> n (Const64 [c])) && isPowerOfTwo(c) -> (Lsh64x64 <t> n (Const64 <types.UInt64> [log2(c)])) 162 (Mul8 <t> n (Const8 [c])) && t.IsSigned() && isPowerOfTwo(-c) -> (Neg8 (Lsh8x64 <t> n (Const64 <types.UInt64> [log2(-c)]))) 163 (Mul16 <t> n (Const16 [c])) && t.IsSigned() && isPowerOfTwo(-c) -> (Neg16 (Lsh16x64 <t> n (Const64 <types.UInt64> [log2(-c)]))) 164 (Mul32 <t> n (Const32 [c])) && t.IsSigned() && isPowerOfTwo(-c) -> (Neg32 (Lsh32x64 <t> n (Const64 <types.UInt64> [log2(-c)]))) 165 (Mul64 <t> n (Const64 [c])) && t.IsSigned() && isPowerOfTwo(-c) -> (Neg64 (Lsh64x64 <t> n (Const64 <types.UInt64> [log2(-c)]))) 166 167 (Mod8 (Const8 [c]) (Const8 [d])) && d != 0 -> (Const8 [int64(int8(c % d))]) 168 (Mod16 (Const16 [c]) (Const16 [d])) && d != 0 -> (Const16 [int64(int16(c % d))]) 169 (Mod32 (Const32 [c]) (Const32 [d])) && d != 0 -> (Const32 [int64(int32(c % d))]) 170 (Mod64 (Const64 [c]) (Const64 [d])) && d != 0 -> (Const64 [c % d]) 171 172 (Mod8u (Const8 [c]) (Const8 [d])) && d != 0 -> (Const8 [int64(uint8(c) % uint8(d))]) 173 (Mod16u (Const16 [c]) (Const16 [d])) && d != 0 -> (Const16 [int64(uint16(c) % uint16(d))]) 174 (Mod32u (Const32 [c]) (Const32 [d])) && d != 0 -> (Const32 [int64(uint32(c) % uint32(d))]) 175 (Mod64u (Const64 [c]) (Const64 [d])) && d != 0 -> (Const64 [int64(uint64(c) % uint64(d))]) 176 177 (Lsh64x64 (Const64 [c]) (Const64 [d])) -> (Const64 [c << uint64(d)]) 178 (Rsh64x64 (Const64 [c]) (Const64 [d])) -> (Const64 [c >> uint64(d)]) 179 (Rsh64Ux64 (Const64 [c]) (Const64 [d])) -> (Const64 [int64(uint64(c) >> uint64(d))]) 180 (Lsh32x64 (Const32 [c]) (Const64 [d])) -> (Const32 [int64(int32(c) << uint64(d))]) 181 (Rsh32x64 (Const32 [c]) (Const64 [d])) -> (Const32 [int64(int32(c) >> uint64(d))]) 182 (Rsh32Ux64 (Const32 [c]) (Const64 [d])) -> (Const32 [int64(int32(uint32(c) >> uint64(d)))]) 183 (Lsh16x64 (Const16 [c]) (Const64 [d])) -> (Const16 [int64(int16(c) << uint64(d))]) 184 (Rsh16x64 (Const16 [c]) (Const64 [d])) -> (Const16 [int64(int16(c) >> uint64(d))]) 185 (Rsh16Ux64 (Const16 [c]) (Const64 [d])) -> (Const16 [int64(int16(uint16(c) >> uint64(d)))]) 186 (Lsh8x64 (Const8 [c]) (Const64 [d])) -> (Const8 [int64(int8(c) << uint64(d))]) 187 (Rsh8x64 (Const8 [c]) (Const64 [d])) -> (Const8 [int64(int8(c) >> uint64(d))]) 188 (Rsh8Ux64 (Const8 [c]) (Const64 [d])) -> (Const8 [int64(int8(uint8(c) >> uint64(d)))]) 189 190 // Fold IsInBounds when the range of the index cannot exceed the limit. 191 (IsInBounds (ZeroExt8to32 _) (Const32 [c])) && (1 << 8) <= c -> (ConstBool [1]) 192 (IsInBounds (ZeroExt8to64 _) (Const64 [c])) && (1 << 8) <= c -> (ConstBool [1]) 193 (IsInBounds (ZeroExt16to32 _) (Const32 [c])) && (1 << 16) <= c -> (ConstBool [1]) 194 (IsInBounds (ZeroExt16to64 _) (Const64 [c])) && (1 << 16) <= c -> (ConstBool [1]) 195 (IsInBounds x x) -> (ConstBool [0]) 196 (IsInBounds (And8 (Const8 [c]) _) (Const8 [d])) && 0 <= c && c < d -> (ConstBool [1]) 197 (IsInBounds (ZeroExt8to16 (And8 (Const8 [c]) _)) (Const16 [d])) && 0 <= c && c < d -> (ConstBool [1]) 198 (IsInBounds (ZeroExt8to32 (And8 (Const8 [c]) _)) (Const32 [d])) && 0 <= c && c < d -> (ConstBool [1]) 199 (IsInBounds (ZeroExt8to64 (And8 (Const8 [c]) _)) (Const64 [d])) && 0 <= c && c < d -> (ConstBool [1]) 200 (IsInBounds (And16 (Const16 [c]) _) (Const16 [d])) && 0 <= c && c < d -> (ConstBool [1]) 201 (IsInBounds (ZeroExt16to32 (And16 (Const16 [c]) _)) (Const32 [d])) && 0 <= c && c < d -> (ConstBool [1]) 202 (IsInBounds (ZeroExt16to64 (And16 (Const16 [c]) _)) (Const64 [d])) && 0 <= c && c < d -> (ConstBool [1]) 203 (IsInBounds (And32 (Const32 [c]) _) (Const32 [d])) && 0 <= c && c < d -> (ConstBool [1]) 204 (IsInBounds (ZeroExt32to64 (And32 (Const32 [c]) _)) (Const64 [d])) && 0 <= c && c < d -> (ConstBool [1]) 205 (IsInBounds (And64 (Const64 [c]) _) (Const64 [d])) && 0 <= c && c < d -> (ConstBool [1]) 206 (IsInBounds (Const32 [c]) (Const32 [d])) -> (ConstBool [b2i(0 <= c && c < d)]) 207 (IsInBounds (Const64 [c]) (Const64 [d])) -> (ConstBool [b2i(0 <= c && c < d)]) 208 // (Mod64u x y) is always between 0 (inclusive) and y (exclusive). 209 (IsInBounds (Mod32u _ y) y) -> (ConstBool [1]) 210 (IsInBounds (Mod64u _ y) y) -> (ConstBool [1]) 211 212 (IsSliceInBounds x x) -> (ConstBool [1]) 213 (IsSliceInBounds (And32 (Const32 [c]) _) (Const32 [d])) && 0 <= c && c <= d -> (ConstBool [1]) 214 (IsSliceInBounds (And64 (Const64 [c]) _) (Const64 [d])) && 0 <= c && c <= d -> (ConstBool [1]) 215 (IsSliceInBounds (Const32 [0]) _) -> (ConstBool [1]) 216 (IsSliceInBounds (Const64 [0]) _) -> (ConstBool [1]) 217 (IsSliceInBounds (Const32 [c]) (Const32 [d])) -> (ConstBool [b2i(0 <= c && c <= d)]) 218 (IsSliceInBounds (Const64 [c]) (Const64 [d])) -> (ConstBool [b2i(0 <= c && c <= d)]) 219 (IsSliceInBounds (SliceLen x) (SliceCap x)) -> (ConstBool [1]) 220 221 (Eq64 x x) -> (ConstBool [1]) 222 (Eq32 x x) -> (ConstBool [1]) 223 (Eq16 x x) -> (ConstBool [1]) 224 (Eq8 x x) -> (ConstBool [1]) 225 (EqB (ConstBool [c]) (ConstBool [d])) -> (ConstBool [b2i(c == d)]) 226 (EqB (ConstBool [0]) x) -> (Not x) 227 (EqB (ConstBool [1]) x) -> x 228 229 (Neq64 x x) -> (ConstBool [0]) 230 (Neq32 x x) -> (ConstBool [0]) 231 (Neq16 x x) -> (ConstBool [0]) 232 (Neq8 x x) -> (ConstBool [0]) 233 (NeqB (ConstBool [c]) (ConstBool [d])) -> (ConstBool [b2i(c != d)]) 234 (NeqB (ConstBool [0]) x) -> x 235 (NeqB (ConstBool [1]) x) -> (Not x) 236 237 (Eq64 (Const64 <t> [c]) (Add64 (Const64 <t> [d]) x)) -> (Eq64 (Const64 <t> [c-d]) x) 238 (Eq32 (Const32 <t> [c]) (Add32 (Const32 <t> [d]) x)) -> (Eq32 (Const32 <t> [int64(int32(c-d))]) x) 239 (Eq16 (Const16 <t> [c]) (Add16 (Const16 <t> [d]) x)) -> (Eq16 (Const16 <t> [int64(int16(c-d))]) x) 240 (Eq8 (Const8 <t> [c]) (Add8 (Const8 <t> [d]) x)) -> (Eq8 (Const8 <t> [int64(int8(c-d))]) x) 241 242 (Neq64 (Const64 <t> [c]) (Add64 (Const64 <t> [d]) x)) -> (Neq64 (Const64 <t> [c-d]) x) 243 (Neq32 (Const32 <t> [c]) (Add32 (Const32 <t> [d]) x)) -> (Neq32 (Const32 <t> [int64(int32(c-d))]) x) 244 (Neq16 (Const16 <t> [c]) (Add16 (Const16 <t> [d]) x)) -> (Neq16 (Const16 <t> [int64(int16(c-d))]) x) 245 (Neq8 (Const8 <t> [c]) (Add8 (Const8 <t> [d]) x)) -> (Neq8 (Const8 <t> [int64(int8(c-d))]) x) 246 247 // Canonicalize x-const to x+(-const) 248 (Sub64 x (Const64 <t> [c])) && x.Op != OpConst64 -> (Add64 (Const64 <t> [-c]) x) 249 (Sub32 x (Const32 <t> [c])) && x.Op != OpConst32 -> (Add32 (Const32 <t> [int64(int32(-c))]) x) 250 (Sub16 x (Const16 <t> [c])) && x.Op != OpConst16 -> (Add16 (Const16 <t> [int64(int16(-c))]) x) 251 (Sub8 x (Const8 <t> [c])) && x.Op != OpConst8 -> (Add8 (Const8 <t> [int64(int8(-c))]) x) 252 253 // fold negation into comparison operators 254 (Not (Eq64 x y)) -> (Neq64 x y) 255 (Not (Eq32 x y)) -> (Neq32 x y) 256 (Not (Eq16 x y)) -> (Neq16 x y) 257 (Not (Eq8 x y)) -> (Neq8 x y) 258 (Not (EqB x y)) -> (NeqB x y) 259 260 (Not (Neq64 x y)) -> (Eq64 x y) 261 (Not (Neq32 x y)) -> (Eq32 x y) 262 (Not (Neq16 x y)) -> (Eq16 x y) 263 (Not (Neq8 x y)) -> (Eq8 x y) 264 (Not (NeqB x y)) -> (EqB x y) 265 266 (Not (Greater64 x y)) -> (Leq64 x y) 267 (Not (Greater32 x y)) -> (Leq32 x y) 268 (Not (Greater16 x y)) -> (Leq16 x y) 269 (Not (Greater8 x y)) -> (Leq8 x y) 270 271 (Not (Greater64U x y)) -> (Leq64U x y) 272 (Not (Greater32U x y)) -> (Leq32U x y) 273 (Not (Greater16U x y)) -> (Leq16U x y) 274 (Not (Greater8U x y)) -> (Leq8U x y) 275 276 (Not (Geq64 x y)) -> (Less64 x y) 277 (Not (Geq32 x y)) -> (Less32 x y) 278 (Not (Geq16 x y)) -> (Less16 x y) 279 (Not (Geq8 x y)) -> (Less8 x y) 280 281 (Not (Geq64U x y)) -> (Less64U x y) 282 (Not (Geq32U x y)) -> (Less32U x y) 283 (Not (Geq16U x y)) -> (Less16U x y) 284 (Not (Geq8U x y)) -> (Less8U x y) 285 286 (Not (Less64 x y)) -> (Geq64 x y) 287 (Not (Less32 x y)) -> (Geq32 x y) 288 (Not (Less16 x y)) -> (Geq16 x y) 289 (Not (Less8 x y)) -> (Geq8 x y) 290 291 (Not (Less64U x y)) -> (Geq64U x y) 292 (Not (Less32U x y)) -> (Geq32U x y) 293 (Not (Less16U x y)) -> (Geq16U x y) 294 (Not (Less8U x y)) -> (Geq8U x y) 295 296 (Not (Leq64 x y)) -> (Greater64 x y) 297 (Not (Leq32 x y)) -> (Greater32 x y) 298 (Not (Leq16 x y)) -> (Greater16 x y) 299 (Not (Leq8 x y)) -> (Greater8 x y) 300 301 (Not (Leq64U x y)) -> (Greater64U x y) 302 (Not (Leq32U x y)) -> (Greater32U x y) 303 (Not (Leq16U x y)) -> (Greater16U x y) 304 (Not (Leq8U x y)) -> (Greater8U x y) 305 306 // Distribute multiplication c * (d+x) -> c*d + c*x. Useful for: 307 // a[i].b = ...; a[i+1].b = ... 308 (Mul64 (Const64 <t> [c]) (Add64 <t> (Const64 <t> [d]) x)) -> 309 (Add64 (Const64 <t> [c*d]) (Mul64 <t> (Const64 <t> [c]) x)) 310 (Mul32 (Const32 <t> [c]) (Add32 <t> (Const32 <t> [d]) x)) -> 311 (Add32 (Const32 <t> [int64(int32(c*d))]) (Mul32 <t> (Const32 <t> [c]) x)) 312 313 // rewrite shifts of 8/16/32 bit consts into 64 bit consts to reduce 314 // the number of the other rewrite rules for const shifts 315 (Lsh64x32 <t> x (Const32 [c])) -> (Lsh64x64 x (Const64 <t> [int64(uint32(c))])) 316 (Lsh64x16 <t> x (Const16 [c])) -> (Lsh64x64 x (Const64 <t> [int64(uint16(c))])) 317 (Lsh64x8 <t> x (Const8 [c])) -> (Lsh64x64 x (Const64 <t> [int64(uint8(c))])) 318 (Rsh64x32 <t> x (Const32 [c])) -> (Rsh64x64 x (Const64 <t> [int64(uint32(c))])) 319 (Rsh64x16 <t> x (Const16 [c])) -> (Rsh64x64 x (Const64 <t> [int64(uint16(c))])) 320 (Rsh64x8 <t> x (Const8 [c])) -> (Rsh64x64 x (Const64 <t> [int64(uint8(c))])) 321 (Rsh64Ux32 <t> x (Const32 [c])) -> (Rsh64Ux64 x (Const64 <t> [int64(uint32(c))])) 322 (Rsh64Ux16 <t> x (Const16 [c])) -> (Rsh64Ux64 x (Const64 <t> [int64(uint16(c))])) 323 (Rsh64Ux8 <t> x (Const8 [c])) -> (Rsh64Ux64 x (Const64 <t> [int64(uint8(c))])) 324 325 (Lsh32x32 <t> x (Const32 [c])) -> (Lsh32x64 x (Const64 <t> [int64(uint32(c))])) 326 (Lsh32x16 <t> x (Const16 [c])) -> (Lsh32x64 x (Const64 <t> [int64(uint16(c))])) 327 (Lsh32x8 <t> x (Const8 [c])) -> (Lsh32x64 x (Const64 <t> [int64(uint8(c))])) 328 (Rsh32x32 <t> x (Const32 [c])) -> (Rsh32x64 x (Const64 <t> [int64(uint32(c))])) 329 (Rsh32x16 <t> x (Const16 [c])) -> (Rsh32x64 x (Const64 <t> [int64(uint16(c))])) 330 (Rsh32x8 <t> x (Const8 [c])) -> (Rsh32x64 x (Const64 <t> [int64(uint8(c))])) 331 (Rsh32Ux32 <t> x (Const32 [c])) -> (Rsh32Ux64 x (Const64 <t> [int64(uint32(c))])) 332 (Rsh32Ux16 <t> x (Const16 [c])) -> (Rsh32Ux64 x (Const64 <t> [int64(uint16(c))])) 333 (Rsh32Ux8 <t> x (Const8 [c])) -> (Rsh32Ux64 x (Const64 <t> [int64(uint8(c))])) 334 335 (Lsh16x32 <t> x (Const32 [c])) -> (Lsh16x64 x (Const64 <t> [int64(uint32(c))])) 336 (Lsh16x16 <t> x (Const16 [c])) -> (Lsh16x64 x (Const64 <t> [int64(uint16(c))])) 337 (Lsh16x8 <t> x (Const8 [c])) -> (Lsh16x64 x (Const64 <t> [int64(uint8(c))])) 338 (Rsh16x32 <t> x (Const32 [c])) -> (Rsh16x64 x (Const64 <t> [int64(uint32(c))])) 339 (Rsh16x16 <t> x (Const16 [c])) -> (Rsh16x64 x (Const64 <t> [int64(uint16(c))])) 340 (Rsh16x8 <t> x (Const8 [c])) -> (Rsh16x64 x (Const64 <t> [int64(uint8(c))])) 341 (Rsh16Ux32 <t> x (Const32 [c])) -> (Rsh16Ux64 x (Const64 <t> [int64(uint32(c))])) 342 (Rsh16Ux16 <t> x (Const16 [c])) -> (Rsh16Ux64 x (Const64 <t> [int64(uint16(c))])) 343 (Rsh16Ux8 <t> x (Const8 [c])) -> (Rsh16Ux64 x (Const64 <t> [int64(uint8(c))])) 344 345 (Lsh8x32 <t> x (Const32 [c])) -> (Lsh8x64 x (Const64 <t> [int64(uint32(c))])) 346 (Lsh8x16 <t> x (Const16 [c])) -> (Lsh8x64 x (Const64 <t> [int64(uint16(c))])) 347 (Lsh8x8 <t> x (Const8 [c])) -> (Lsh8x64 x (Const64 <t> [int64(uint8(c))])) 348 (Rsh8x32 <t> x (Const32 [c])) -> (Rsh8x64 x (Const64 <t> [int64(uint32(c))])) 349 (Rsh8x16 <t> x (Const16 [c])) -> (Rsh8x64 x (Const64 <t> [int64(uint16(c))])) 350 (Rsh8x8 <t> x (Const8 [c])) -> (Rsh8x64 x (Const64 <t> [int64(uint8(c))])) 351 (Rsh8Ux32 <t> x (Const32 [c])) -> (Rsh8Ux64 x (Const64 <t> [int64(uint32(c))])) 352 (Rsh8Ux16 <t> x (Const16 [c])) -> (Rsh8Ux64 x (Const64 <t> [int64(uint16(c))])) 353 (Rsh8Ux8 <t> x (Const8 [c])) -> (Rsh8Ux64 x (Const64 <t> [int64(uint8(c))])) 354 355 // shifts by zero 356 (Lsh64x64 x (Const64 [0])) -> x 357 (Rsh64x64 x (Const64 [0])) -> x 358 (Rsh64Ux64 x (Const64 [0])) -> x 359 (Lsh32x64 x (Const64 [0])) -> x 360 (Rsh32x64 x (Const64 [0])) -> x 361 (Rsh32Ux64 x (Const64 [0])) -> x 362 (Lsh16x64 x (Const64 [0])) -> x 363 (Rsh16x64 x (Const64 [0])) -> x 364 (Rsh16Ux64 x (Const64 [0])) -> x 365 (Lsh8x64 x (Const64 [0])) -> x 366 (Rsh8x64 x (Const64 [0])) -> x 367 (Rsh8Ux64 x (Const64 [0])) -> x 368 369 // zero shifted. 370 (Lsh64x64 (Const64 [0]) _) -> (Const64 [0]) 371 (Lsh64x32 (Const64 [0]) _) -> (Const64 [0]) 372 (Lsh64x16 (Const64 [0]) _) -> (Const64 [0]) 373 (Lsh64x8 (Const64 [0]) _) -> (Const64 [0]) 374 (Rsh64x64 (Const64 [0]) _) -> (Const64 [0]) 375 (Rsh64x32 (Const64 [0]) _) -> (Const64 [0]) 376 (Rsh64x16 (Const64 [0]) _) -> (Const64 [0]) 377 (Rsh64x8 (Const64 [0]) _) -> (Const64 [0]) 378 (Rsh64Ux64 (Const64 [0]) _) -> (Const64 [0]) 379 (Rsh64Ux32 (Const64 [0]) _) -> (Const64 [0]) 380 (Rsh64Ux16 (Const64 [0]) _) -> (Const64 [0]) 381 (Rsh64Ux8 (Const64 [0]) _) -> (Const64 [0]) 382 (Lsh32x64 (Const32 [0]) _) -> (Const32 [0]) 383 (Lsh32x32 (Const32 [0]) _) -> (Const32 [0]) 384 (Lsh32x16 (Const32 [0]) _) -> (Const32 [0]) 385 (Lsh32x8 (Const32 [0]) _) -> (Const32 [0]) 386 (Rsh32x64 (Const32 [0]) _) -> (Const32 [0]) 387 (Rsh32x32 (Const32 [0]) _) -> (Const32 [0]) 388 (Rsh32x16 (Const32 [0]) _) -> (Const32 [0]) 389 (Rsh32x8 (Const32 [0]) _) -> (Const32 [0]) 390 (Rsh32Ux64 (Const32 [0]) _) -> (Const32 [0]) 391 (Rsh32Ux32 (Const32 [0]) _) -> (Const32 [0]) 392 (Rsh32Ux16 (Const32 [0]) _) -> (Const32 [0]) 393 (Rsh32Ux8 (Const32 [0]) _) -> (Const32 [0]) 394 (Lsh16x64 (Const16 [0]) _) -> (Const16 [0]) 395 (Lsh16x32 (Const16 [0]) _) -> (Const16 [0]) 396 (Lsh16x16 (Const16 [0]) _) -> (Const16 [0]) 397 (Lsh16x8 (Const16 [0]) _) -> (Const16 [0]) 398 (Rsh16x64 (Const16 [0]) _) -> (Const16 [0]) 399 (Rsh16x32 (Const16 [0]) _) -> (Const16 [0]) 400 (Rsh16x16 (Const16 [0]) _) -> (Const16 [0]) 401 (Rsh16x8 (Const16 [0]) _) -> (Const16 [0]) 402 (Rsh16Ux64 (Const16 [0]) _) -> (Const16 [0]) 403 (Rsh16Ux32 (Const16 [0]) _) -> (Const16 [0]) 404 (Rsh16Ux16 (Const16 [0]) _) -> (Const16 [0]) 405 (Rsh16Ux8 (Const16 [0]) _) -> (Const16 [0]) 406 (Lsh8x64 (Const8 [0]) _) -> (Const8 [0]) 407 (Lsh8x32 (Const8 [0]) _) -> (Const8 [0]) 408 (Lsh8x16 (Const8 [0]) _) -> (Const8 [0]) 409 (Lsh8x8 (Const8 [0]) _) -> (Const8 [0]) 410 (Rsh8x64 (Const8 [0]) _) -> (Const8 [0]) 411 (Rsh8x32 (Const8 [0]) _) -> (Const8 [0]) 412 (Rsh8x16 (Const8 [0]) _) -> (Const8 [0]) 413 (Rsh8x8 (Const8 [0]) _) -> (Const8 [0]) 414 (Rsh8Ux64 (Const8 [0]) _) -> (Const8 [0]) 415 (Rsh8Ux32 (Const8 [0]) _) -> (Const8 [0]) 416 (Rsh8Ux16 (Const8 [0]) _) -> (Const8 [0]) 417 (Rsh8Ux8 (Const8 [0]) _) -> (Const8 [0]) 418 419 // large left shifts of all values, and right shifts of unsigned values 420 (Lsh64x64 _ (Const64 [c])) && uint64(c) >= 64 -> (Const64 [0]) 421 (Rsh64Ux64 _ (Const64 [c])) && uint64(c) >= 64 -> (Const64 [0]) 422 (Lsh32x64 _ (Const64 [c])) && uint64(c) >= 32 -> (Const32 [0]) 423 (Rsh32Ux64 _ (Const64 [c])) && uint64(c) >= 32 -> (Const32 [0]) 424 (Lsh16x64 _ (Const64 [c])) && uint64(c) >= 16 -> (Const16 [0]) 425 (Rsh16Ux64 _ (Const64 [c])) && uint64(c) >= 16 -> (Const16 [0]) 426 (Lsh8x64 _ (Const64 [c])) && uint64(c) >= 8 -> (Const8 [0]) 427 (Rsh8Ux64 _ (Const64 [c])) && uint64(c) >= 8 -> (Const8 [0]) 428 429 // combine const shifts 430 (Lsh64x64 <t> (Lsh64x64 x (Const64 [c])) (Const64 [d])) && !uaddOvf(c,d) -> (Lsh64x64 x (Const64 <t> [c+d])) 431 (Lsh32x64 <t> (Lsh32x64 x (Const64 [c])) (Const64 [d])) && !uaddOvf(c,d) -> (Lsh32x64 x (Const64 <t> [c+d])) 432 (Lsh16x64 <t> (Lsh16x64 x (Const64 [c])) (Const64 [d])) && !uaddOvf(c,d) -> (Lsh16x64 x (Const64 <t> [c+d])) 433 (Lsh8x64 <t> (Lsh8x64 x (Const64 [c])) (Const64 [d])) && !uaddOvf(c,d) -> (Lsh8x64 x (Const64 <t> [c+d])) 434 435 (Rsh64x64 <t> (Rsh64x64 x (Const64 [c])) (Const64 [d])) && !uaddOvf(c,d) -> (Rsh64x64 x (Const64 <t> [c+d])) 436 (Rsh32x64 <t> (Rsh32x64 x (Const64 [c])) (Const64 [d])) && !uaddOvf(c,d) -> (Rsh32x64 x (Const64 <t> [c+d])) 437 (Rsh16x64 <t> (Rsh16x64 x (Const64 [c])) (Const64 [d])) && !uaddOvf(c,d) -> (Rsh16x64 x (Const64 <t> [c+d])) 438 (Rsh8x64 <t> (Rsh8x64 x (Const64 [c])) (Const64 [d])) && !uaddOvf(c,d) -> (Rsh8x64 x (Const64 <t> [c+d])) 439 440 (Rsh64Ux64 <t> (Rsh64Ux64 x (Const64 [c])) (Const64 [d])) && !uaddOvf(c,d) -> (Rsh64Ux64 x (Const64 <t> [c+d])) 441 (Rsh32Ux64 <t> (Rsh32Ux64 x (Const64 [c])) (Const64 [d])) && !uaddOvf(c,d) -> (Rsh32Ux64 x (Const64 <t> [c+d])) 442 (Rsh16Ux64 <t> (Rsh16Ux64 x (Const64 [c])) (Const64 [d])) && !uaddOvf(c,d) -> (Rsh16Ux64 x (Const64 <t> [c+d])) 443 (Rsh8Ux64 <t> (Rsh8Ux64 x (Const64 [c])) (Const64 [d])) && !uaddOvf(c,d) -> (Rsh8Ux64 x (Const64 <t> [c+d])) 444 445 // ((x >> c1) << c2) >> c3 446 (Rsh64Ux64 (Lsh64x64 (Rsh64Ux64 x (Const64 [c1])) (Const64 [c2])) (Const64 [c3])) 447 && uint64(c1) >= uint64(c2) && uint64(c3) >= uint64(c2) && !uaddOvf(c1-c2, c3) 448 -> (Rsh64Ux64 x (Const64 <types.UInt64> [c1-c2+c3])) 449 (Rsh32Ux64 (Lsh32x64 (Rsh32Ux64 x (Const64 [c1])) (Const64 [c2])) (Const64 [c3])) 450 && uint64(c1) >= uint64(c2) && uint64(c3) >= uint64(c2) && !uaddOvf(c1-c2, c3) 451 -> (Rsh32Ux64 x (Const64 <types.UInt64> [c1-c2+c3])) 452 (Rsh16Ux64 (Lsh16x64 (Rsh16Ux64 x (Const64 [c1])) (Const64 [c2])) (Const64 [c3])) 453 && uint64(c1) >= uint64(c2) && uint64(c3) >= uint64(c2) && !uaddOvf(c1-c2, c3) 454 -> (Rsh16Ux64 x (Const64 <types.UInt64> [c1-c2+c3])) 455 (Rsh8Ux64 (Lsh8x64 (Rsh8Ux64 x (Const64 [c1])) (Const64 [c2])) (Const64 [c3])) 456 && uint64(c1) >= uint64(c2) && uint64(c3) >= uint64(c2) && !uaddOvf(c1-c2, c3) 457 -> (Rsh8Ux64 x (Const64 <types.UInt64> [c1-c2+c3])) 458 459 // ((x << c1) >> c2) << c3 460 (Lsh64x64 (Rsh64Ux64 (Lsh64x64 x (Const64 [c1])) (Const64 [c2])) (Const64 [c3])) 461 && uint64(c1) >= uint64(c2) && uint64(c3) >= uint64(c2) && !uaddOvf(c1-c2, c3) 462 -> (Lsh64x64 x (Const64 <types.UInt64> [c1-c2+c3])) 463 (Lsh32x64 (Rsh32Ux64 (Lsh32x64 x (Const64 [c1])) (Const64 [c2])) (Const64 [c3])) 464 && uint64(c1) >= uint64(c2) && uint64(c3) >= uint64(c2) && !uaddOvf(c1-c2, c3) 465 -> (Lsh32x64 x (Const64 <types.UInt64> [c1-c2+c3])) 466 (Lsh16x64 (Rsh16Ux64 (Lsh16x64 x (Const64 [c1])) (Const64 [c2])) (Const64 [c3])) 467 && uint64(c1) >= uint64(c2) && uint64(c3) >= uint64(c2) && !uaddOvf(c1-c2, c3) 468 -> (Lsh16x64 x (Const64 <types.UInt64> [c1-c2+c3])) 469 (Lsh8x64 (Rsh8Ux64 (Lsh8x64 x (Const64 [c1])) (Const64 [c2])) (Const64 [c3])) 470 && uint64(c1) >= uint64(c2) && uint64(c3) >= uint64(c2) && !uaddOvf(c1-c2, c3) 471 -> (Lsh8x64 x (Const64 <types.UInt64> [c1-c2+c3])) 472 473 // replace shifts with zero extensions 474 (Rsh16Ux64 (Lsh16x64 x (Const64 [8])) (Const64 [8])) -> (ZeroExt8to16 (Trunc16to8 <types.UInt8> x)) 475 (Rsh32Ux64 (Lsh32x64 x (Const64 [24])) (Const64 [24])) -> (ZeroExt8to32 (Trunc32to8 <types.UInt8> x)) 476 (Rsh64Ux64 (Lsh64x64 x (Const64 [56])) (Const64 [56])) -> (ZeroExt8to64 (Trunc64to8 <types.UInt8> x)) 477 (Rsh32Ux64 (Lsh32x64 x (Const64 [16])) (Const64 [16])) -> (ZeroExt16to32 (Trunc32to16 <types.UInt16> x)) 478 (Rsh64Ux64 (Lsh64x64 x (Const64 [48])) (Const64 [48])) -> (ZeroExt16to64 (Trunc64to16 <types.UInt16> x)) 479 (Rsh64Ux64 (Lsh64x64 x (Const64 [32])) (Const64 [32])) -> (ZeroExt32to64 (Trunc64to32 <types.UInt32> x)) 480 481 // replace shifts with sign extensions 482 (Rsh16x64 (Lsh16x64 x (Const64 [8])) (Const64 [8])) -> (SignExt8to16 (Trunc16to8 <types.Int8> x)) 483 (Rsh32x64 (Lsh32x64 x (Const64 [24])) (Const64 [24])) -> (SignExt8to32 (Trunc32to8 <types.Int8> x)) 484 (Rsh64x64 (Lsh64x64 x (Const64 [56])) (Const64 [56])) -> (SignExt8to64 (Trunc64to8 <types.Int8> x)) 485 (Rsh32x64 (Lsh32x64 x (Const64 [16])) (Const64 [16])) -> (SignExt16to32 (Trunc32to16 <types.Int16> x)) 486 (Rsh64x64 (Lsh64x64 x (Const64 [48])) (Const64 [48])) -> (SignExt16to64 (Trunc64to16 <types.Int16> x)) 487 (Rsh64x64 (Lsh64x64 x (Const64 [32])) (Const64 [32])) -> (SignExt32to64 (Trunc64to32 <types.Int32> x)) 488 489 // constant comparisons 490 (Eq64 (Const64 [c]) (Const64 [d])) -> (ConstBool [b2i(c == d)]) 491 (Eq32 (Const32 [c]) (Const32 [d])) -> (ConstBool [b2i(c == d)]) 492 (Eq16 (Const16 [c]) (Const16 [d])) -> (ConstBool [b2i(c == d)]) 493 (Eq8 (Const8 [c]) (Const8 [d])) -> (ConstBool [b2i(c == d)]) 494 495 (Neq64 (Const64 [c]) (Const64 [d])) -> (ConstBool [b2i(c != d)]) 496 (Neq32 (Const32 [c]) (Const32 [d])) -> (ConstBool [b2i(c != d)]) 497 (Neq16 (Const16 [c]) (Const16 [d])) -> (ConstBool [b2i(c != d)]) 498 (Neq8 (Const8 [c]) (Const8 [d])) -> (ConstBool [b2i(c != d)]) 499 500 (Greater64 (Const64 [c]) (Const64 [d])) -> (ConstBool [b2i(c > d)]) 501 (Greater32 (Const32 [c]) (Const32 [d])) -> (ConstBool [b2i(c > d)]) 502 (Greater16 (Const16 [c]) (Const16 [d])) -> (ConstBool [b2i(c > d)]) 503 (Greater8 (Const8 [c]) (Const8 [d])) -> (ConstBool [b2i(c > d)]) 504 505 (Greater64U (Const64 [c]) (Const64 [d])) -> (ConstBool [b2i(uint64(c) > uint64(d))]) 506 (Greater32U (Const32 [c]) (Const32 [d])) -> (ConstBool [b2i(uint32(c) > uint32(d))]) 507 (Greater16U (Const16 [c]) (Const16 [d])) -> (ConstBool [b2i(uint16(c) > uint16(d))]) 508 (Greater8U (Const8 [c]) (Const8 [d])) -> (ConstBool [b2i(uint8(c) > uint8(d))]) 509 510 (Geq64 (Const64 [c]) (Const64 [d])) -> (ConstBool [b2i(c >= d)]) 511 (Geq32 (Const32 [c]) (Const32 [d])) -> (ConstBool [b2i(c >= d)]) 512 (Geq16 (Const16 [c]) (Const16 [d])) -> (ConstBool [b2i(c >= d)]) 513 (Geq8 (Const8 [c]) (Const8 [d])) -> (ConstBool [b2i(c >= d)]) 514 515 (Geq64U (Const64 [c]) (Const64 [d])) -> (ConstBool [b2i(uint64(c) >= uint64(d))]) 516 (Geq32U (Const32 [c]) (Const32 [d])) -> (ConstBool [b2i(uint32(c) >= uint32(d))]) 517 (Geq16U (Const16 [c]) (Const16 [d])) -> (ConstBool [b2i(uint16(c) >= uint16(d))]) 518 (Geq8U (Const8 [c]) (Const8 [d])) -> (ConstBool [b2i(uint8(c) >= uint8(d))]) 519 520 (Less64 (Const64 [c]) (Const64 [d])) -> (ConstBool [b2i(c < d)]) 521 (Less32 (Const32 [c]) (Const32 [d])) -> (ConstBool [b2i(c < d)]) 522 (Less16 (Const16 [c]) (Const16 [d])) -> (ConstBool [b2i(c < d)]) 523 (Less8 (Const8 [c]) (Const8 [d])) -> (ConstBool [b2i(c < d)]) 524 525 (Less64U (Const64 [c]) (Const64 [d])) -> (ConstBool [b2i(uint64(c) < uint64(d))]) 526 (Less32U (Const32 [c]) (Const32 [d])) -> (ConstBool [b2i(uint32(c) < uint32(d))]) 527 (Less16U (Const16 [c]) (Const16 [d])) -> (ConstBool [b2i(uint16(c) < uint16(d))]) 528 (Less8U (Const8 [c]) (Const8 [d])) -> (ConstBool [b2i(uint8(c) < uint8(d))]) 529 530 (Leq64 (Const64 [c]) (Const64 [d])) -> (ConstBool [b2i(c <= d)]) 531 (Leq32 (Const32 [c]) (Const32 [d])) -> (ConstBool [b2i(c <= d)]) 532 (Leq16 (Const16 [c]) (Const16 [d])) -> (ConstBool [b2i(c <= d)]) 533 (Leq8 (Const8 [c]) (Const8 [d])) -> (ConstBool [b2i(c <= d)]) 534 535 (Leq64U (Const64 [c]) (Const64 [d])) -> (ConstBool [b2i(uint64(c) <= uint64(d))]) 536 (Leq32U (Const32 [c]) (Const32 [d])) -> (ConstBool [b2i(uint32(c) <= uint32(d))]) 537 (Leq16U (Const16 [c]) (Const16 [d])) -> (ConstBool [b2i(uint16(c) <= uint16(d))]) 538 (Leq8U (Const8 [c]) (Const8 [d])) -> (ConstBool [b2i(uint8(c) <= uint8(d))]) 539 540 // simplifications 541 (Or64 x x) -> x 542 (Or32 x x) -> x 543 (Or16 x x) -> x 544 (Or8 x x) -> x 545 (Or64 (Const64 [0]) x) -> x 546 (Or32 (Const32 [0]) x) -> x 547 (Or16 (Const16 [0]) x) -> x 548 (Or8 (Const8 [0]) x) -> x 549 (Or64 (Const64 [-1]) _) -> (Const64 [-1]) 550 (Or32 (Const32 [-1]) _) -> (Const32 [-1]) 551 (Or16 (Const16 [-1]) _) -> (Const16 [-1]) 552 (Or8 (Const8 [-1]) _) -> (Const8 [-1]) 553 (And64 x x) -> x 554 (And32 x x) -> x 555 (And16 x x) -> x 556 (And8 x x) -> x 557 (And64 (Const64 [-1]) x) -> x 558 (And32 (Const32 [-1]) x) -> x 559 (And16 (Const16 [-1]) x) -> x 560 (And8 (Const8 [-1]) x) -> x 561 (And64 (Const64 [0]) _) -> (Const64 [0]) 562 (And32 (Const32 [0]) _) -> (Const32 [0]) 563 (And16 (Const16 [0]) _) -> (Const16 [0]) 564 (And8 (Const8 [0]) _) -> (Const8 [0]) 565 (Xor64 x x) -> (Const64 [0]) 566 (Xor32 x x) -> (Const32 [0]) 567 (Xor16 x x) -> (Const16 [0]) 568 (Xor8 x x) -> (Const8 [0]) 569 (Xor64 (Const64 [0]) x) -> x 570 (Xor32 (Const32 [0]) x) -> x 571 (Xor16 (Const16 [0]) x) -> x 572 (Xor8 (Const8 [0]) x) -> x 573 (Add64 (Const64 [0]) x) -> x 574 (Add32 (Const32 [0]) x) -> x 575 (Add16 (Const16 [0]) x) -> x 576 (Add8 (Const8 [0]) x) -> x 577 (Sub64 x x) -> (Const64 [0]) 578 (Sub32 x x) -> (Const32 [0]) 579 (Sub16 x x) -> (Const16 [0]) 580 (Sub8 x x) -> (Const8 [0]) 581 (Mul64 (Const64 [0]) _) -> (Const64 [0]) 582 (Mul32 (Const32 [0]) _) -> (Const32 [0]) 583 (Mul16 (Const16 [0]) _) -> (Const16 [0]) 584 (Mul8 (Const8 [0]) _) -> (Const8 [0]) 585 (Com8 (Com8 x)) -> x 586 (Com16 (Com16 x)) -> x 587 (Com32 (Com32 x)) -> x 588 (Com64 (Com64 x)) -> x 589 (Neg8 (Sub8 x y)) -> (Sub8 y x) 590 (Neg16 (Sub16 x y)) -> (Sub16 y x) 591 (Neg32 (Sub32 x y)) -> (Sub32 y x) 592 (Neg64 (Sub64 x y)) -> (Sub64 y x) 593 (Add8 (Const8 [1]) (Com8 x)) -> (Neg8 x) 594 (Add16 (Const16 [1]) (Com16 x)) -> (Neg16 x) 595 (Add32 (Const32 [1]) (Com32 x)) -> (Neg32 x) 596 (Add64 (Const64 [1]) (Com64 x)) -> (Neg64 x) 597 598 (And64 x (And64 x y)) -> (And64 x y) 599 (And32 x (And32 x y)) -> (And32 x y) 600 (And16 x (And16 x y)) -> (And16 x y) 601 (And8 x (And8 x y)) -> (And8 x y) 602 (Or64 x (Or64 x y)) -> (Or64 x y) 603 (Or32 x (Or32 x y)) -> (Or32 x y) 604 (Or16 x (Or16 x y)) -> (Or16 x y) 605 (Or8 x (Or8 x y)) -> (Or8 x y) 606 (Xor64 x (Xor64 x y)) -> y 607 (Xor32 x (Xor32 x y)) -> y 608 (Xor16 x (Xor16 x y)) -> y 609 (Xor8 x (Xor8 x y)) -> y 610 611 (Trunc64to8 (And64 (Const64 [y]) x)) && y&0xFF == 0xFF -> (Trunc64to8 x) 612 (Trunc64to16 (And64 (Const64 [y]) x)) && y&0xFFFF == 0xFFFF -> (Trunc64to16 x) 613 (Trunc64to32 (And64 (Const64 [y]) x)) && y&0xFFFFFFFF == 0xFFFFFFFF -> (Trunc64to32 x) 614 (Trunc32to8 (And32 (Const32 [y]) x)) && y&0xFF == 0xFF -> (Trunc32to8 x) 615 (Trunc32to16 (And32 (Const32 [y]) x)) && y&0xFFFF == 0xFFFF -> (Trunc32to16 x) 616 (Trunc16to8 (And16 (Const16 [y]) x)) && y&0xFF == 0xFF -> (Trunc16to8 x) 617 618 (ZeroExt8to64 (Trunc64to8 x:(Rsh64Ux64 _ (Const64 [s])))) && s >= 56 -> x 619 (ZeroExt16to64 (Trunc64to16 x:(Rsh64Ux64 _ (Const64 [s])))) && s >= 48 -> x 620 (ZeroExt32to64 (Trunc64to32 x:(Rsh64Ux64 _ (Const64 [s])))) && s >= 32 -> x 621 (ZeroExt8to32 (Trunc32to8 x:(Rsh32Ux64 _ (Const64 [s])))) && s >= 24 -> x 622 (ZeroExt16to32 (Trunc32to16 x:(Rsh32Ux64 _ (Const64 [s])))) && s >= 16 -> x 623 (ZeroExt8to16 (Trunc16to8 x:(Rsh16Ux64 _ (Const64 [s])))) && s >= 8 -> x 624 625 (SignExt8to64 (Trunc64to8 x:(Rsh64x64 _ (Const64 [s])))) && s >= 56 -> x 626 (SignExt16to64 (Trunc64to16 x:(Rsh64x64 _ (Const64 [s])))) && s >= 48 -> x 627 (SignExt32to64 (Trunc64to32 x:(Rsh64x64 _ (Const64 [s])))) && s >= 32 -> x 628 (SignExt8to32 (Trunc32to8 x:(Rsh32x64 _ (Const64 [s])))) && s >= 24 -> x 629 (SignExt16to32 (Trunc32to16 x:(Rsh32x64 _ (Const64 [s])))) && s >= 16 -> x 630 (SignExt8to16 (Trunc16to8 x:(Rsh16x64 _ (Const64 [s])))) && s >= 8 -> x 631 632 (Slicemask (Const32 [x])) && x > 0 -> (Const32 [-1]) 633 (Slicemask (Const32 [0])) -> (Const32 [0]) 634 (Slicemask (Const64 [x])) && x > 0 -> (Const64 [-1]) 635 (Slicemask (Const64 [0])) -> (Const64 [0]) 636 637 // Rewrite AND of consts as shifts if possible, slightly faster for 64 bit operands 638 // leading zeros can be shifted left, then right 639 (And64 <t> (Const64 [y]) x) && nlz(y) + nto(y) == 64 && nto(y) >= 32 640 -> (Rsh64Ux64 (Lsh64x64 <t> x (Const64 <t> [nlz(y)])) (Const64 <t> [nlz(y)])) 641 // trailing zeros can be shifted right, then left 642 (And64 <t> (Const64 [y]) x) && nlo(y) + ntz(y) == 64 && ntz(y) >= 32 643 -> (Lsh64x64 (Rsh64Ux64 <t> x (Const64 <t> [ntz(y)])) (Const64 <t> [ntz(y)])) 644 645 // simplifications often used for lengths. e.g. len(s[i:i+5])==5 646 (Sub64 (Add64 x y) x) -> y 647 (Sub64 (Add64 x y) y) -> x 648 (Sub32 (Add32 x y) x) -> y 649 (Sub32 (Add32 x y) y) -> x 650 (Sub16 (Add16 x y) x) -> y 651 (Sub16 (Add16 x y) y) -> x 652 (Sub8 (Add8 x y) x) -> y 653 (Sub8 (Add8 x y) y) -> x 654 655 // basic phi simplifications 656 (Phi (Const8 [c]) (Const8 [c])) -> (Const8 [c]) 657 (Phi (Const16 [c]) (Const16 [c])) -> (Const16 [c]) 658 (Phi (Const32 [c]) (Const32 [c])) -> (Const32 [c]) 659 (Phi (Const64 [c]) (Const64 [c])) -> (Const64 [c]) 660 661 // user nil checks 662 (NeqPtr p (ConstNil)) -> (IsNonNil p) 663 (EqPtr p (ConstNil)) -> (Not (IsNonNil p)) 664 (IsNonNil (ConstNil)) -> (ConstBool [0]) 665 666 // slice and interface comparisons 667 // The frontend ensures that we can only compare against nil, 668 // so we need only compare the first word (interface type or slice ptr). 669 (EqInter x y) -> (EqPtr (ITab x) (ITab y)) 670 (NeqInter x y) -> (NeqPtr (ITab x) (ITab y)) 671 (EqSlice x y) -> (EqPtr (SlicePtr x) (SlicePtr y)) 672 (NeqSlice x y) -> (NeqPtr (SlicePtr x) (SlicePtr y)) 673 674 // Load of store of same address, with compatibly typed value and same size 675 (Load <t1> p1 (Store {t2} p2 x _)) && isSamePtr(p1,p2) && t1.Compare(x.Type)==CMPeq && t1.Size() == t2.(Type).Size() -> x 676 677 // Collapse OffPtr 678 (OffPtr (OffPtr p [b]) [a]) -> (OffPtr p [a+b]) 679 (OffPtr p [0]) && v.Type.Compare(p.Type) == CMPeq -> p 680 681 // indexing operations 682 // Note: bounds check has already been done 683 (PtrIndex <t> ptr idx) && config.PtrSize == 4 -> (AddPtr ptr (Mul32 <types.Int> idx (Const32 <types.Int> [t.ElemType().Size()]))) 684 (PtrIndex <t> ptr idx) && config.PtrSize == 8 -> (AddPtr ptr (Mul64 <types.Int> idx (Const64 <types.Int> [t.ElemType().Size()]))) 685 686 // struct operations 687 (StructSelect (StructMake1 x)) -> x 688 (StructSelect [0] (StructMake2 x _)) -> x 689 (StructSelect [1] (StructMake2 _ x)) -> x 690 (StructSelect [0] (StructMake3 x _ _)) -> x 691 (StructSelect [1] (StructMake3 _ x _)) -> x 692 (StructSelect [2] (StructMake3 _ _ x)) -> x 693 (StructSelect [0] (StructMake4 x _ _ _)) -> x 694 (StructSelect [1] (StructMake4 _ x _ _)) -> x 695 (StructSelect [2] (StructMake4 _ _ x _)) -> x 696 (StructSelect [3] (StructMake4 _ _ _ x)) -> x 697 698 (Load <t> _ _) && t.IsStruct() && t.NumFields() == 0 && fe.CanSSA(t) -> 699 (StructMake0) 700 (Load <t> ptr mem) && t.IsStruct() && t.NumFields() == 1 && fe.CanSSA(t) -> 701 (StructMake1 702 (Load <t.FieldType(0)> (OffPtr <t.FieldType(0).PtrTo()> [0] ptr) mem)) 703 (Load <t> ptr mem) && t.IsStruct() && t.NumFields() == 2 && fe.CanSSA(t) -> 704 (StructMake2 705 (Load <t.FieldType(0)> (OffPtr <t.FieldType(0).PtrTo()> [0] ptr) mem) 706 (Load <t.FieldType(1)> (OffPtr <t.FieldType(1).PtrTo()> [t.FieldOff(1)] ptr) mem)) 707 (Load <t> ptr mem) && t.IsStruct() && t.NumFields() == 3 && fe.CanSSA(t) -> 708 (StructMake3 709 (Load <t.FieldType(0)> (OffPtr <t.FieldType(0).PtrTo()> [0] ptr) mem) 710 (Load <t.FieldType(1)> (OffPtr <t.FieldType(1).PtrTo()> [t.FieldOff(1)] ptr) mem) 711 (Load <t.FieldType(2)> (OffPtr <t.FieldType(2).PtrTo()> [t.FieldOff(2)] ptr) mem)) 712 (Load <t> ptr mem) && t.IsStruct() && t.NumFields() == 4 && fe.CanSSA(t) -> 713 (StructMake4 714 (Load <t.FieldType(0)> (OffPtr <t.FieldType(0).PtrTo()> [0] ptr) mem) 715 (Load <t.FieldType(1)> (OffPtr <t.FieldType(1).PtrTo()> [t.FieldOff(1)] ptr) mem) 716 (Load <t.FieldType(2)> (OffPtr <t.FieldType(2).PtrTo()> [t.FieldOff(2)] ptr) mem) 717 (Load <t.FieldType(3)> (OffPtr <t.FieldType(3).PtrTo()> [t.FieldOff(3)] ptr) mem)) 718 719 (StructSelect [i] x:(Load <t> ptr mem)) && !fe.CanSSA(t) -> 720 @x.Block (Load <v.Type> (OffPtr <v.Type.PtrTo()> [t.FieldOff(int(i))] ptr) mem) 721 722 (Store _ (StructMake0) mem) -> mem 723 (Store dst (StructMake1 <t> f0) mem) -> 724 (Store {t.FieldType(0)} (OffPtr <t.FieldType(0).PtrTo()> [0] dst) f0 mem) 725 (Store dst (StructMake2 <t> f0 f1) mem) -> 726 (Store {t.FieldType(1)} 727 (OffPtr <t.FieldType(1).PtrTo()> [t.FieldOff(1)] dst) 728 f1 729 (Store {t.FieldType(0)} 730 (OffPtr <t.FieldType(0).PtrTo()> [0] dst) 731 f0 mem)) 732 (Store dst (StructMake3 <t> f0 f1 f2) mem) -> 733 (Store {t.FieldType(2)} 734 (OffPtr <t.FieldType(2).PtrTo()> [t.FieldOff(2)] dst) 735 f2 736 (Store {t.FieldType(1)} 737 (OffPtr <t.FieldType(1).PtrTo()> [t.FieldOff(1)] dst) 738 f1 739 (Store {t.FieldType(0)} 740 (OffPtr <t.FieldType(0).PtrTo()> [0] dst) 741 f0 mem))) 742 (Store dst (StructMake4 <t> f0 f1 f2 f3) mem) -> 743 (Store {t.FieldType(3)} 744 (OffPtr <t.FieldType(3).PtrTo()> [t.FieldOff(3)] dst) 745 f3 746 (Store {t.FieldType(2)} 747 (OffPtr <t.FieldType(2).PtrTo()> [t.FieldOff(2)] dst) 748 f2 749 (Store {t.FieldType(1)} 750 (OffPtr <t.FieldType(1).PtrTo()> [t.FieldOff(1)] dst) 751 f1 752 (Store {t.FieldType(0)} 753 (OffPtr <t.FieldType(0).PtrTo()> [0] dst) 754 f0 mem)))) 755 756 // Putting struct{*byte} and similar into direct interfaces. 757 (IMake typ (StructMake1 val)) -> (IMake typ val) 758 (StructSelect [0] x:(IData _)) -> x 759 760 // un-SSAable values use mem->mem copies 761 (Store {t} dst (Load src mem) mem) && !fe.CanSSA(t.(Type)) -> 762 (Move {t} [t.(Type).Size()] dst src mem) 763 (Store {t} dst (Load src mem) (VarDef {x} mem)) && !fe.CanSSA(t.(Type)) -> 764 (Move {t} [t.(Type).Size()] dst src (VarDef {x} mem)) 765 766 // array ops 767 (ArraySelect (ArrayMake1 x)) -> x 768 769 (Load <t> _ _) && t.IsArray() && t.NumElem() == 0 -> 770 (ArrayMake0) 771 772 (Load <t> ptr mem) && t.IsArray() && t.NumElem() == 1 && fe.CanSSA(t) -> 773 (ArrayMake1 (Load <t.ElemType()> ptr mem)) 774 775 (Store _ (ArrayMake0) mem) -> mem 776 (Store dst (ArrayMake1 e) mem) -> (Store {e.Type} dst e mem) 777 778 (ArraySelect [0] (Load ptr mem)) -> (Load ptr mem) 779 780 // Putting [1]{*byte} and similar into direct interfaces. 781 (IMake typ (ArrayMake1 val)) -> (IMake typ val) 782 (ArraySelect [0] x:(IData _)) -> x 783 784 // string ops 785 // Decomposing StringMake and lowering of StringPtr and StringLen 786 // happens in a later pass, dec, so that these operations are available 787 // to other passes for optimizations. 788 (StringPtr (StringMake (Const64 <t> [c]) _)) -> (Const64 <t> [c]) 789 (StringLen (StringMake _ (Const64 <t> [c]))) -> (Const64 <t> [c]) 790 (ConstString {s}) && config.PtrSize == 4 && s.(string) == "" -> 791 (StringMake (ConstNil) (Const32 <types.Int> [0])) 792 (ConstString {s}) && config.PtrSize == 8 && s.(string) == "" -> 793 (StringMake (ConstNil) (Const64 <types.Int> [0])) 794 (ConstString {s}) && config.PtrSize == 4 && s.(string) != "" -> 795 (StringMake 796 (Addr <types.BytePtr> {fe.StringData(s.(string))} 797 (SB)) 798 (Const32 <types.Int> [int64(len(s.(string)))])) 799 (ConstString {s}) && config.PtrSize == 8 && s.(string) != "" -> 800 (StringMake 801 (Addr <types.BytePtr> {fe.StringData(s.(string))} 802 (SB)) 803 (Const64 <types.Int> [int64(len(s.(string)))])) 804 805 // slice ops 806 // Only a few slice rules are provided here. See dec.rules for 807 // a more comprehensive set. 808 (SliceLen (SliceMake _ (Const64 <t> [c]) _)) -> (Const64 <t> [c]) 809 (SliceCap (SliceMake _ _ (Const64 <t> [c]))) -> (Const64 <t> [c]) 810 (SliceLen (SliceMake _ (Const32 <t> [c]) _)) -> (Const32 <t> [c]) 811 (SliceCap (SliceMake _ _ (Const32 <t> [c]))) -> (Const32 <t> [c]) 812 (SlicePtr (SliceMake (SlicePtr x) _ _)) -> (SlicePtr x) 813 (SliceLen (SliceMake _ (SliceLen x) _)) -> (SliceLen x) 814 (SliceCap (SliceMake _ _ (SliceCap x))) -> (SliceCap x) 815 (SliceCap (SliceMake _ _ (SliceLen x))) -> (SliceLen x) 816 (ConstSlice) && config.PtrSize == 4 -> 817 (SliceMake 818 (ConstNil <v.Type.ElemType().PtrTo()>) 819 (Const32 <types.Int> [0]) 820 (Const32 <types.Int> [0])) 821 (ConstSlice) && config.PtrSize == 8 -> 822 (SliceMake 823 (ConstNil <v.Type.ElemType().PtrTo()>) 824 (Const64 <types.Int> [0]) 825 (Const64 <types.Int> [0])) 826 827 // interface ops 828 (ConstInterface) -> 829 (IMake 830 (ConstNil <types.BytePtr>) 831 (ConstNil <types.BytePtr>)) 832 833 (NilCheck (GetG mem) mem) -> mem 834 835 (If (Not cond) yes no) -> (If cond no yes) 836 (If (ConstBool [c]) yes no) && c == 1 -> (First nil yes no) 837 (If (ConstBool [c]) yes no) && c == 0 -> (First nil no yes) 838 839 // Get rid of Convert ops for pointer arithmetic on unsafe.Pointer. 840 (Convert (Add64 (Convert ptr mem) off) mem) -> (Add64 ptr off) 841 (Convert (Convert ptr mem) mem) -> ptr 842 843 // Decompose compound argument values 844 (Arg {n} [off]) && v.Type.IsString() -> 845 (StringMake 846 (Arg <types.BytePtr> {n} [off]) 847 (Arg <types.Int> {n} [off+config.PtrSize])) 848 849 (Arg {n} [off]) && v.Type.IsSlice() -> 850 (SliceMake 851 (Arg <v.Type.ElemType().PtrTo()> {n} [off]) 852 (Arg <types.Int> {n} [off+config.PtrSize]) 853 (Arg <types.Int> {n} [off+2*config.PtrSize])) 854 855 (Arg {n} [off]) && v.Type.IsInterface() -> 856 (IMake 857 (Arg <types.BytePtr> {n} [off]) 858 (Arg <types.BytePtr> {n} [off+config.PtrSize])) 859 860 (Arg {n} [off]) && v.Type.IsComplex() && v.Type.Size() == 16 -> 861 (ComplexMake 862 (Arg <types.Float64> {n} [off]) 863 (Arg <types.Float64> {n} [off+8])) 864 865 (Arg {n} [off]) && v.Type.IsComplex() && v.Type.Size() == 8 -> 866 (ComplexMake 867 (Arg <types.Float32> {n} [off]) 868 (Arg <types.Float32> {n} [off+4])) 869 870 (Arg <t>) && t.IsStruct() && t.NumFields() == 0 && fe.CanSSA(t) -> 871 (StructMake0) 872 (Arg <t> {n} [off]) && t.IsStruct() && t.NumFields() == 1 && fe.CanSSA(t) -> 873 (StructMake1 874 (Arg <t.FieldType(0)> {n} [off+t.FieldOff(0)])) 875 (Arg <t> {n} [off]) && t.IsStruct() && t.NumFields() == 2 && fe.CanSSA(t) -> 876 (StructMake2 877 (Arg <t.FieldType(0)> {n} [off+t.FieldOff(0)]) 878 (Arg <t.FieldType(1)> {n} [off+t.FieldOff(1)])) 879 (Arg <t> {n} [off]) && t.IsStruct() && t.NumFields() == 3 && fe.CanSSA(t) -> 880 (StructMake3 881 (Arg <t.FieldType(0)> {n} [off+t.FieldOff(0)]) 882 (Arg <t.FieldType(1)> {n} [off+t.FieldOff(1)]) 883 (Arg <t.FieldType(2)> {n} [off+t.FieldOff(2)])) 884 (Arg <t> {n} [off]) && t.IsStruct() && t.NumFields() == 4 && fe.CanSSA(t) -> 885 (StructMake4 886 (Arg <t.FieldType(0)> {n} [off+t.FieldOff(0)]) 887 (Arg <t.FieldType(1)> {n} [off+t.FieldOff(1)]) 888 (Arg <t.FieldType(2)> {n} [off+t.FieldOff(2)]) 889 (Arg <t.FieldType(3)> {n} [off+t.FieldOff(3)])) 890 891 (Arg <t>) && t.IsArray() && t.NumElem() == 0 -> 892 (ArrayMake0) 893 (Arg <t> {n} [off]) && t.IsArray() && t.NumElem() == 1 && fe.CanSSA(t) -> 894 (ArrayMake1 (Arg <t.ElemType()> {n} [off])) 895 896 // strength reduction of divide by a constant. 897 // See ../magic.go for a detailed description of these algorithms. 898 899 // Unsigned divide by power of 2. Strength reduce to a shift. 900 (Div8u n (Const8 [c])) && isPowerOfTwo(c&0xff) -> (Rsh8Ux64 n (Const64 <types.UInt64> [log2(c&0xff)])) 901 (Div16u n (Const16 [c])) && isPowerOfTwo(c&0xffff) -> (Rsh16Ux64 n (Const64 <types.UInt64> [log2(c&0xffff)])) 902 (Div32u n (Const32 [c])) && isPowerOfTwo(c&0xffffffff) -> (Rsh32Ux64 n (Const64 <types.UInt64> [log2(c&0xffffffff)])) 903 (Div64u n (Const64 [c])) && isPowerOfTwo(c) -> (Rsh64Ux64 n (Const64 <types.UInt64> [log2(c)])) 904 905 // Unsigned divide, not a power of 2. Strength reduce to a multiply. 906 // For 8-bit divides, we just do a direct 9-bit by 8-bit multiply. 907 (Div8u x (Const8 [c])) && umagicOK(8, c) -> 908 (Trunc32to8 909 (Rsh32Ux64 <types.UInt32> 910 (Mul32 <types.UInt32> 911 (Const32 <types.UInt32> [int64(1<<8+umagic(8,c).m)]) 912 (ZeroExt8to32 x)) 913 (Const64 <types.UInt64> [8+umagic(8,c).s]))) 914 915 // For 16-bit divides on 64-bit machines, we do a direct 17-bit by 16-bit multiply. 916 (Div16u x (Const16 [c])) && umagicOK(16, c) && config.RegSize == 8 -> 917 (Trunc64to16 918 (Rsh64Ux64 <types.UInt64> 919 (Mul64 <types.UInt64> 920 (Const64 <types.UInt64> [int64(1<<16+umagic(16,c).m)]) 921 (ZeroExt16to64 x)) 922 (Const64 <types.UInt64> [16+umagic(16,c).s]))) 923 924 // For 16-bit divides on 32-bit machines 925 (Div16u x (Const16 [c])) && umagicOK(16, c) && config.RegSize == 4 && umagic(16,c).m&1 == 0 -> 926 (Trunc32to16 927 (Rsh32Ux64 <types.UInt32> 928 (Mul32 <types.UInt32> 929 (Const32 <types.UInt32> [int64(1<<15+umagic(16,c).m/2)]) 930 (ZeroExt16to32 x)) 931 (Const64 <types.UInt64> [16+umagic(16,c).s-1]))) 932 (Div16u x (Const16 [c])) && umagicOK(16, c) && config.RegSize == 4 && c&1 == 0 -> 933 (Trunc32to16 934 (Rsh32Ux64 <types.UInt32> 935 (Mul32 <types.UInt32> 936 (Const32 <types.UInt32> [int64(1<<15+(umagic(16,c).m+1)/2)]) 937 (Rsh32Ux64 <types.UInt32> (ZeroExt16to32 x) (Const64 <types.UInt64> [1]))) 938 (Const64 <types.UInt64> [16+umagic(16,c).s-2]))) 939 (Div16u x (Const16 [c])) && umagicOK(16, c) && config.RegSize == 4 -> 940 (Trunc32to16 941 (Rsh32Ux64 <types.UInt32> 942 (Avg32u 943 (Lsh32x64 <types.UInt32> (ZeroExt16to32 x) (Const64 <types.UInt64> [16])) 944 (Mul32 <types.UInt32> 945 (Const32 <types.UInt32> [int64(umagic(16,c).m)]) 946 (ZeroExt16to32 x))) 947 (Const64 <types.UInt64> [16+umagic(16,c).s-1]))) 948 949 // For 32-bit divides on 32-bit machines 950 (Div32u x (Const32 [c])) && umagicOK(32, c) && config.RegSize == 4 && umagic(32,c).m&1 == 0 -> 951 (Rsh32Ux64 <types.UInt32> 952 (Hmul32u <types.UInt32> 953 (Const32 <types.UInt32> [int64(int32(1<<31+umagic(32,c).m/2))]) 954 x) 955 (Const64 <types.UInt64> [umagic(32,c).s-1])) 956 (Div32u x (Const32 [c])) && umagicOK(32, c) && config.RegSize == 4 && c&1 == 0 -> 957 (Rsh32Ux64 <types.UInt32> 958 (Hmul32u <types.UInt32> 959 (Const32 <types.UInt32> [int64(int32(1<<31+(umagic(32,c).m+1)/2))]) 960 (Rsh32Ux64 <types.UInt32> x (Const64 <types.UInt64> [1]))) 961 (Const64 <types.UInt64> [umagic(32,c).s-2])) 962 (Div32u x (Const32 [c])) && umagicOK(32, c) && config.RegSize == 4 -> 963 (Rsh32Ux64 <types.UInt32> 964 (Avg32u 965 x 966 (Hmul32u <types.UInt32> 967 (Const32 <types.UInt32> [int64(int32(umagic(32,c).m))]) 968 x)) 969 (Const64 <types.UInt64> [umagic(32,c).s-1])) 970 971 // For 32-bit divides on 64-bit machines 972 // We'll use a regular (non-hi) multiply for this case. 973 (Div32u x (Const32 [c])) && umagicOK(32, c) && config.RegSize == 8 && umagic(32,c).m&1 == 0 -> 974 (Trunc64to32 975 (Rsh64Ux64 <types.UInt64> 976 (Mul64 <types.UInt64> 977 (Const64 <types.UInt64> [int64(1<<31+umagic(32,c).m/2)]) 978 (ZeroExt32to64 x)) 979 (Const64 <types.UInt64> [32+umagic(32,c).s-1]))) 980 (Div32u x (Const32 [c])) && umagicOK(32, c) && config.RegSize == 8 && c&1 == 0 -> 981 (Trunc64to32 982 (Rsh64Ux64 <types.UInt64> 983 (Mul64 <types.UInt64> 984 (Const64 <types.UInt64> [int64(1<<31+(umagic(32,c).m+1)/2)]) 985 (Rsh64Ux64 <types.UInt64> (ZeroExt32to64 x) (Const64 <types.UInt64> [1]))) 986 (Const64 <types.UInt64> [32+umagic(32,c).s-2]))) 987 (Div32u x (Const32 [c])) && umagicOK(32, c) && config.RegSize == 8 -> 988 (Trunc64to32 989 (Rsh64Ux64 <types.UInt64> 990 (Avg64u 991 (Lsh64x64 <types.UInt64> (ZeroExt32to64 x) (Const64 <types.UInt64> [32])) 992 (Mul64 <types.UInt64> 993 (Const64 <types.UInt32> [int64(umagic(32,c).m)]) 994 (ZeroExt32to64 x))) 995 (Const64 <types.UInt64> [32+umagic(32,c).s-1]))) 996 997 // For 64-bit divides on 64-bit machines 998 // (64-bit divides on 32-bit machines are lowered to a runtime call by the walk pass.) 999 (Div64u x (Const64 [c])) && umagicOK(64, c) && config.RegSize == 8 && umagic(64,c).m&1 == 0 -> 1000 (Rsh64Ux64 <types.UInt64> 1001 (Hmul64u <types.UInt64> 1002 (Const64 <types.UInt64> [int64(1<<63+umagic(64,c).m/2)]) 1003 x) 1004 (Const64 <types.UInt64> [umagic(64,c).s-1])) 1005 (Div64u x (Const64 [c])) && umagicOK(64, c) && config.RegSize == 8 && c&1 == 0 -> 1006 (Rsh64Ux64 <types.UInt64> 1007 (Hmul64u <types.UInt64> 1008 (Const64 <types.UInt64> [int64(1<<63+(umagic(64,c).m+1)/2)]) 1009 (Rsh64Ux64 <types.UInt64> x (Const64 <types.UInt64> [1]))) 1010 (Const64 <types.UInt64> [umagic(64,c).s-2])) 1011 (Div64u x (Const64 [c])) && umagicOK(64, c) && config.RegSize == 8 -> 1012 (Rsh64Ux64 <types.UInt64> 1013 (Avg64u 1014 x 1015 (Hmul64u <types.UInt64> 1016 (Const64 <types.UInt64> [int64(umagic(64,c).m)]) 1017 x)) 1018 (Const64 <types.UInt64> [umagic(64,c).s-1])) 1019 1020 // Signed divide by a negative constant. Rewrite to divide by a positive constant. 1021 (Div8 <t> n (Const8 [c])) && c < 0 && c != -1<<7 -> (Neg8 (Div8 <t> n (Const8 <t> [-c]))) 1022 (Div16 <t> n (Const16 [c])) && c < 0 && c != -1<<15 -> (Neg16 (Div16 <t> n (Const16 <t> [-c]))) 1023 (Div32 <t> n (Const32 [c])) && c < 0 && c != -1<<31 -> (Neg32 (Div32 <t> n (Const32 <t> [-c]))) 1024 (Div64 <t> n (Const64 [c])) && c < 0 && c != -1<<63 -> (Neg64 (Div64 <t> n (Const64 <t> [-c]))) 1025 1026 // Dividing by the most-negative number. Result is always 0 except 1027 // if the input is also the most-negative number. 1028 // We can detect that using the sign bit of x & -x. 1029 (Div8 <t> x (Const8 [-1<<7 ])) -> (Rsh8Ux64 (And8 <t> x (Neg8 <t> x)) (Const64 <types.UInt64> [7 ])) 1030 (Div16 <t> x (Const16 [-1<<15])) -> (Rsh16Ux64 (And16 <t> x (Neg16 <t> x)) (Const64 <types.UInt64> [15])) 1031 (Div32 <t> x (Const32 [-1<<31])) -> (Rsh32Ux64 (And32 <t> x (Neg32 <t> x)) (Const64 <types.UInt64> [31])) 1032 (Div64 <t> x (Const64 [-1<<63])) -> (Rsh64Ux64 (And64 <t> x (Neg64 <t> x)) (Const64 <types.UInt64> [63])) 1033 1034 // Signed divide by power of 2. 1035 // n / c = n >> log(c) if n >= 0 1036 // = (n+c-1) >> log(c) if n < 0 1037 // We conditionally add c-1 by adding n>>63>>(64-log(c)) (first shift signed, second shift unsigned). 1038 (Div8 <t> n (Const8 [c])) && isPowerOfTwo(c) -> 1039 (Rsh8x64 1040 (Add8 <t> n (Rsh8Ux64 <t> (Rsh8x64 <t> n (Const64 <types.UInt64> [ 7])) (Const64 <types.UInt64> [ 8-log2(c)]))) 1041 (Const64 <types.UInt64> [log2(c)])) 1042 (Div16 <t> n (Const16 [c])) && isPowerOfTwo(c) -> 1043 (Rsh16x64 1044 (Add16 <t> n (Rsh16Ux64 <t> (Rsh16x64 <t> n (Const64 <types.UInt64> [15])) (Const64 <types.UInt64> [16-log2(c)]))) 1045 (Const64 <types.UInt64> [log2(c)])) 1046 (Div32 <t> n (Const32 [c])) && isPowerOfTwo(c) -> 1047 (Rsh32x64 1048 (Add32 <t> n (Rsh32Ux64 <t> (Rsh32x64 <t> n (Const64 <types.UInt64> [31])) (Const64 <types.UInt64> [32-log2(c)]))) 1049 (Const64 <types.UInt64> [log2(c)])) 1050 (Div64 <t> n (Const64 [c])) && isPowerOfTwo(c) -> 1051 (Rsh64x64 1052 (Add64 <t> n (Rsh64Ux64 <t> (Rsh64x64 <t> n (Const64 <types.UInt64> [63])) (Const64 <types.UInt64> [64-log2(c)]))) 1053 (Const64 <types.UInt64> [log2(c)])) 1054 1055 // Signed divide, not a power of 2. Strength reduce to a multiply. 1056 (Div8 <t> x (Const8 [c])) && smagicOK(8,c) -> 1057 (Sub8 <t> 1058 (Rsh32x64 <t> 1059 (Mul32 <types.UInt32> 1060 (Const32 <types.UInt32> [int64(smagic(8,c).m)]) 1061 (SignExt8to32 x)) 1062 (Const64 <types.UInt64> [8+smagic(8,c).s])) 1063 (Rsh32x64 <t> 1064 (SignExt8to32 x) 1065 (Const64 <types.UInt64> [31]))) 1066 (Div16 <t> x (Const16 [c])) && smagicOK(16,c) -> 1067 (Sub16 <t> 1068 (Rsh32x64 <t> 1069 (Mul32 <types.UInt32> 1070 (Const32 <types.UInt32> [int64(smagic(16,c).m)]) 1071 (SignExt16to32 x)) 1072 (Const64 <types.UInt64> [16+smagic(16,c).s])) 1073 (Rsh32x64 <t> 1074 (SignExt16to32 x) 1075 (Const64 <types.UInt64> [31]))) 1076 (Div32 <t> x (Const32 [c])) && smagicOK(32,c) && config.RegSize == 8 -> 1077 (Sub32 <t> 1078 (Rsh64x64 <t> 1079 (Mul64 <types.UInt64> 1080 (Const64 <types.UInt64> [int64(smagic(32,c).m)]) 1081 (SignExt32to64 x)) 1082 (Const64 <types.UInt64> [32+smagic(32,c).s])) 1083 (Rsh64x64 <t> 1084 (SignExt32to64 x) 1085 (Const64 <types.UInt64> [63]))) 1086 (Div32 <t> x (Const32 [c])) && smagicOK(32,c) && config.RegSize == 4 && smagic(32,c).m&1 == 0 -> 1087 (Sub32 <t> 1088 (Rsh32x64 <t> 1089 (Hmul32 <t> 1090 (Const32 <types.UInt32> [int64(int32(smagic(32,c).m/2))]) 1091 x) 1092 (Const64 <types.UInt64> [smagic(32,c).s-1])) 1093 (Rsh32x64 <t> 1094 x 1095 (Const64 <types.UInt64> [31]))) 1096 (Div32 <t> x (Const32 [c])) && smagicOK(32,c) && config.RegSize == 4 && smagic(32,c).m&1 != 0 -> 1097 (Sub32 <t> 1098 (Rsh32x64 <t> 1099 (Add32 <t> 1100 (Hmul32 <t> 1101 (Const32 <types.UInt32> [int64(int32(smagic(32,c).m))]) 1102 x) 1103 x) 1104 (Const64 <types.UInt64> [smagic(32,c).s])) 1105 (Rsh32x64 <t> 1106 x 1107 (Const64 <types.UInt64> [31]))) 1108 (Div64 <t> x (Const64 [c])) && smagicOK(64,c) && smagic(64,c).m&1 == 0 -> 1109 (Sub64 <t> 1110 (Rsh64x64 <t> 1111 (Hmul64 <t> 1112 (Const64 <types.UInt64> [int64(smagic(64,c).m/2)]) 1113 x) 1114 (Const64 <types.UInt64> [smagic(64,c).s-1])) 1115 (Rsh64x64 <t> 1116 x 1117 (Const64 <types.UInt64> [63]))) 1118 (Div64 <t> x (Const64 [c])) && smagicOK(64,c) && smagic(64,c).m&1 != 0 -> 1119 (Sub64 <t> 1120 (Rsh64x64 <t> 1121 (Add64 <t> 1122 (Hmul64 <t> 1123 (Const64 <types.UInt64> [int64(smagic(64,c).m)]) 1124 x) 1125 x) 1126 (Const64 <types.UInt64> [smagic(64,c).s])) 1127 (Rsh64x64 <t> 1128 x 1129 (Const64 <types.UInt64> [63]))) 1130 1131 // Unsigned mod by power of 2 constant. 1132 (Mod8u <t> n (Const8 [c])) && isPowerOfTwo(c&0xff) -> (And8 n (Const8 <t> [(c&0xff)-1])) 1133 (Mod16u <t> n (Const16 [c])) && isPowerOfTwo(c&0xffff) -> (And16 n (Const16 <t> [(c&0xffff)-1])) 1134 (Mod32u <t> n (Const32 [c])) && isPowerOfTwo(c&0xffffffff) -> (And32 n (Const32 <t> [(c&0xffffffff)-1])) 1135 (Mod64u <t> n (Const64 [c])) && isPowerOfTwo(c) -> (And64 n (Const64 <t> [c-1])) 1136 1137 // Signed mod by negative constant. 1138 (Mod8 <t> n (Const8 [c])) && c < 0 && c != -1<<7 -> (Mod8 <t> n (Const8 <t> [-c])) 1139 (Mod16 <t> n (Const16 [c])) && c < 0 && c != -1<<15 -> (Mod16 <t> n (Const16 <t> [-c])) 1140 (Mod32 <t> n (Const32 [c])) && c < 0 && c != -1<<31 -> (Mod32 <t> n (Const32 <t> [-c])) 1141 (Mod64 <t> n (Const64 [c])) && c < 0 && c != -1<<63 -> (Mod64 <t> n (Const64 <t> [-c])) 1142 1143 // All other mods by constants, do A%B = A-(A/B*B). 1144 // This implements % with two * and a bunch of ancillary ops. 1145 // One of the * is free if the user's code also computes A/B. 1146 (Mod8 <t> x (Const8 [c])) && x.Op != OpConst8 && (c > 0 || c == -1<<7) 1147 -> (Sub8 x (Mul8 <t> (Div8 <t> x (Const8 <t> [c])) (Const8 <t> [c]))) 1148 (Mod16 <t> x (Const16 [c])) && x.Op != OpConst16 && (c > 0 || c == -1<<15) 1149 -> (Sub16 x (Mul16 <t> (Div16 <t> x (Const16 <t> [c])) (Const16 <t> [c]))) 1150 (Mod32 <t> x (Const32 [c])) && x.Op != OpConst32 && (c > 0 || c == -1<<31) 1151 -> (Sub32 x (Mul32 <t> (Div32 <t> x (Const32 <t> [c])) (Const32 <t> [c]))) 1152 (Mod64 <t> x (Const64 [c])) && x.Op != OpConst64 && (c > 0 || c == -1<<63) 1153 -> (Sub64 x (Mul64 <t> (Div64 <t> x (Const64 <t> [c])) (Const64 <t> [c]))) 1154 (Mod8u <t> x (Const8 [c])) && x.Op != OpConst8 && c > 0 && umagicOK(8 ,c) 1155 -> (Sub8 x (Mul8 <t> (Div8u <t> x (Const8 <t> [c])) (Const8 <t> [c]))) 1156 (Mod16u <t> x (Const16 [c])) && x.Op != OpConst16 && c > 0 && umagicOK(16,c) 1157 -> (Sub16 x (Mul16 <t> (Div16u <t> x (Const16 <t> [c])) (Const16 <t> [c]))) 1158 (Mod32u <t> x (Const32 [c])) && x.Op != OpConst32 && c > 0 && umagicOK(32,c) 1159 -> (Sub32 x (Mul32 <t> (Div32u <t> x (Const32 <t> [c])) (Const32 <t> [c]))) 1160 (Mod64u <t> x (Const64 [c])) && x.Op != OpConst64 && c > 0 && umagicOK(64,c) 1161 -> (Sub64 x (Mul64 <t> (Div64u <t> x (Const64 <t> [c])) (Const64 <t> [c]))) 1162 1163 // Reassociate expressions involving 1164 // constants such that constants come first, 1165 // exposing obvious constant-folding opportunities. 1166 // Reassociate (op (op y C) x) to (op C (op x y)) or similar, where C 1167 // is constant, which pushes constants to the outside 1168 // of the expression. At that point, any constant-folding 1169 // opportunities should be obvious. 1170 1171 // x + (C + z) -> C + (x + z) 1172 (Add64 (Add64 i:(Const64 <t>) z) x) && (z.Op != OpConst64 && x.Op != OpConst64) -> (Add64 i (Add64 <t> z x)) 1173 (Add32 (Add32 i:(Const32 <t>) z) x) && (z.Op != OpConst32 && x.Op != OpConst32) -> (Add32 i (Add32 <t> z x)) 1174 (Add16 (Add16 i:(Const16 <t>) z) x) && (z.Op != OpConst16 && x.Op != OpConst16) -> (Add16 i (Add16 <t> z x)) 1175 (Add8 (Add8 i:(Const8 <t>) z) x) && (z.Op != OpConst8 && x.Op != OpConst8) -> (Add8 i (Add8 <t> z x)) 1176 1177 // x + (C - z) -> C + (x - z) 1178 (Add64 (Sub64 i:(Const64 <t>) z) x) && (z.Op != OpConst64 && x.Op != OpConst64) -> (Add64 i (Sub64 <t> x z)) 1179 (Add32 (Sub32 i:(Const32 <t>) z) x) && (z.Op != OpConst32 && x.Op != OpConst32) -> (Add32 i (Sub32 <t> x z)) 1180 (Add16 (Sub16 i:(Const16 <t>) z) x) && (z.Op != OpConst16 && x.Op != OpConst16) -> (Add16 i (Sub16 <t> x z)) 1181 (Add8 (Sub8 i:(Const8 <t>) z) x) && (z.Op != OpConst8 && x.Op != OpConst8) -> (Add8 i (Sub8 <t> x z)) 1182 (Add64 x (Sub64 i:(Const64 <t>) z)) && (z.Op != OpConst64 && x.Op != OpConst64) -> (Add64 i (Sub64 <t> x z)) 1183 (Add32 x (Sub32 i:(Const32 <t>) z)) && (z.Op != OpConst32 && x.Op != OpConst32) -> (Add32 i (Sub32 <t> x z)) 1184 (Add16 x (Sub16 i:(Const16 <t>) z)) && (z.Op != OpConst16 && x.Op != OpConst16) -> (Add16 i (Sub16 <t> x z)) 1185 (Add8 x (Sub8 i:(Const8 <t>) z)) && (z.Op != OpConst8 && x.Op != OpConst8) -> (Add8 i (Sub8 <t> x z)) 1186 1187 // x + (z - C) -> (x + z) - C 1188 (Add64 (Sub64 z i:(Const64 <t>)) x) && (z.Op != OpConst64 && x.Op != OpConst64) -> (Sub64 (Add64 <t> x z) i) 1189 (Add32 (Sub32 z i:(Const32 <t>)) x) && (z.Op != OpConst32 && x.Op != OpConst32) -> (Sub32 (Add32 <t> x z) i) 1190 (Add16 (Sub16 z i:(Const16 <t>)) x) && (z.Op != OpConst16 && x.Op != OpConst16) -> (Sub16 (Add16 <t> x z) i) 1191 (Add8 (Sub8 z i:(Const8 <t>)) x) && (z.Op != OpConst8 && x.Op != OpConst8) -> (Sub8 (Add8 <t> x z) i) 1192 (Add64 x (Sub64 z i:(Const64 <t>))) && (z.Op != OpConst64 && x.Op != OpConst64) -> (Sub64 (Add64 <t> x z) i) 1193 (Add32 x (Sub32 z i:(Const32 <t>))) && (z.Op != OpConst32 && x.Op != OpConst32) -> (Sub32 (Add32 <t> x z) i) 1194 (Add16 x (Sub16 z i:(Const16 <t>))) && (z.Op != OpConst16 && x.Op != OpConst16) -> (Sub16 (Add16 <t> x z) i) 1195 (Add8 x (Sub8 z i:(Const8 <t>))) && (z.Op != OpConst8 && x.Op != OpConst8) -> (Sub8 (Add8 <t> x z) i) 1196 1197 // x - (C - z) -> x + (z - C) -> (x + z) - C 1198 (Sub64 x (Sub64 i:(Const64 <t>) z)) && (z.Op != OpConst64 && x.Op != OpConst64) -> (Sub64 (Add64 <t> x z) i) 1199 (Sub32 x (Sub32 i:(Const32 <t>) z)) && (z.Op != OpConst32 && x.Op != OpConst32) -> (Sub32 (Add32 <t> x z) i) 1200 (Sub16 x (Sub16 i:(Const16 <t>) z)) && (z.Op != OpConst16 && x.Op != OpConst16) -> (Sub16 (Add16 <t> x z) i) 1201 (Sub8 x (Sub8 i:(Const8 <t>) z)) && (z.Op != OpConst8 && x.Op != OpConst8) -> (Sub8 (Add8 <t> x z) i) 1202 1203 // x - (z - C) -> x + (C - z) -> (x - z) + C 1204 (Sub64 x (Sub64 z i:(Const64 <t>))) && (z.Op != OpConst64 && x.Op != OpConst64) -> (Add64 i (Sub64 <t> x z)) 1205 (Sub32 x (Sub32 z i:(Const32 <t>))) && (z.Op != OpConst32 && x.Op != OpConst32) -> (Add32 i (Sub32 <t> x z)) 1206 (Sub16 x (Sub16 z i:(Const16 <t>))) && (z.Op != OpConst16 && x.Op != OpConst16) -> (Add16 i (Sub16 <t> x z)) 1207 (Sub8 x (Sub8 z i:(Const8 <t>))) && (z.Op != OpConst8 && x.Op != OpConst8) -> (Add8 i (Sub8 <t> x z)) 1208 1209 // x & (C & z) -> C & (x & z) 1210 (And64 (And64 i:(Const64 <t>) z) x) && (z.Op != OpConst64 && x.Op != OpConst64) -> (And64 i (And64 <t> z x)) 1211 (And32 (And32 i:(Const32 <t>) z) x) && (z.Op != OpConst32 && x.Op != OpConst32) -> (And32 i (And32 <t> z x)) 1212 (And16 (And16 i:(Const16 <t>) z) x) && (z.Op != OpConst16 && x.Op != OpConst16) -> (And16 i (And16 <t> z x)) 1213 (And8 (And8 i:(Const8 <t>) z) x) && (z.Op != OpConst8 && x.Op != OpConst8) -> (And8 i (And8 <t> z x)) 1214 1215 // x | (C | z) -> C | (x | z) 1216 (Or64 (Or64 i:(Const64 <t>) z) x) && (z.Op != OpConst64 && x.Op != OpConst64) -> (Or64 i (Or64 <t> z x)) 1217 (Or32 (Or32 i:(Const32 <t>) z) x) && (z.Op != OpConst32 && x.Op != OpConst32) -> (Or32 i (Or32 <t> z x)) 1218 (Or16 (Or16 i:(Const16 <t>) z) x) && (z.Op != OpConst16 && x.Op != OpConst16) -> (Or16 i (Or16 <t> z x)) 1219 (Or8 (Or8 i:(Const8 <t>) z) x) && (z.Op != OpConst8 && x.Op != OpConst8) -> (Or8 i (Or8 <t> z x)) 1220 1221 // x ^ (C ^ z) -> C ^ (x ^ z) 1222 (Xor64 (Xor64 i:(Const64 <t>) z) x) && (z.Op != OpConst64 && x.Op != OpConst64) -> (Xor64 i (Xor64 <t> z x)) 1223 (Xor32 (Xor32 i:(Const32 <t>) z) x) && (z.Op != OpConst32 && x.Op != OpConst32) -> (Xor32 i (Xor32 <t> z x)) 1224 (Xor16 (Xor16 i:(Const16 <t>) z) x) && (z.Op != OpConst16 && x.Op != OpConst16) -> (Xor16 i (Xor16 <t> z x)) 1225 (Xor8 (Xor8 i:(Const8 <t>) z) x) && (z.Op != OpConst8 && x.Op != OpConst8) -> (Xor8 i (Xor8 <t> z x)) 1226 1227 // C + (D + x) -> (C + D) + x 1228 (Add64 (Const64 <t> [c]) (Add64 (Const64 <t> [d]) x)) -> (Add64 (Const64 <t> [c+d]) x) 1229 (Add32 (Const32 <t> [c]) (Add32 (Const32 <t> [d]) x)) -> (Add32 (Const32 <t> [int64(int32(c+d))]) x) 1230 (Add16 (Const16 <t> [c]) (Add16 (Const16 <t> [d]) x)) -> (Add16 (Const16 <t> [int64(int16(c+d))]) x) 1231 (Add8 (Const8 <t> [c]) (Add8 (Const8 <t> [d]) x)) -> (Add8 (Const8 <t> [int64(int8(c+d))]) x) 1232 1233 // C + (D - x) -> (C + D) - x 1234 (Add64 (Const64 <t> [c]) (Sub64 (Const64 <t> [d]) x)) -> (Sub64 (Const64 <t> [c+d]) x) 1235 (Add32 (Const32 <t> [c]) (Sub32 (Const32 <t> [d]) x)) -> (Sub32 (Const32 <t> [int64(int32(c+d))]) x) 1236 (Add16 (Const16 <t> [c]) (Sub16 (Const16 <t> [d]) x)) -> (Sub16 (Const16 <t> [int64(int16(c+d))]) x) 1237 (Add8 (Const8 <t> [c]) (Sub8 (Const8 <t> [d]) x)) -> (Sub8 (Const8 <t> [int64(int8(c+d))]) x) 1238 1239 // C + (x - D) -> (C - D) + x 1240 (Add64 (Const64 <t> [c]) (Sub64 x (Const64 <t> [d]))) -> (Add64 (Const64 <t> [c-d]) x) 1241 (Add32 (Const32 <t> [c]) (Sub32 x (Const32 <t> [d]))) -> (Add32 (Const32 <t> [int64(int32(c-d))]) x) 1242 (Add16 (Const16 <t> [c]) (Sub16 x (Const16 <t> [d]))) -> (Add16 (Const16 <t> [int64(int16(c-d))]) x) 1243 (Add8 (Const8 <t> [c]) (Sub8 x (Const8 <t> [d]))) -> (Add8 (Const8 <t> [int64(int8(c-d))]) x) 1244 1245 // C - (x - D) -> (C + D) - x 1246 (Sub64 (Const64 <t> [c]) (Sub64 x (Const64 <t> [d]))) -> (Sub64 (Const64 <t> [c+d]) x) 1247 (Sub32 (Const32 <t> [c]) (Sub32 x (Const32 <t> [d]))) -> (Sub32 (Const32 <t> [int64(int32(c+d))]) x) 1248 (Sub16 (Const16 <t> [c]) (Sub16 x (Const16 <t> [d]))) -> (Sub16 (Const16 <t> [int64(int16(c+d))]) x) 1249 (Sub8 (Const8 <t> [c]) (Sub8 x (Const8 <t> [d]))) -> (Sub8 (Const8 <t> [int64(int8(c+d))]) x) 1250 1251 // C - (D - x) -> (C - D) + x 1252 (Sub64 (Const64 <t> [c]) (Sub64 (Const64 <t> [d]) x)) -> (Add64 (Const64 <t> [c-d]) x) 1253 (Sub32 (Const32 <t> [c]) (Sub32 (Const32 <t> [d]) x)) -> (Add32 (Const32 <t> [int64(int32(c-d))]) x) 1254 (Sub16 (Const16 <t> [c]) (Sub16 (Const16 <t> [d]) x)) -> (Add16 (Const16 <t> [int64(int16(c-d))]) x) 1255 (Sub8 (Const8 <t> [c]) (Sub8 (Const8 <t> [d]) x)) -> (Add8 (Const8 <t> [int64(int8(c-d))]) x) 1256 1257 // C & (D & x) -> (C & D) & x 1258 (And64 (Const64 <t> [c]) (And64 (Const64 <t> [d]) x)) -> (And64 (Const64 <t> [c&d]) x) 1259 (And32 (Const32 <t> [c]) (And32 (Const32 <t> [d]) x)) -> (And32 (Const32 <t> [int64(int32(c&d))]) x) 1260 (And16 (Const16 <t> [c]) (And16 (Const16 <t> [d]) x)) -> (And16 (Const16 <t> [int64(int16(c&d))]) x) 1261 (And8 (Const8 <t> [c]) (And8 (Const8 <t> [d]) x)) -> (And8 (Const8 <t> [int64(int8(c&d))]) x) 1262 1263 // C | (D | x) -> (C | D) | x 1264 (Or64 (Const64 <t> [c]) (Or64 (Const64 <t> [d]) x)) -> (Or64 (Const64 <t> [c|d]) x) 1265 (Or32 (Const32 <t> [c]) (Or32 (Const32 <t> [d]) x)) -> (Or32 (Const32 <t> [int64(int32(c|d))]) x) 1266 (Or16 (Const16 <t> [c]) (Or16 (Const16 <t> [d]) x)) -> (Or16 (Const16 <t> [int64(int16(c|d))]) x) 1267 (Or8 (Const8 <t> [c]) (Or8 (Const8 <t> [d]) x)) -> (Or8 (Const8 <t> [int64(int8(c|d))]) x) 1268 1269 // C ^ (D ^ x) -> (C ^ D) ^ x 1270 (Xor64 (Const64 <t> [c]) (Xor64 (Const64 <t> [d]) x)) -> (Xor64 (Const64 <t> [c^d]) x) 1271 (Xor32 (Const32 <t> [c]) (Xor32 (Const32 <t> [d]) x)) -> (Xor32 (Const32 <t> [int64(int32(c^d))]) x) 1272 (Xor16 (Const16 <t> [c]) (Xor16 (Const16 <t> [d]) x)) -> (Xor16 (Const16 <t> [int64(int16(c^d))]) x) 1273 (Xor8 (Const8 <t> [c]) (Xor8 (Const8 <t> [d]) x)) -> (Xor8 (Const8 <t> [int64(int8(c^d))]) x) 1274 1275 // C * (D * x) = (C * D) * x 1276 (Mul64 (Const64 <t> [c]) (Mul64 (Const64 <t> [d]) x)) -> (Mul64 (Const64 <t> [c*d]) x) 1277 (Mul32 (Const32 <t> [c]) (Mul32 (Const32 <t> [d]) x)) -> (Mul32 (Const32 <t> [int64(int32(c*d))]) x) 1278 (Mul16 (Const16 <t> [c]) (Mul16 (Const16 <t> [d]) x)) -> (Mul16 (Const16 <t> [int64(int16(c*d))]) x) 1279 (Mul8 (Const8 <t> [c]) (Mul8 (Const8 <t> [d]) x)) -> (Mul8 (Const8 <t> [int64(int8(c*d))]) x) 1280 1281 // floating point optimizations 1282 (Add32F x (Const32F [0])) -> x 1283 (Add64F x (Const64F [0])) -> x 1284 (Sub32F x (Const32F [0])) -> x 1285 (Sub64F x (Const64F [0])) -> x 1286 (Mul32F x (Const32F [f2i(1)])) -> x 1287 (Mul64F x (Const64F [f2i(1)])) -> x 1288 (Mul32F x (Const32F [f2i(-1)])) -> (Neg32F x) 1289 (Mul64F x (Const64F [f2i(-1)])) -> (Neg64F x) 1290 (Mul32F x (Const32F [f2i(2)])) -> (Add32F x x) 1291 (Mul64F x (Const64F [f2i(2)])) -> (Add64F x x) 1292 (Div32F x (Const32F <t> [c])) && reciprocalExact32(float32(i2f(c))) -> (Mul32F x (Const32F <t> [f2i(1/i2f(c))])) 1293 (Div64F x (Const64F <t> [c])) && reciprocalExact64(i2f(c)) -> (Mul64F x (Const64F <t> [f2i(1/i2f(c))])) 1294 1295 (Sqrt (Const64F [c])) -> (Const64F [f2i(math.Sqrt(i2f(c)))]) 1296 1297 // recognize runtime.newobject and don't Zero/Nilcheck it 1298 (Zero (Load (OffPtr [c] (SP)) mem) mem) 1299 && mem.Op == OpStaticCall 1300 && isSameSym(mem.Aux, "runtime.newobject") 1301 && c == config.ctxt.FixedFrameSize() + config.RegSize // offset of return value 1302 -> mem 1303 (Store (Load (OffPtr [c] (SP)) mem) x mem) 1304 && isConstZero(x) 1305 && mem.Op == OpStaticCall 1306 && isSameSym(mem.Aux, "runtime.newobject") 1307 && c == config.ctxt.FixedFrameSize() + config.RegSize // offset of return value 1308 -> mem 1309 (Store (OffPtr (Load (OffPtr [c] (SP)) mem)) x mem) 1310 && isConstZero(x) 1311 && mem.Op == OpStaticCall 1312 && isSameSym(mem.Aux, "runtime.newobject") 1313 && c == config.ctxt.FixedFrameSize() + config.RegSize // offset of return value 1314 -> mem 1315 // nil checks just need to rewrite to something useless. 1316 // they will be deadcode eliminated soon afterwards. 1317 (NilCheck (Load (OffPtr [c] (SP)) mem) mem) 1318 && mem.Op == OpStaticCall 1319 && isSameSym(mem.Aux, "runtime.newobject") 1320 && c == config.ctxt.FixedFrameSize() + config.RegSize // offset of return value 1321 && warnRule(fe.Debug_checknil() && v.Pos.Line() > 1, v, "removed nil check") 1322 -> (Invalid) 1323 (NilCheck (OffPtr (Load (OffPtr [c] (SP)) mem)) mem) 1324 && mem.Op == OpStaticCall 1325 && isSameSym(mem.Aux, "runtime.newobject") 1326 && c == config.ctxt.FixedFrameSize() + config.RegSize // offset of return value 1327 && warnRule(fe.Debug_checknil() && v.Pos.Line() > 1, v, "removed nil check") 1328 -> (Invalid) 1329 1330 // Address comparison shows up in type assertions. 1331 (EqPtr x x) -> (ConstBool [1]) 1332 (EqPtr (Addr {a} x) (Addr {b} x)) -> (ConstBool [b2i(a == b)]) 1333 1334 // De-virtualize interface calls into static calls. 1335 // Note that (ITab (IMake)) doesn't get 1336 // rewritten until after the first opt pass, 1337 // so this rule should trigger reliably. 1338 (InterCall [argsize] (Load (OffPtr [off] (ITab (IMake (Addr {itab} (SB)) _))) _) mem) && devirt(v, itab, off) != nil -> 1339 (StaticCall [argsize] {devirt(v, itab, off)} mem)