github.com/tidwall/go@v0.0.0-20170415222209-6694a6888b7d/src/cmd/internal/obj/s390x/asmz.go (about)

     1  // Based on cmd/internal/obj/ppc64/asm9.go.
     2  //
     3  //    Copyright © 1994-1999 Lucent Technologies Inc.  All rights reserved.
     4  //    Portions Copyright © 1995-1997 C H Forsyth (forsyth@terzarima.net)
     5  //    Portions Copyright © 1997-1999 Vita Nuova Limited
     6  //    Portions Copyright © 2000-2008 Vita Nuova Holdings Limited (www.vitanuova.com)
     7  //    Portions Copyright © 2004,2006 Bruce Ellis
     8  //    Portions Copyright © 2005-2007 C H Forsyth (forsyth@terzarima.net)
     9  //    Revisions Copyright © 2000-2008 Lucent Technologies Inc. and others
    10  //    Portions Copyright © 2009 The Go Authors. All rights reserved.
    11  //
    12  // Permission is hereby granted, free of charge, to any person obtaining a copy
    13  // of this software and associated documentation files (the "Software"), to deal
    14  // in the Software without restriction, including without limitation the rights
    15  // to use, copy, modify, merge, publish, distribute, sublicense, and/or sell
    16  // copies of the Software, and to permit persons to whom the Software is
    17  // furnished to do so, subject to the following conditions:
    18  //
    19  // The above copyright notice and this permission notice shall be included in
    20  // all copies or substantial portions of the Software.
    21  //
    22  // THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
    23  // IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
    24  // FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT.  IN NO EVENT SHALL THE
    25  // AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
    26  // LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM,
    27  // OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN
    28  // THE SOFTWARE.
    29  
    30  package s390x
    31  
    32  import (
    33  	"cmd/internal/obj"
    34  	"log"
    35  	"math"
    36  	"sort"
    37  )
    38  
    39  // ctxtz holds state while assembling a single function.
    40  // Each function gets a fresh ctxtz.
    41  // This allows for multiple functions to be safely concurrently assembled.
    42  type ctxtz struct {
    43  	ctxt       *obj.Link
    44  	newprog    obj.ProgAlloc
    45  	cursym     *obj.LSym
    46  	autosize   int32
    47  	instoffset int64
    48  	pc         int64
    49  }
    50  
    51  // instruction layout.
    52  const (
    53  	funcAlign = 16
    54  )
    55  
    56  type Optab struct {
    57  	as    obj.As // opcode
    58  	a1    uint8  // From
    59  	a2    uint8  // Reg
    60  	a3    uint8  // From3
    61  	a4    uint8  // To
    62  	type_ int8
    63  	param int16 // REGSP for auto variables
    64  }
    65  
    66  var optab = []Optab{
    67  	// instruction,  From,   Reg,    From3,  To, type, param
    68  	Optab{obj.ATEXT, C_ADDR, C_NONE, C_NONE, C_TEXTSIZE, 0, 0},
    69  	Optab{obj.ATEXT, C_ADDR, C_NONE, C_LCON, C_TEXTSIZE, 0, 0},
    70  
    71  	// move register
    72  	Optab{AMOVD, C_REG, C_NONE, C_NONE, C_REG, 1, 0},
    73  	Optab{AMOVB, C_REG, C_NONE, C_NONE, C_REG, 1, 0},
    74  	Optab{AMOVBZ, C_REG, C_NONE, C_NONE, C_REG, 1, 0},
    75  	Optab{AMOVW, C_REG, C_NONE, C_NONE, C_REG, 1, 0},
    76  	Optab{AMOVWZ, C_REG, C_NONE, C_NONE, C_REG, 1, 0},
    77  	Optab{AFMOVD, C_FREG, C_NONE, C_NONE, C_FREG, 1, 0},
    78  	Optab{AMOVDBR, C_REG, C_NONE, C_NONE, C_REG, 1, 0},
    79  
    80  	// load constant
    81  	Optab{AMOVD, C_LACON, C_NONE, C_NONE, C_REG, 26, REGSP},
    82  	Optab{AMOVW, C_LACON, C_NONE, C_NONE, C_REG, 26, REGSP},
    83  	Optab{AMOVWZ, C_LACON, C_NONE, C_NONE, C_REG, 26, REGSP},
    84  	Optab{AMOVD, C_DCON, C_NONE, C_NONE, C_REG, 3, 0},
    85  	Optab{AMOVW, C_DCON, C_NONE, C_NONE, C_REG, 3, 0},
    86  	Optab{AMOVWZ, C_DCON, C_NONE, C_NONE, C_REG, 3, 0},
    87  	Optab{AMOVB, C_DCON, C_NONE, C_NONE, C_REG, 3, 0},
    88  	Optab{AMOVBZ, C_DCON, C_NONE, C_NONE, C_REG, 3, 0},
    89  
    90  	// store constant
    91  	Optab{AMOVD, C_LCON, C_NONE, C_NONE, C_ADDR, 73, 0},
    92  	Optab{AMOVW, C_LCON, C_NONE, C_NONE, C_ADDR, 73, 0},
    93  	Optab{AMOVWZ, C_LCON, C_NONE, C_NONE, C_ADDR, 73, 0},
    94  	Optab{AMOVBZ, C_LCON, C_NONE, C_NONE, C_ADDR, 73, 0},
    95  	Optab{AMOVB, C_LCON, C_NONE, C_NONE, C_ADDR, 73, 0},
    96  	Optab{AMOVD, C_LCON, C_NONE, C_NONE, C_LAUTO, 72, REGSP},
    97  	Optab{AMOVW, C_LCON, C_NONE, C_NONE, C_LAUTO, 72, REGSP},
    98  	Optab{AMOVWZ, C_LCON, C_NONE, C_NONE, C_LAUTO, 72, REGSP},
    99  	Optab{AMOVB, C_LCON, C_NONE, C_NONE, C_LAUTO, 72, REGSP},
   100  	Optab{AMOVBZ, C_LCON, C_NONE, C_NONE, C_LAUTO, 72, REGSP},
   101  	Optab{AMOVD, C_LCON, C_NONE, C_NONE, C_LOREG, 72, 0},
   102  	Optab{AMOVW, C_LCON, C_NONE, C_NONE, C_LOREG, 72, 0},
   103  	Optab{AMOVWZ, C_LCON, C_NONE, C_NONE, C_LOREG, 72, 0},
   104  	Optab{AMOVB, C_LCON, C_NONE, C_NONE, C_LOREG, 72, 0},
   105  	Optab{AMOVBZ, C_LCON, C_NONE, C_NONE, C_LOREG, 72, 0},
   106  
   107  	// store
   108  	Optab{AMOVD, C_REG, C_NONE, C_NONE, C_LAUTO, 35, REGSP},
   109  	Optab{AMOVW, C_REG, C_NONE, C_NONE, C_LAUTO, 35, REGSP},
   110  	Optab{AMOVWZ, C_REG, C_NONE, C_NONE, C_LAUTO, 35, REGSP},
   111  	Optab{AMOVBZ, C_REG, C_NONE, C_NONE, C_LAUTO, 35, REGSP},
   112  	Optab{AMOVB, C_REG, C_NONE, C_NONE, C_LAUTO, 35, REGSP},
   113  	Optab{AMOVDBR, C_REG, C_NONE, C_NONE, C_LAUTO, 35, REGSP},
   114  	Optab{AMOVHBR, C_REG, C_NONE, C_NONE, C_LAUTO, 35, REGSP},
   115  	Optab{AMOVD, C_REG, C_NONE, C_NONE, C_LOREG, 35, 0},
   116  	Optab{AMOVW, C_REG, C_NONE, C_NONE, C_LOREG, 35, 0},
   117  	Optab{AMOVWZ, C_REG, C_NONE, C_NONE, C_LOREG, 35, 0},
   118  	Optab{AMOVBZ, C_REG, C_NONE, C_NONE, C_LOREG, 35, 0},
   119  	Optab{AMOVB, C_REG, C_NONE, C_NONE, C_LOREG, 35, 0},
   120  	Optab{AMOVDBR, C_REG, C_NONE, C_NONE, C_LOREG, 35, 0},
   121  	Optab{AMOVHBR, C_REG, C_NONE, C_NONE, C_LOREG, 35, 0},
   122  	Optab{AMOVD, C_REG, C_NONE, C_NONE, C_ADDR, 74, 0},
   123  	Optab{AMOVW, C_REG, C_NONE, C_NONE, C_ADDR, 74, 0},
   124  	Optab{AMOVWZ, C_REG, C_NONE, C_NONE, C_ADDR, 74, 0},
   125  	Optab{AMOVBZ, C_REG, C_NONE, C_NONE, C_ADDR, 74, 0},
   126  	Optab{AMOVB, C_REG, C_NONE, C_NONE, C_ADDR, 74, 0},
   127  
   128  	// load
   129  	Optab{AMOVD, C_LAUTO, C_NONE, C_NONE, C_REG, 36, REGSP},
   130  	Optab{AMOVW, C_LAUTO, C_NONE, C_NONE, C_REG, 36, REGSP},
   131  	Optab{AMOVWZ, C_LAUTO, C_NONE, C_NONE, C_REG, 36, REGSP},
   132  	Optab{AMOVBZ, C_LAUTO, C_NONE, C_NONE, C_REG, 36, REGSP},
   133  	Optab{AMOVB, C_LAUTO, C_NONE, C_NONE, C_REG, 36, REGSP},
   134  	Optab{AMOVDBR, C_LAUTO, C_NONE, C_NONE, C_REG, 36, REGSP},
   135  	Optab{AMOVHBR, C_LAUTO, C_NONE, C_NONE, C_REG, 36, REGSP},
   136  	Optab{AMOVD, C_LOREG, C_NONE, C_NONE, C_REG, 36, 0},
   137  	Optab{AMOVW, C_LOREG, C_NONE, C_NONE, C_REG, 36, 0},
   138  	Optab{AMOVWZ, C_LOREG, C_NONE, C_NONE, C_REG, 36, 0},
   139  	Optab{AMOVBZ, C_LOREG, C_NONE, C_NONE, C_REG, 36, 0},
   140  	Optab{AMOVB, C_LOREG, C_NONE, C_NONE, C_REG, 36, 0},
   141  	Optab{AMOVDBR, C_LOREG, C_NONE, C_NONE, C_REG, 36, 0},
   142  	Optab{AMOVHBR, C_LOREG, C_NONE, C_NONE, C_REG, 36, 0},
   143  	Optab{AMOVD, C_ADDR, C_NONE, C_NONE, C_REG, 75, 0},
   144  	Optab{AMOVW, C_ADDR, C_NONE, C_NONE, C_REG, 75, 0},
   145  	Optab{AMOVWZ, C_ADDR, C_NONE, C_NONE, C_REG, 75, 0},
   146  	Optab{AMOVBZ, C_ADDR, C_NONE, C_NONE, C_REG, 75, 0},
   147  	Optab{AMOVB, C_ADDR, C_NONE, C_NONE, C_REG, 75, 0},
   148  
   149  	// interlocked load and op
   150  	Optab{ALAAG, C_REG, C_REG, C_NONE, C_LOREG, 99, 0},
   151  
   152  	// integer arithmetic
   153  	Optab{AADD, C_REG, C_REG, C_NONE, C_REG, 2, 0},
   154  	Optab{AADD, C_REG, C_NONE, C_NONE, C_REG, 2, 0},
   155  	Optab{AADD, C_LCON, C_REG, C_NONE, C_REG, 22, 0},
   156  	Optab{AADD, C_LCON, C_NONE, C_NONE, C_REG, 22, 0},
   157  	Optab{AADD, C_LOREG, C_NONE, C_NONE, C_REG, 12, 0},
   158  	Optab{AADD, C_LAUTO, C_NONE, C_NONE, C_REG, 12, REGSP},
   159  	Optab{ASUB, C_LCON, C_REG, C_NONE, C_REG, 21, 0},
   160  	Optab{ASUB, C_LCON, C_NONE, C_NONE, C_REG, 21, 0},
   161  	Optab{ASUB, C_LOREG, C_NONE, C_NONE, C_REG, 12, 0},
   162  	Optab{ASUB, C_LAUTO, C_NONE, C_NONE, C_REG, 12, REGSP},
   163  	Optab{AMULHD, C_REG, C_NONE, C_NONE, C_REG, 4, 0},
   164  	Optab{AMULHD, C_REG, C_REG, C_NONE, C_REG, 4, 0},
   165  	Optab{ADIVW, C_REG, C_REG, C_NONE, C_REG, 2, 0},
   166  	Optab{ADIVW, C_REG, C_NONE, C_NONE, C_REG, 2, 0},
   167  	Optab{ASUB, C_REG, C_REG, C_NONE, C_REG, 10, 0},
   168  	Optab{ASUB, C_REG, C_NONE, C_NONE, C_REG, 10, 0},
   169  	Optab{ANEG, C_REG, C_NONE, C_NONE, C_REG, 47, 0},
   170  	Optab{ANEG, C_NONE, C_NONE, C_NONE, C_REG, 47, 0},
   171  
   172  	// integer logical
   173  	Optab{AAND, C_REG, C_REG, C_NONE, C_REG, 6, 0},
   174  	Optab{AAND, C_REG, C_NONE, C_NONE, C_REG, 6, 0},
   175  	Optab{AAND, C_LCON, C_NONE, C_NONE, C_REG, 23, 0},
   176  	Optab{AAND, C_LOREG, C_NONE, C_NONE, C_REG, 12, 0},
   177  	Optab{AAND, C_LAUTO, C_NONE, C_NONE, C_REG, 12, REGSP},
   178  	Optab{AANDW, C_REG, C_REG, C_NONE, C_REG, 6, 0},
   179  	Optab{AANDW, C_REG, C_NONE, C_NONE, C_REG, 6, 0},
   180  	Optab{AANDW, C_LCON, C_NONE, C_NONE, C_REG, 24, 0},
   181  	Optab{AANDW, C_LOREG, C_NONE, C_NONE, C_REG, 12, 0},
   182  	Optab{AANDW, C_LAUTO, C_NONE, C_NONE, C_REG, 12, REGSP},
   183  	Optab{ASLD, C_REG, C_NONE, C_NONE, C_REG, 7, 0},
   184  	Optab{ASLD, C_REG, C_REG, C_NONE, C_REG, 7, 0},
   185  	Optab{ASLD, C_SCON, C_REG, C_NONE, C_REG, 7, 0},
   186  	Optab{ASLD, C_SCON, C_NONE, C_NONE, C_REG, 7, 0},
   187  
   188  	// compare and swap
   189  	Optab{ACSG, C_REG, C_REG, C_NONE, C_SOREG, 79, 0},
   190  
   191  	// floating point
   192  	Optab{AFADD, C_FREG, C_NONE, C_NONE, C_FREG, 32, 0},
   193  	Optab{AFABS, C_FREG, C_NONE, C_NONE, C_FREG, 33, 0},
   194  	Optab{AFABS, C_NONE, C_NONE, C_NONE, C_FREG, 33, 0},
   195  	Optab{AFMADD, C_FREG, C_FREG, C_NONE, C_FREG, 34, 0},
   196  	Optab{AFMUL, C_FREG, C_NONE, C_NONE, C_FREG, 32, 0},
   197  	Optab{AFMOVD, C_LAUTO, C_NONE, C_NONE, C_FREG, 36, REGSP},
   198  	Optab{AFMOVD, C_LOREG, C_NONE, C_NONE, C_FREG, 36, 0},
   199  	Optab{AFMOVD, C_ADDR, C_NONE, C_NONE, C_FREG, 75, 0},
   200  	Optab{AFMOVD, C_FREG, C_NONE, C_NONE, C_LAUTO, 35, REGSP},
   201  	Optab{AFMOVD, C_FREG, C_NONE, C_NONE, C_LOREG, 35, 0},
   202  	Optab{AFMOVD, C_FREG, C_NONE, C_NONE, C_ADDR, 74, 0},
   203  	Optab{AFMOVD, C_ZCON, C_NONE, C_NONE, C_FREG, 67, 0},
   204  	Optab{ACEFBRA, C_REG, C_NONE, C_NONE, C_FREG, 82, 0},
   205  	Optab{ACFEBRA, C_FREG, C_NONE, C_NONE, C_REG, 83, 0},
   206  	Optab{AFIEBR, C_SCON, C_FREG, C_NONE, C_FREG, 48, 0},
   207  
   208  	// load symbol address (plus offset)
   209  	Optab{AMOVD, C_SYMADDR, C_NONE, C_NONE, C_REG, 19, 0},
   210  	Optab{AMOVD, C_GOTADDR, C_NONE, C_NONE, C_REG, 93, 0},
   211  	Optab{AMOVD, C_TLS_LE, C_NONE, C_NONE, C_REG, 94, 0},
   212  	Optab{AMOVD, C_TLS_IE, C_NONE, C_NONE, C_REG, 95, 0},
   213  
   214  	// system call
   215  	Optab{ASYSCALL, C_NONE, C_NONE, C_NONE, C_NONE, 5, 0},
   216  	Optab{ASYSCALL, C_SCON, C_NONE, C_NONE, C_NONE, 77, 0},
   217  
   218  	// branch
   219  	Optab{ABEQ, C_NONE, C_NONE, C_NONE, C_SBRA, 16, 0},
   220  	Optab{ABR, C_NONE, C_NONE, C_NONE, C_LBRA, 11, 0},
   221  	Optab{ABC, C_SCON, C_REG, C_NONE, C_LBRA, 16, 0},
   222  	Optab{ABR, C_NONE, C_NONE, C_NONE, C_REG, 18, 0},
   223  	Optab{ABR, C_REG, C_NONE, C_NONE, C_REG, 18, 0},
   224  	Optab{ABR, C_NONE, C_NONE, C_NONE, C_ZOREG, 15, 0},
   225  	Optab{ABC, C_NONE, C_NONE, C_NONE, C_ZOREG, 15, 0},
   226  	Optab{ACMPBEQ, C_REG, C_REG, C_NONE, C_SBRA, 89, 0},
   227  	Optab{ACMPBEQ, C_REG, C_NONE, C_ADDCON, C_SBRA, 90, 0},
   228  	Optab{ACMPBEQ, C_REG, C_NONE, C_SCON, C_SBRA, 90, 0},
   229  	Optab{ACMPUBEQ, C_REG, C_REG, C_NONE, C_SBRA, 89, 0},
   230  	Optab{ACMPUBEQ, C_REG, C_NONE, C_ANDCON, C_SBRA, 90, 0},
   231  
   232  	// move on condition
   233  	Optab{AMOVDEQ, C_REG, C_NONE, C_NONE, C_REG, 17, 0},
   234  
   235  	// find leftmost one
   236  	Optab{AFLOGR, C_REG, C_NONE, C_NONE, C_REG, 8, 0},
   237  
   238  	// compare
   239  	Optab{ACMP, C_REG, C_NONE, C_NONE, C_REG, 70, 0},
   240  	Optab{ACMP, C_REG, C_NONE, C_NONE, C_LCON, 71, 0},
   241  	Optab{ACMPU, C_REG, C_NONE, C_NONE, C_REG, 70, 0},
   242  	Optab{ACMPU, C_REG, C_NONE, C_NONE, C_LCON, 71, 0},
   243  	Optab{AFCMPO, C_FREG, C_NONE, C_NONE, C_FREG, 70, 0},
   244  	Optab{AFCMPO, C_FREG, C_REG, C_NONE, C_FREG, 70, 0},
   245  
   246  	// 32-bit access registers
   247  	Optab{AMOVW, C_AREG, C_NONE, C_NONE, C_REG, 68, 0},
   248  	Optab{AMOVWZ, C_AREG, C_NONE, C_NONE, C_REG, 68, 0},
   249  	Optab{AMOVW, C_REG, C_NONE, C_NONE, C_AREG, 69, 0},
   250  	Optab{AMOVWZ, C_REG, C_NONE, C_NONE, C_AREG, 69, 0},
   251  
   252  	// macros
   253  	Optab{ACLEAR, C_LCON, C_NONE, C_NONE, C_LOREG, 96, 0},
   254  	Optab{ACLEAR, C_LCON, C_NONE, C_NONE, C_LAUTO, 96, REGSP},
   255  
   256  	// load/store multiple
   257  	Optab{ASTMG, C_REG, C_REG, C_NONE, C_LOREG, 97, 0},
   258  	Optab{ASTMG, C_REG, C_REG, C_NONE, C_LAUTO, 97, REGSP},
   259  	Optab{ALMG, C_LOREG, C_REG, C_NONE, C_REG, 98, 0},
   260  	Optab{ALMG, C_LAUTO, C_REG, C_NONE, C_REG, 98, REGSP},
   261  
   262  	// bytes
   263  	Optab{ABYTE, C_SCON, C_NONE, C_NONE, C_NONE, 40, 0},
   264  	Optab{AWORD, C_LCON, C_NONE, C_NONE, C_NONE, 40, 0},
   265  	Optab{ADWORD, C_LCON, C_NONE, C_NONE, C_NONE, 31, 0},
   266  	Optab{ADWORD, C_DCON, C_NONE, C_NONE, C_NONE, 31, 0},
   267  
   268  	// fast synchronization
   269  	Optab{ASYNC, C_NONE, C_NONE, C_NONE, C_NONE, 81, 0},
   270  
   271  	// store clock
   272  	Optab{ASTCK, C_NONE, C_NONE, C_NONE, C_SAUTO, 88, REGSP},
   273  	Optab{ASTCK, C_NONE, C_NONE, C_NONE, C_SOREG, 88, 0},
   274  
   275  	// storage and storage
   276  	Optab{AMVC, C_LOREG, C_NONE, C_SCON, C_LOREG, 84, 0},
   277  	Optab{AMVC, C_LOREG, C_NONE, C_SCON, C_LAUTO, 84, REGSP},
   278  	Optab{AMVC, C_LAUTO, C_NONE, C_SCON, C_LAUTO, 84, REGSP},
   279  
   280  	// address
   281  	Optab{ALARL, C_LCON, C_NONE, C_NONE, C_REG, 85, 0},
   282  	Optab{ALARL, C_SYMADDR, C_NONE, C_NONE, C_REG, 85, 0},
   283  	Optab{ALA, C_SOREG, C_NONE, C_NONE, C_REG, 86, 0},
   284  	Optab{ALA, C_SAUTO, C_NONE, C_NONE, C_REG, 86, REGSP},
   285  	Optab{AEXRL, C_SYMADDR, C_NONE, C_NONE, C_REG, 87, 0},
   286  
   287  	// misc
   288  	Optab{obj.AUNDEF, C_NONE, C_NONE, C_NONE, C_NONE, 78, 0},
   289  	Optab{obj.APCDATA, C_LCON, C_NONE, C_NONE, C_LCON, 0, 0},
   290  	Optab{obj.AFUNCDATA, C_SCON, C_NONE, C_NONE, C_ADDR, 0, 0},
   291  	Optab{obj.ANOP, C_NONE, C_NONE, C_NONE, C_NONE, 0, 0},
   292  	Optab{obj.ANOP, C_SAUTO, C_NONE, C_NONE, C_NONE, 0, 0},
   293  
   294  	// vector instructions
   295  
   296  	// VRX store
   297  	Optab{AVST, C_VREG, C_NONE, C_NONE, C_SOREG, 100, 0},
   298  	Optab{AVST, C_VREG, C_NONE, C_NONE, C_SAUTO, 100, REGSP},
   299  	Optab{AVSTEG, C_VREG, C_NONE, C_SCON, C_SOREG, 100, 0},
   300  	Optab{AVSTEG, C_VREG, C_NONE, C_SCON, C_SAUTO, 100, REGSP},
   301  
   302  	// VRX load
   303  	Optab{AVL, C_SOREG, C_NONE, C_NONE, C_VREG, 101, 0},
   304  	Optab{AVL, C_SAUTO, C_NONE, C_NONE, C_VREG, 101, REGSP},
   305  	Optab{AVLEG, C_SOREG, C_NONE, C_SCON, C_VREG, 101, 0},
   306  	Optab{AVLEG, C_SAUTO, C_NONE, C_SCON, C_VREG, 101, REGSP},
   307  
   308  	// VRV scatter
   309  	Optab{AVSCEG, C_VREG, C_NONE, C_SCON, C_SOREG, 102, 0},
   310  	Optab{AVSCEG, C_VREG, C_NONE, C_SCON, C_SAUTO, 102, REGSP},
   311  
   312  	// VRV gather
   313  	Optab{AVGEG, C_SOREG, C_NONE, C_SCON, C_VREG, 103, 0},
   314  	Optab{AVGEG, C_SAUTO, C_NONE, C_SCON, C_VREG, 103, REGSP},
   315  
   316  	// VRS element shift/rotate and load gr to/from vr element
   317  	Optab{AVESLG, C_SCON, C_VREG, C_NONE, C_VREG, 104, 0},
   318  	Optab{AVESLG, C_REG, C_VREG, C_NONE, C_VREG, 104, 0},
   319  	Optab{AVESLG, C_SCON, C_NONE, C_NONE, C_VREG, 104, 0},
   320  	Optab{AVESLG, C_REG, C_NONE, C_NONE, C_VREG, 104, 0},
   321  	Optab{AVLGVG, C_SCON, C_VREG, C_NONE, C_REG, 104, 0},
   322  	Optab{AVLGVG, C_REG, C_VREG, C_NONE, C_REG, 104, 0},
   323  	Optab{AVLVGG, C_SCON, C_REG, C_NONE, C_VREG, 104, 0},
   324  	Optab{AVLVGG, C_REG, C_REG, C_NONE, C_VREG, 104, 0},
   325  
   326  	// VRS store multiple
   327  	Optab{AVSTM, C_VREG, C_VREG, C_NONE, C_SOREG, 105, 0},
   328  	Optab{AVSTM, C_VREG, C_VREG, C_NONE, C_SAUTO, 105, REGSP},
   329  
   330  	// VRS load multiple
   331  	Optab{AVLM, C_SOREG, C_VREG, C_NONE, C_VREG, 106, 0},
   332  	Optab{AVLM, C_SAUTO, C_VREG, C_NONE, C_VREG, 106, REGSP},
   333  
   334  	// VRS store with length
   335  	Optab{AVSTL, C_VREG, C_NONE, C_REG, C_SOREG, 107, 0},
   336  	Optab{AVSTL, C_VREG, C_NONE, C_REG, C_SAUTO, 107, REGSP},
   337  
   338  	// VRS load with length
   339  	Optab{AVLL, C_SOREG, C_NONE, C_REG, C_VREG, 108, 0},
   340  	Optab{AVLL, C_SAUTO, C_NONE, C_REG, C_VREG, 108, REGSP},
   341  
   342  	// VRI-a
   343  	Optab{AVGBM, C_ANDCON, C_NONE, C_NONE, C_VREG, 109, 0},
   344  	Optab{AVZERO, C_NONE, C_NONE, C_NONE, C_VREG, 109, 0},
   345  	Optab{AVREPIG, C_ADDCON, C_NONE, C_NONE, C_VREG, 109, 0},
   346  	Optab{AVREPIG, C_SCON, C_NONE, C_NONE, C_VREG, 109, 0},
   347  	Optab{AVLEIG, C_ADDCON, C_NONE, C_SCON, C_VREG, 109, 0},
   348  	Optab{AVLEIG, C_SCON, C_NONE, C_SCON, C_VREG, 109, 0},
   349  
   350  	// VRI-b generate mask
   351  	Optab{AVGMG, C_SCON, C_NONE, C_SCON, C_VREG, 110, 0},
   352  
   353  	// VRI-c replicate
   354  	Optab{AVREPG, C_UCON, C_VREG, C_NONE, C_VREG, 111, 0},
   355  
   356  	// VRI-d element rotate and insert under mask and
   357  	// shift left double by byte
   358  	Optab{AVERIMG, C_VREG, C_VREG, C_SCON, C_VREG, 112, 0},
   359  	Optab{AVSLDB, C_VREG, C_VREG, C_SCON, C_VREG, 112, 0},
   360  
   361  	// VRI-d fp test data class immediate
   362  	Optab{AVFTCIDB, C_SCON, C_VREG, C_NONE, C_VREG, 113, 0},
   363  
   364  	// VRR-a load reg
   365  	Optab{AVLR, C_VREG, C_NONE, C_NONE, C_VREG, 114, 0},
   366  
   367  	// VRR-a compare
   368  	Optab{AVECG, C_VREG, C_NONE, C_NONE, C_VREG, 115, 0},
   369  
   370  	// VRR-b
   371  	Optab{AVCEQG, C_VREG, C_VREG, C_NONE, C_VREG, 117, 0},
   372  	Optab{AVFAEF, C_VREG, C_VREG, C_NONE, C_VREG, 117, 0},
   373  	Optab{AVPKSG, C_VREG, C_VREG, C_NONE, C_VREG, 117, 0},
   374  
   375  	// VRR-c
   376  	Optab{AVAQ, C_VREG, C_VREG, C_NONE, C_VREG, 118, 0},
   377  	Optab{AVAQ, C_VREG, C_NONE, C_NONE, C_VREG, 118, 0},
   378  	Optab{AVNOT, C_VREG, C_NONE, C_NONE, C_VREG, 118, 0},
   379  	Optab{AVPDI, C_VREG, C_VREG, C_SCON, C_VREG, 123, 0},
   380  
   381  	// VRR-c shifts
   382  	Optab{AVERLLVG, C_VREG, C_VREG, C_NONE, C_VREG, 119, 0},
   383  	Optab{AVERLLVG, C_VREG, C_NONE, C_NONE, C_VREG, 119, 0},
   384  
   385  	// VRR-d
   386  	//             2       3       1       4
   387  	Optab{AVACQ, C_VREG, C_VREG, C_VREG, C_VREG, 120, 0},
   388  
   389  	// VRR-e
   390  	Optab{AVSEL, C_VREG, C_VREG, C_VREG, C_VREG, 121, 0},
   391  
   392  	// VRR-f
   393  	Optab{AVLVGP, C_REG, C_REG, C_NONE, C_VREG, 122, 0},
   394  }
   395  
   396  var oprange [ALAST & obj.AMask][]Optab
   397  
   398  var xcmp [C_NCLASS][C_NCLASS]bool
   399  
   400  func spanz(ctxt *obj.Link, cursym *obj.LSym, newprog obj.ProgAlloc) {
   401  	p := cursym.Text
   402  	if p == nil || p.Link == nil { // handle external functions and ELF section symbols
   403  		return
   404  	}
   405  
   406  	if oprange[AORW&obj.AMask] == nil {
   407  		ctxt.Diag("s390x ops not initialized, call s390x.buildop first")
   408  	}
   409  
   410  	c := ctxtz{ctxt: ctxt, newprog: newprog, cursym: cursym, autosize: int32(p.To.Offset)}
   411  
   412  	buffer := make([]byte, 0)
   413  	changed := true
   414  	loop := 0
   415  	for changed {
   416  		if loop > 10 {
   417  			c.ctxt.Diag("stuck in spanz loop")
   418  			break
   419  		}
   420  		changed = false
   421  		buffer = buffer[:0]
   422  		c.cursym.R = make([]obj.Reloc, 0)
   423  		for p := c.cursym.Text; p != nil; p = p.Link {
   424  			pc := int64(len(buffer))
   425  			if pc != p.Pc {
   426  				changed = true
   427  			}
   428  			p.Pc = pc
   429  			c.pc = p.Pc
   430  			c.asmout(p, &buffer)
   431  			if pc == int64(len(buffer)) {
   432  				switch p.As {
   433  				case obj.ANOP, obj.AFUNCDATA, obj.APCDATA, obj.ATEXT:
   434  					// ok
   435  				default:
   436  					c.ctxt.Diag("zero-width instruction\n%v", p)
   437  				}
   438  			}
   439  		}
   440  		loop++
   441  	}
   442  
   443  	c.cursym.Size = int64(len(buffer))
   444  	if c.cursym.Size%funcAlign != 0 {
   445  		c.cursym.Size += funcAlign - (c.cursym.Size % funcAlign)
   446  	}
   447  	c.cursym.Grow(c.cursym.Size)
   448  	copy(c.cursym.P, buffer)
   449  }
   450  
   451  func isint32(v int64) bool {
   452  	return int64(int32(v)) == v
   453  }
   454  
   455  func isuint32(v uint64) bool {
   456  	return uint64(uint32(v)) == v
   457  }
   458  
   459  func (c *ctxtz) aclass(a *obj.Addr) int {
   460  	switch a.Type {
   461  	case obj.TYPE_NONE:
   462  		return C_NONE
   463  
   464  	case obj.TYPE_REG:
   465  		if REG_R0 <= a.Reg && a.Reg <= REG_R15 {
   466  			return C_REG
   467  		}
   468  		if REG_F0 <= a.Reg && a.Reg <= REG_F15 {
   469  			return C_FREG
   470  		}
   471  		if REG_AR0 <= a.Reg && a.Reg <= REG_AR15 {
   472  			return C_AREG
   473  		}
   474  		if REG_V0 <= a.Reg && a.Reg <= REG_V31 {
   475  			return C_VREG
   476  		}
   477  		return C_GOK
   478  
   479  	case obj.TYPE_MEM:
   480  		switch a.Name {
   481  		case obj.NAME_EXTERN,
   482  			obj.NAME_STATIC:
   483  			if a.Sym == nil {
   484  				// must have a symbol
   485  				break
   486  			}
   487  			c.instoffset = a.Offset
   488  			if a.Sym.Type == obj.STLSBSS {
   489  				if c.ctxt.Flag_shared {
   490  					return C_TLS_IE // initial exec model
   491  				}
   492  				return C_TLS_LE // local exec model
   493  			}
   494  			return C_ADDR
   495  
   496  		case obj.NAME_GOTREF:
   497  			return C_GOTADDR
   498  
   499  		case obj.NAME_AUTO:
   500  			c.instoffset = int64(c.autosize) + a.Offset
   501  			if c.instoffset >= -BIG && c.instoffset < BIG {
   502  				return C_SAUTO
   503  			}
   504  			return C_LAUTO
   505  
   506  		case obj.NAME_PARAM:
   507  			c.instoffset = int64(c.autosize) + a.Offset + c.ctxt.FixedFrameSize()
   508  			if c.instoffset >= -BIG && c.instoffset < BIG {
   509  				return C_SAUTO
   510  			}
   511  			return C_LAUTO
   512  
   513  		case obj.NAME_NONE:
   514  			c.instoffset = a.Offset
   515  			if c.instoffset == 0 {
   516  				return C_ZOREG
   517  			}
   518  			if c.instoffset >= -BIG && c.instoffset < BIG {
   519  				return C_SOREG
   520  			}
   521  			return C_LOREG
   522  		}
   523  
   524  		return C_GOK
   525  
   526  	case obj.TYPE_TEXTSIZE:
   527  		return C_TEXTSIZE
   528  
   529  	case obj.TYPE_FCONST:
   530  		if f64, ok := a.Val.(float64); ok && math.Float64bits(f64) == 0 {
   531  			return C_ZCON
   532  		}
   533  		c.ctxt.Diag("cannot handle the floating point constant %v", a.Val)
   534  
   535  	case obj.TYPE_CONST,
   536  		obj.TYPE_ADDR:
   537  		switch a.Name {
   538  		case obj.NAME_NONE:
   539  			c.instoffset = a.Offset
   540  			if a.Reg != 0 {
   541  				if -BIG <= c.instoffset && c.instoffset <= BIG {
   542  					return C_SACON
   543  				}
   544  				if isint32(c.instoffset) {
   545  					return C_LACON
   546  				}
   547  				return C_DACON
   548  			}
   549  			goto consize
   550  
   551  		case obj.NAME_EXTERN,
   552  			obj.NAME_STATIC:
   553  			s := a.Sym
   554  			if s == nil {
   555  				break
   556  			}
   557  			c.instoffset = a.Offset
   558  			if s.Type == obj.SCONST {
   559  				goto consize
   560  			}
   561  
   562  			return C_SYMADDR
   563  
   564  		case obj.NAME_AUTO:
   565  			c.instoffset = int64(c.autosize) + a.Offset
   566  			if c.instoffset >= -BIG && c.instoffset < BIG {
   567  				return C_SACON
   568  			}
   569  			return C_LACON
   570  
   571  		case obj.NAME_PARAM:
   572  			c.instoffset = int64(c.autosize) + a.Offset + c.ctxt.FixedFrameSize()
   573  			if c.instoffset >= -BIG && c.instoffset < BIG {
   574  				return C_SACON
   575  			}
   576  			return C_LACON
   577  		}
   578  
   579  		return C_GOK
   580  
   581  	consize:
   582  		if c.instoffset == 0 {
   583  			return C_ZCON
   584  		}
   585  		if c.instoffset >= 0 {
   586  			if c.instoffset <= 0x7fff {
   587  				return C_SCON
   588  			}
   589  			if c.instoffset <= 0xffff {
   590  				return C_ANDCON
   591  			}
   592  			if c.instoffset&0xffff == 0 && isuint32(uint64(c.instoffset)) { /* && (instoffset & (1<<31)) == 0) */
   593  				return C_UCON
   594  			}
   595  			if isint32(c.instoffset) || isuint32(uint64(c.instoffset)) {
   596  				return C_LCON
   597  			}
   598  			return C_DCON
   599  		}
   600  
   601  		if c.instoffset >= -0x8000 {
   602  			return C_ADDCON
   603  		}
   604  		if c.instoffset&0xffff == 0 && isint32(c.instoffset) {
   605  			return C_UCON
   606  		}
   607  		if isint32(c.instoffset) {
   608  			return C_LCON
   609  		}
   610  		return C_DCON
   611  
   612  	case obj.TYPE_BRANCH:
   613  		return C_SBRA
   614  	}
   615  
   616  	return C_GOK
   617  }
   618  
   619  func (c *ctxtz) oplook(p *obj.Prog) *Optab {
   620  	a1 := int(p.Optab)
   621  	if a1 != 0 {
   622  		return &optab[a1-1]
   623  	}
   624  	a1 = int(p.From.Class)
   625  	if a1 == 0 {
   626  		a1 = c.aclass(&p.From) + 1
   627  		p.From.Class = int8(a1)
   628  	}
   629  
   630  	a1--
   631  	a3 := C_NONE + 1
   632  	if p.From3 != nil {
   633  		a3 = int(p.From3.Class)
   634  		if a3 == 0 {
   635  			a3 = c.aclass(p.From3) + 1
   636  			p.From3.Class = int8(a3)
   637  		}
   638  	}
   639  
   640  	a3--
   641  	a4 := int(p.To.Class)
   642  	if a4 == 0 {
   643  		a4 = c.aclass(&p.To) + 1
   644  		p.To.Class = int8(a4)
   645  	}
   646  
   647  	a4--
   648  	a2 := C_NONE
   649  	if p.Reg != 0 {
   650  		if REG_R0 <= p.Reg && p.Reg <= REG_R15 {
   651  			a2 = C_REG
   652  		} else if REG_V0 <= p.Reg && p.Reg <= REG_V31 {
   653  			a2 = C_VREG
   654  		} else if REG_F0 <= p.Reg && p.Reg <= REG_F15 {
   655  			a2 = C_FREG
   656  		} else if REG_AR0 <= p.Reg && p.Reg <= REG_AR15 {
   657  			a2 = C_AREG
   658  		}
   659  	}
   660  
   661  	ops := oprange[p.As&obj.AMask]
   662  	c1 := &xcmp[a1]
   663  	c2 := &xcmp[a2]
   664  	c3 := &xcmp[a3]
   665  	c4 := &xcmp[a4]
   666  	for i := range ops {
   667  		op := &ops[i]
   668  		if (int(op.a2) == a2 || c2[op.a2]) && c4[op.a4] && c1[op.a1] && c3[op.a3] {
   669  			p.Optab = uint16(cap(optab) - cap(ops) + i + 1)
   670  			return op
   671  		}
   672  	}
   673  
   674  	// cannot find a case; abort
   675  	c.ctxt.Diag("illegal combination %v %v %v %v %v\n", p.As, DRconv(a1), DRconv(a2), DRconv(a3), DRconv(a4))
   676  	c.ctxt.Diag("prog: %v\n", p)
   677  	return nil
   678  }
   679  
   680  func cmp(a int, b int) bool {
   681  	if a == b {
   682  		return true
   683  	}
   684  	switch a {
   685  	case C_DCON:
   686  		if b == C_LCON {
   687  			return true
   688  		}
   689  		fallthrough
   690  	case C_LCON:
   691  		if b == C_ZCON || b == C_SCON || b == C_UCON || b == C_ADDCON || b == C_ANDCON {
   692  			return true
   693  		}
   694  
   695  	case C_ADDCON:
   696  		if b == C_ZCON || b == C_SCON {
   697  			return true
   698  		}
   699  
   700  	case C_ANDCON:
   701  		if b == C_ZCON || b == C_SCON {
   702  			return true
   703  		}
   704  
   705  	case C_UCON:
   706  		if b == C_ZCON || b == C_SCON {
   707  			return true
   708  		}
   709  
   710  	case C_SCON:
   711  		if b == C_ZCON {
   712  			return true
   713  		}
   714  
   715  	case C_LACON:
   716  		if b == C_SACON {
   717  			return true
   718  		}
   719  
   720  	case C_LBRA:
   721  		if b == C_SBRA {
   722  			return true
   723  		}
   724  
   725  	case C_LAUTO:
   726  		if b == C_SAUTO {
   727  			return true
   728  		}
   729  
   730  	case C_LOREG:
   731  		if b == C_ZOREG || b == C_SOREG {
   732  			return true
   733  		}
   734  
   735  	case C_SOREG:
   736  		if b == C_ZOREG {
   737  			return true
   738  		}
   739  
   740  	case C_ANY:
   741  		return true
   742  	}
   743  
   744  	return false
   745  }
   746  
   747  type ocmp []Optab
   748  
   749  func (x ocmp) Len() int {
   750  	return len(x)
   751  }
   752  
   753  func (x ocmp) Swap(i, j int) {
   754  	x[i], x[j] = x[j], x[i]
   755  }
   756  
   757  func (x ocmp) Less(i, j int) bool {
   758  	p1 := &x[i]
   759  	p2 := &x[j]
   760  	n := int(p1.as) - int(p2.as)
   761  	if n != 0 {
   762  		return n < 0
   763  	}
   764  	n = int(p1.a1) - int(p2.a1)
   765  	if n != 0 {
   766  		return n < 0
   767  	}
   768  	n = int(p1.a2) - int(p2.a2)
   769  	if n != 0 {
   770  		return n < 0
   771  	}
   772  	n = int(p1.a3) - int(p2.a3)
   773  	if n != 0 {
   774  		return n < 0
   775  	}
   776  	n = int(p1.a4) - int(p2.a4)
   777  	if n != 0 {
   778  		return n < 0
   779  	}
   780  	return false
   781  }
   782  func opset(a, b obj.As) {
   783  	oprange[a&obj.AMask] = oprange[b&obj.AMask]
   784  }
   785  
   786  func buildop(ctxt *obj.Link) {
   787  	if oprange[AORW&obj.AMask] != nil {
   788  		// Already initialized; stop now.
   789  		// This happens in the cmd/asm tests,
   790  		// each of which re-initializes the arch.
   791  		return
   792  	}
   793  
   794  	for i := 0; i < C_NCLASS; i++ {
   795  		for n := 0; n < C_NCLASS; n++ {
   796  			if cmp(n, i) {
   797  				xcmp[i][n] = true
   798  			}
   799  		}
   800  	}
   801  	sort.Sort(ocmp(optab))
   802  	for i := 0; i < len(optab); i++ {
   803  		r := optab[i].as
   804  		start := i
   805  		for ; i+1 < len(optab); i++ {
   806  			if optab[i+1].as != r {
   807  				break
   808  			}
   809  		}
   810  		oprange[r&obj.AMask] = optab[start : i+1]
   811  
   812  		// opset() aliases optab ranges for similar instructions, to reduce the number of optabs in the array.
   813  		// oprange[] is used by oplook() to find the Optab entry that applies to a given Prog.
   814  		switch r {
   815  		case AADD:
   816  			opset(AADDC, r)
   817  			opset(AADDW, r)
   818  			opset(AMULLD, r)
   819  			opset(AMULLW, r)
   820  		case ADIVW:
   821  			opset(AADDE, r)
   822  			opset(ADIVD, r)
   823  			opset(ADIVDU, r)
   824  			opset(ADIVWU, r)
   825  			opset(AMODD, r)
   826  			opset(AMODDU, r)
   827  			opset(AMODW, r)
   828  			opset(AMODWU, r)
   829  		case AMULHD:
   830  			opset(AMULHDU, r)
   831  		case AMOVBZ:
   832  			opset(AMOVH, r)
   833  			opset(AMOVHZ, r)
   834  		case ALA:
   835  			opset(ALAY, r)
   836  		case AMVC:
   837  			opset(ACLC, r)
   838  			opset(AXC, r)
   839  			opset(AOC, r)
   840  			opset(ANC, r)
   841  		case ASTCK:
   842  			opset(ASTCKC, r)
   843  			opset(ASTCKE, r)
   844  			opset(ASTCKF, r)
   845  		case ALAAG:
   846  			opset(ALAA, r)
   847  			opset(ALAAL, r)
   848  			opset(ALAALG, r)
   849  			opset(ALAN, r)
   850  			opset(ALANG, r)
   851  			opset(ALAX, r)
   852  			opset(ALAXG, r)
   853  			opset(ALAO, r)
   854  			opset(ALAOG, r)
   855  		case ASTMG:
   856  			opset(ASTMY, r)
   857  		case ALMG:
   858  			opset(ALMY, r)
   859  		case ABEQ:
   860  			opset(ABGE, r)
   861  			opset(ABGT, r)
   862  			opset(ABLE, r)
   863  			opset(ABLT, r)
   864  			opset(ABNE, r)
   865  			opset(ABVC, r)
   866  			opset(ABVS, r)
   867  			opset(ABLEU, r)
   868  			opset(ABLTU, r)
   869  		case ABR:
   870  			opset(ABL, r)
   871  		case ABC:
   872  			opset(ABCL, r)
   873  		case AFABS:
   874  			opset(AFNABS, r)
   875  			opset(AFNEG, r)
   876  			opset(AFNEGS, r)
   877  			opset(ALEDBR, r)
   878  			opset(ALDEBR, r)
   879  			opset(AFSQRT, r)
   880  			opset(AFSQRTS, r)
   881  		case AFADD:
   882  			opset(AFADDS, r)
   883  			opset(AFDIV, r)
   884  			opset(AFDIVS, r)
   885  			opset(AFSUB, r)
   886  			opset(AFSUBS, r)
   887  		case AFMADD:
   888  			opset(AFMADDS, r)
   889  			opset(AFMSUB, r)
   890  			opset(AFMSUBS, r)
   891  		case AFMUL:
   892  			opset(AFMULS, r)
   893  		case AFCMPO:
   894  			opset(AFCMPU, r)
   895  			opset(ACEBR, r)
   896  		case AAND:
   897  			opset(AOR, r)
   898  			opset(AXOR, r)
   899  		case AANDW:
   900  			opset(AORW, r)
   901  			opset(AXORW, r)
   902  		case ASLD:
   903  			opset(ASRD, r)
   904  			opset(ASLW, r)
   905  			opset(ASRW, r)
   906  			opset(ASRAD, r)
   907  			opset(ASRAW, r)
   908  			opset(ARLL, r)
   909  			opset(ARLLG, r)
   910  		case ACSG:
   911  			opset(ACS, r)
   912  		case ASUB:
   913  			opset(ASUBC, r)
   914  			opset(ASUBE, r)
   915  			opset(ASUBW, r)
   916  		case ANEG:
   917  			opset(ANEGW, r)
   918  		case AFMOVD:
   919  			opset(AFMOVS, r)
   920  		case AMOVDBR:
   921  			opset(AMOVWBR, r)
   922  		case ACMP:
   923  			opset(ACMPW, r)
   924  		case ACMPU:
   925  			opset(ACMPWU, r)
   926  		case ACEFBRA:
   927  			opset(ACDFBRA, r)
   928  			opset(ACEGBRA, r)
   929  			opset(ACDGBRA, r)
   930  			opset(ACELFBR, r)
   931  			opset(ACDLFBR, r)
   932  			opset(ACELGBR, r)
   933  			opset(ACDLGBR, r)
   934  		case ACFEBRA:
   935  			opset(ACFDBRA, r)
   936  			opset(ACGEBRA, r)
   937  			opset(ACGDBRA, r)
   938  			opset(ACLFEBR, r)
   939  			opset(ACLFDBR, r)
   940  			opset(ACLGEBR, r)
   941  			opset(ACLGDBR, r)
   942  		case AFIEBR:
   943  			opset(AFIDBR, r)
   944  		case ACMPBEQ:
   945  			opset(ACMPBGE, r)
   946  			opset(ACMPBGT, r)
   947  			opset(ACMPBLE, r)
   948  			opset(ACMPBLT, r)
   949  			opset(ACMPBNE, r)
   950  		case ACMPUBEQ:
   951  			opset(ACMPUBGE, r)
   952  			opset(ACMPUBGT, r)
   953  			opset(ACMPUBLE, r)
   954  			opset(ACMPUBLT, r)
   955  			opset(ACMPUBNE, r)
   956  		case AMOVDEQ:
   957  			opset(AMOVDGE, r)
   958  			opset(AMOVDGT, r)
   959  			opset(AMOVDLE, r)
   960  			opset(AMOVDLT, r)
   961  			opset(AMOVDNE, r)
   962  		case AVL:
   963  			opset(AVLLEZB, r)
   964  			opset(AVLLEZH, r)
   965  			opset(AVLLEZF, r)
   966  			opset(AVLLEZG, r)
   967  			opset(AVLREPB, r)
   968  			opset(AVLREPH, r)
   969  			opset(AVLREPF, r)
   970  			opset(AVLREPG, r)
   971  		case AVLEG:
   972  			opset(AVLBB, r)
   973  			opset(AVLEB, r)
   974  			opset(AVLEH, r)
   975  			opset(AVLEF, r)
   976  			opset(AVLEG, r)
   977  			opset(AVLREP, r)
   978  		case AVSTEG:
   979  			opset(AVSTEB, r)
   980  			opset(AVSTEH, r)
   981  			opset(AVSTEF, r)
   982  		case AVSCEG:
   983  			opset(AVSCEF, r)
   984  		case AVGEG:
   985  			opset(AVGEF, r)
   986  		case AVESLG:
   987  			opset(AVESLB, r)
   988  			opset(AVESLH, r)
   989  			opset(AVESLF, r)
   990  			opset(AVERLLB, r)
   991  			opset(AVERLLH, r)
   992  			opset(AVERLLF, r)
   993  			opset(AVERLLG, r)
   994  			opset(AVESRAB, r)
   995  			opset(AVESRAH, r)
   996  			opset(AVESRAF, r)
   997  			opset(AVESRAG, r)
   998  			opset(AVESRLB, r)
   999  			opset(AVESRLH, r)
  1000  			opset(AVESRLF, r)
  1001  			opset(AVESRLG, r)
  1002  		case AVLGVG:
  1003  			opset(AVLGVB, r)
  1004  			opset(AVLGVH, r)
  1005  			opset(AVLGVF, r)
  1006  		case AVLVGG:
  1007  			opset(AVLVGB, r)
  1008  			opset(AVLVGH, r)
  1009  			opset(AVLVGF, r)
  1010  		case AVZERO:
  1011  			opset(AVONE, r)
  1012  		case AVREPIG:
  1013  			opset(AVREPIB, r)
  1014  			opset(AVREPIH, r)
  1015  			opset(AVREPIF, r)
  1016  		case AVLEIG:
  1017  			opset(AVLEIB, r)
  1018  			opset(AVLEIH, r)
  1019  			opset(AVLEIF, r)
  1020  		case AVGMG:
  1021  			opset(AVGMB, r)
  1022  			opset(AVGMH, r)
  1023  			opset(AVGMF, r)
  1024  		case AVREPG:
  1025  			opset(AVREPB, r)
  1026  			opset(AVREPH, r)
  1027  			opset(AVREPF, r)
  1028  		case AVERIMG:
  1029  			opset(AVERIMB, r)
  1030  			opset(AVERIMH, r)
  1031  			opset(AVERIMF, r)
  1032  		case AVFTCIDB:
  1033  			opset(AWFTCIDB, r)
  1034  		case AVLR:
  1035  			opset(AVUPHB, r)
  1036  			opset(AVUPHH, r)
  1037  			opset(AVUPHF, r)
  1038  			opset(AVUPLHB, r)
  1039  			opset(AVUPLHH, r)
  1040  			opset(AVUPLHF, r)
  1041  			opset(AVUPLB, r)
  1042  			opset(AVUPLHW, r)
  1043  			opset(AVUPLF, r)
  1044  			opset(AVUPLLB, r)
  1045  			opset(AVUPLLH, r)
  1046  			opset(AVUPLLF, r)
  1047  			opset(AVCLZB, r)
  1048  			opset(AVCLZH, r)
  1049  			opset(AVCLZF, r)
  1050  			opset(AVCLZG, r)
  1051  			opset(AVCTZB, r)
  1052  			opset(AVCTZH, r)
  1053  			opset(AVCTZF, r)
  1054  			opset(AVCTZG, r)
  1055  			opset(AVLDEB, r)
  1056  			opset(AWLDEB, r)
  1057  			opset(AVFLCDB, r)
  1058  			opset(AWFLCDB, r)
  1059  			opset(AVFLNDB, r)
  1060  			opset(AWFLNDB, r)
  1061  			opset(AVFLPDB, r)
  1062  			opset(AWFLPDB, r)
  1063  			opset(AVFSQDB, r)
  1064  			opset(AWFSQDB, r)
  1065  			opset(AVISTRB, r)
  1066  			opset(AVISTRH, r)
  1067  			opset(AVISTRF, r)
  1068  			opset(AVISTRBS, r)
  1069  			opset(AVISTRHS, r)
  1070  			opset(AVISTRFS, r)
  1071  			opset(AVLCB, r)
  1072  			opset(AVLCH, r)
  1073  			opset(AVLCF, r)
  1074  			opset(AVLCG, r)
  1075  			opset(AVLPB, r)
  1076  			opset(AVLPH, r)
  1077  			opset(AVLPF, r)
  1078  			opset(AVLPG, r)
  1079  			opset(AVPOPCT, r)
  1080  			opset(AVSEGB, r)
  1081  			opset(AVSEGH, r)
  1082  			opset(AVSEGF, r)
  1083  		case AVECG:
  1084  			opset(AVECB, r)
  1085  			opset(AVECH, r)
  1086  			opset(AVECF, r)
  1087  			opset(AVECLB, r)
  1088  			opset(AVECLH, r)
  1089  			opset(AVECLF, r)
  1090  			opset(AVECLG, r)
  1091  			opset(AWFCDB, r)
  1092  			opset(AWFKDB, r)
  1093  		case AVCEQG:
  1094  			opset(AVCEQB, r)
  1095  			opset(AVCEQH, r)
  1096  			opset(AVCEQF, r)
  1097  			opset(AVCEQBS, r)
  1098  			opset(AVCEQHS, r)
  1099  			opset(AVCEQFS, r)
  1100  			opset(AVCEQGS, r)
  1101  			opset(AVCHB, r)
  1102  			opset(AVCHH, r)
  1103  			opset(AVCHF, r)
  1104  			opset(AVCHG, r)
  1105  			opset(AVCHBS, r)
  1106  			opset(AVCHHS, r)
  1107  			opset(AVCHFS, r)
  1108  			opset(AVCHGS, r)
  1109  			opset(AVCHLB, r)
  1110  			opset(AVCHLH, r)
  1111  			opset(AVCHLF, r)
  1112  			opset(AVCHLG, r)
  1113  			opset(AVCHLBS, r)
  1114  			opset(AVCHLHS, r)
  1115  			opset(AVCHLFS, r)
  1116  			opset(AVCHLGS, r)
  1117  		case AVFAEF:
  1118  			opset(AVFAEB, r)
  1119  			opset(AVFAEH, r)
  1120  			opset(AVFAEBS, r)
  1121  			opset(AVFAEHS, r)
  1122  			opset(AVFAEFS, r)
  1123  			opset(AVFAEZB, r)
  1124  			opset(AVFAEZH, r)
  1125  			opset(AVFAEZF, r)
  1126  			opset(AVFAEZBS, r)
  1127  			opset(AVFAEZHS, r)
  1128  			opset(AVFAEZFS, r)
  1129  			opset(AVFEEB, r)
  1130  			opset(AVFEEH, r)
  1131  			opset(AVFEEF, r)
  1132  			opset(AVFEEBS, r)
  1133  			opset(AVFEEHS, r)
  1134  			opset(AVFEEFS, r)
  1135  			opset(AVFEEZB, r)
  1136  			opset(AVFEEZH, r)
  1137  			opset(AVFEEZF, r)
  1138  			opset(AVFEEZBS, r)
  1139  			opset(AVFEEZHS, r)
  1140  			opset(AVFEEZFS, r)
  1141  			opset(AVFENEB, r)
  1142  			opset(AVFENEH, r)
  1143  			opset(AVFENEF, r)
  1144  			opset(AVFENEBS, r)
  1145  			opset(AVFENEHS, r)
  1146  			opset(AVFENEFS, r)
  1147  			opset(AVFENEZB, r)
  1148  			opset(AVFENEZH, r)
  1149  			opset(AVFENEZF, r)
  1150  			opset(AVFENEZBS, r)
  1151  			opset(AVFENEZHS, r)
  1152  			opset(AVFENEZFS, r)
  1153  		case AVPKSG:
  1154  			opset(AVPKSH, r)
  1155  			opset(AVPKSF, r)
  1156  			opset(AVPKSHS, r)
  1157  			opset(AVPKSFS, r)
  1158  			opset(AVPKSGS, r)
  1159  			opset(AVPKLSH, r)
  1160  			opset(AVPKLSF, r)
  1161  			opset(AVPKLSG, r)
  1162  			opset(AVPKLSHS, r)
  1163  			opset(AVPKLSFS, r)
  1164  			opset(AVPKLSGS, r)
  1165  		case AVAQ:
  1166  			opset(AVAB, r)
  1167  			opset(AVAH, r)
  1168  			opset(AVAF, r)
  1169  			opset(AVAG, r)
  1170  			opset(AVACCB, r)
  1171  			opset(AVACCH, r)
  1172  			opset(AVACCF, r)
  1173  			opset(AVACCG, r)
  1174  			opset(AVACCQ, r)
  1175  			opset(AVN, r)
  1176  			opset(AVNC, r)
  1177  			opset(AVAVGB, r)
  1178  			opset(AVAVGH, r)
  1179  			opset(AVAVGF, r)
  1180  			opset(AVAVGG, r)
  1181  			opset(AVAVGLB, r)
  1182  			opset(AVAVGLH, r)
  1183  			opset(AVAVGLF, r)
  1184  			opset(AVAVGLG, r)
  1185  			opset(AVCKSM, r)
  1186  			opset(AVX, r)
  1187  			opset(AVFADB, r)
  1188  			opset(AWFADB, r)
  1189  			opset(AVFCEDB, r)
  1190  			opset(AVFCEDBS, r)
  1191  			opset(AWFCEDB, r)
  1192  			opset(AWFCEDBS, r)
  1193  			opset(AVFCHDB, r)
  1194  			opset(AVFCHDBS, r)
  1195  			opset(AWFCHDB, r)
  1196  			opset(AWFCHDBS, r)
  1197  			opset(AVFCHEDB, r)
  1198  			opset(AVFCHEDBS, r)
  1199  			opset(AWFCHEDB, r)
  1200  			opset(AWFCHEDBS, r)
  1201  			opset(AVFMDB, r)
  1202  			opset(AWFMDB, r)
  1203  			opset(AVGFMB, r)
  1204  			opset(AVGFMH, r)
  1205  			opset(AVGFMF, r)
  1206  			opset(AVGFMG, r)
  1207  			opset(AVMXB, r)
  1208  			opset(AVMXH, r)
  1209  			opset(AVMXF, r)
  1210  			opset(AVMXG, r)
  1211  			opset(AVMXLB, r)
  1212  			opset(AVMXLH, r)
  1213  			opset(AVMXLF, r)
  1214  			opset(AVMXLG, r)
  1215  			opset(AVMNB, r)
  1216  			opset(AVMNH, r)
  1217  			opset(AVMNF, r)
  1218  			opset(AVMNG, r)
  1219  			opset(AVMNLB, r)
  1220  			opset(AVMNLH, r)
  1221  			opset(AVMNLF, r)
  1222  			opset(AVMNLG, r)
  1223  			opset(AVMRHB, r)
  1224  			opset(AVMRHH, r)
  1225  			opset(AVMRHF, r)
  1226  			opset(AVMRHG, r)
  1227  			opset(AVMRLB, r)
  1228  			opset(AVMRLH, r)
  1229  			opset(AVMRLF, r)
  1230  			opset(AVMRLG, r)
  1231  			opset(AVMEB, r)
  1232  			opset(AVMEH, r)
  1233  			opset(AVMEF, r)
  1234  			opset(AVMLEB, r)
  1235  			opset(AVMLEH, r)
  1236  			opset(AVMLEF, r)
  1237  			opset(AVMOB, r)
  1238  			opset(AVMOH, r)
  1239  			opset(AVMOF, r)
  1240  			opset(AVMLOB, r)
  1241  			opset(AVMLOH, r)
  1242  			opset(AVMLOF, r)
  1243  			opset(AVMHB, r)
  1244  			opset(AVMHH, r)
  1245  			opset(AVMHF, r)
  1246  			opset(AVMLHB, r)
  1247  			opset(AVMLHH, r)
  1248  			opset(AVMLHF, r)
  1249  			opset(AVMLH, r)
  1250  			opset(AVMLHW, r)
  1251  			opset(AVMLF, r)
  1252  			opset(AVNO, r)
  1253  			opset(AVO, r)
  1254  			opset(AVPKH, r)
  1255  			opset(AVPKF, r)
  1256  			opset(AVPKG, r)
  1257  			opset(AVSUMGH, r)
  1258  			opset(AVSUMGF, r)
  1259  			opset(AVSUMQF, r)
  1260  			opset(AVSUMQG, r)
  1261  			opset(AVSUMB, r)
  1262  			opset(AVSUMH, r)
  1263  		case AVERLLVG:
  1264  			opset(AVERLLVB, r)
  1265  			opset(AVERLLVH, r)
  1266  			opset(AVERLLVF, r)
  1267  			opset(AVESLVB, r)
  1268  			opset(AVESLVH, r)
  1269  			opset(AVESLVF, r)
  1270  			opset(AVESLVG, r)
  1271  			opset(AVESRAVB, r)
  1272  			opset(AVESRAVH, r)
  1273  			opset(AVESRAVF, r)
  1274  			opset(AVESRAVG, r)
  1275  			opset(AVESRLVB, r)
  1276  			opset(AVESRLVH, r)
  1277  			opset(AVESRLVF, r)
  1278  			opset(AVESRLVG, r)
  1279  			opset(AVFDDB, r)
  1280  			opset(AWFDDB, r)
  1281  			opset(AVFSDB, r)
  1282  			opset(AWFSDB, r)
  1283  			opset(AVSL, r)
  1284  			opset(AVSLB, r)
  1285  			opset(AVSRA, r)
  1286  			opset(AVSRAB, r)
  1287  			opset(AVSRL, r)
  1288  			opset(AVSRLB, r)
  1289  			opset(AVSF, r)
  1290  			opset(AVSG, r)
  1291  			opset(AVSQ, r)
  1292  			opset(AVSCBIB, r)
  1293  			opset(AVSCBIH, r)
  1294  			opset(AVSCBIF, r)
  1295  			opset(AVSCBIG, r)
  1296  			opset(AVSCBIQ, r)
  1297  		case AVACQ:
  1298  			opset(AVACCCQ, r)
  1299  			opset(AVGFMAB, r)
  1300  			opset(AVGFMAH, r)
  1301  			opset(AVGFMAF, r)
  1302  			opset(AVGFMAG, r)
  1303  			opset(AVMALB, r)
  1304  			opset(AVMALHW, r)
  1305  			opset(AVMALF, r)
  1306  			opset(AVMAHB, r)
  1307  			opset(AVMAHH, r)
  1308  			opset(AVMAHF, r)
  1309  			opset(AVMALHB, r)
  1310  			opset(AVMALHH, r)
  1311  			opset(AVMALHF, r)
  1312  			opset(AVMAEB, r)
  1313  			opset(AVMAEH, r)
  1314  			opset(AVMAEF, r)
  1315  			opset(AVMALEB, r)
  1316  			opset(AVMALEH, r)
  1317  			opset(AVMALEF, r)
  1318  			opset(AVMAOB, r)
  1319  			opset(AVMAOH, r)
  1320  			opset(AVMAOF, r)
  1321  			opset(AVMALOB, r)
  1322  			opset(AVMALOH, r)
  1323  			opset(AVMALOF, r)
  1324  			opset(AVSTRCB, r)
  1325  			opset(AVSTRCH, r)
  1326  			opset(AVSTRCF, r)
  1327  			opset(AVSTRCBS, r)
  1328  			opset(AVSTRCHS, r)
  1329  			opset(AVSTRCFS, r)
  1330  			opset(AVSTRCZB, r)
  1331  			opset(AVSTRCZH, r)
  1332  			opset(AVSTRCZF, r)
  1333  			opset(AVSTRCZBS, r)
  1334  			opset(AVSTRCZHS, r)
  1335  			opset(AVSTRCZFS, r)
  1336  			opset(AVSBCBIQ, r)
  1337  			opset(AVSBIQ, r)
  1338  		case AVSEL:
  1339  			opset(AVFMADB, r)
  1340  			opset(AWFMADB, r)
  1341  			opset(AVFMSDB, r)
  1342  			opset(AWFMSDB, r)
  1343  			opset(AVPERM, r)
  1344  		}
  1345  	}
  1346  }
  1347  
  1348  const (
  1349  	op_A       uint32 = 0x5A00 // FORMAT_RX1        ADD (32)
  1350  	op_AD      uint32 = 0x6A00 // FORMAT_RX1        ADD NORMALIZED (long HFP)
  1351  	op_ADB     uint32 = 0xED1A // FORMAT_RXE        ADD (long BFP)
  1352  	op_ADBR    uint32 = 0xB31A // FORMAT_RRE        ADD (long BFP)
  1353  	op_ADR     uint32 = 0x2A00 // FORMAT_RR         ADD NORMALIZED (long HFP)
  1354  	op_ADTR    uint32 = 0xB3D2 // FORMAT_RRF1       ADD (long DFP)
  1355  	op_ADTRA   uint32 = 0xB3D2 // FORMAT_RRF1       ADD (long DFP)
  1356  	op_AE      uint32 = 0x7A00 // FORMAT_RX1        ADD NORMALIZED (short HFP)
  1357  	op_AEB     uint32 = 0xED0A // FORMAT_RXE        ADD (short BFP)
  1358  	op_AEBR    uint32 = 0xB30A // FORMAT_RRE        ADD (short BFP)
  1359  	op_AER     uint32 = 0x3A00 // FORMAT_RR         ADD NORMALIZED (short HFP)
  1360  	op_AFI     uint32 = 0xC209 // FORMAT_RIL1       ADD IMMEDIATE (32)
  1361  	op_AG      uint32 = 0xE308 // FORMAT_RXY1       ADD (64)
  1362  	op_AGF     uint32 = 0xE318 // FORMAT_RXY1       ADD (64<-32)
  1363  	op_AGFI    uint32 = 0xC208 // FORMAT_RIL1       ADD IMMEDIATE (64<-32)
  1364  	op_AGFR    uint32 = 0xB918 // FORMAT_RRE        ADD (64<-32)
  1365  	op_AGHI    uint32 = 0xA70B // FORMAT_RI1        ADD HALFWORD IMMEDIATE (64)
  1366  	op_AGHIK   uint32 = 0xECD9 // FORMAT_RIE4       ADD IMMEDIATE (64<-16)
  1367  	op_AGR     uint32 = 0xB908 // FORMAT_RRE        ADD (64)
  1368  	op_AGRK    uint32 = 0xB9E8 // FORMAT_RRF1       ADD (64)
  1369  	op_AGSI    uint32 = 0xEB7A // FORMAT_SIY        ADD IMMEDIATE (64<-8)
  1370  	op_AH      uint32 = 0x4A00 // FORMAT_RX1        ADD HALFWORD
  1371  	op_AHHHR   uint32 = 0xB9C8 // FORMAT_RRF1       ADD HIGH (32)
  1372  	op_AHHLR   uint32 = 0xB9D8 // FORMAT_RRF1       ADD HIGH (32)
  1373  	op_AHI     uint32 = 0xA70A // FORMAT_RI1        ADD HALFWORD IMMEDIATE (32)
  1374  	op_AHIK    uint32 = 0xECD8 // FORMAT_RIE4       ADD IMMEDIATE (32<-16)
  1375  	op_AHY     uint32 = 0xE37A // FORMAT_RXY1       ADD HALFWORD
  1376  	op_AIH     uint32 = 0xCC08 // FORMAT_RIL1       ADD IMMEDIATE HIGH (32)
  1377  	op_AL      uint32 = 0x5E00 // FORMAT_RX1        ADD LOGICAL (32)
  1378  	op_ALC     uint32 = 0xE398 // FORMAT_RXY1       ADD LOGICAL WITH CARRY (32)
  1379  	op_ALCG    uint32 = 0xE388 // FORMAT_RXY1       ADD LOGICAL WITH CARRY (64)
  1380  	op_ALCGR   uint32 = 0xB988 // FORMAT_RRE        ADD LOGICAL WITH CARRY (64)
  1381  	op_ALCR    uint32 = 0xB998 // FORMAT_RRE        ADD LOGICAL WITH CARRY (32)
  1382  	op_ALFI    uint32 = 0xC20B // FORMAT_RIL1       ADD LOGICAL IMMEDIATE (32)
  1383  	op_ALG     uint32 = 0xE30A // FORMAT_RXY1       ADD LOGICAL (64)
  1384  	op_ALGF    uint32 = 0xE31A // FORMAT_RXY1       ADD LOGICAL (64<-32)
  1385  	op_ALGFI   uint32 = 0xC20A // FORMAT_RIL1       ADD LOGICAL IMMEDIATE (64<-32)
  1386  	op_ALGFR   uint32 = 0xB91A // FORMAT_RRE        ADD LOGICAL (64<-32)
  1387  	op_ALGHSIK uint32 = 0xECDB // FORMAT_RIE4       ADD LOGICAL WITH SIGNED IMMEDIATE (64<-16)
  1388  	op_ALGR    uint32 = 0xB90A // FORMAT_RRE        ADD LOGICAL (64)
  1389  	op_ALGRK   uint32 = 0xB9EA // FORMAT_RRF1       ADD LOGICAL (64)
  1390  	op_ALGSI   uint32 = 0xEB7E // FORMAT_SIY        ADD LOGICAL WITH SIGNED IMMEDIATE (64<-8)
  1391  	op_ALHHHR  uint32 = 0xB9CA // FORMAT_RRF1       ADD LOGICAL HIGH (32)
  1392  	op_ALHHLR  uint32 = 0xB9DA // FORMAT_RRF1       ADD LOGICAL HIGH (32)
  1393  	op_ALHSIK  uint32 = 0xECDA // FORMAT_RIE4       ADD LOGICAL WITH SIGNED IMMEDIATE (32<-16)
  1394  	op_ALR     uint32 = 0x1E00 // FORMAT_RR         ADD LOGICAL (32)
  1395  	op_ALRK    uint32 = 0xB9FA // FORMAT_RRF1       ADD LOGICAL (32)
  1396  	op_ALSI    uint32 = 0xEB6E // FORMAT_SIY        ADD LOGICAL WITH SIGNED IMMEDIATE (32<-8)
  1397  	op_ALSIH   uint32 = 0xCC0A // FORMAT_RIL1       ADD LOGICAL WITH SIGNED IMMEDIATE HIGH (32)
  1398  	op_ALSIHN  uint32 = 0xCC0B // FORMAT_RIL1       ADD LOGICAL WITH SIGNED IMMEDIATE HIGH (32)
  1399  	op_ALY     uint32 = 0xE35E // FORMAT_RXY1       ADD LOGICAL (32)
  1400  	op_AP      uint32 = 0xFA00 // FORMAT_SS2        ADD DECIMAL
  1401  	op_AR      uint32 = 0x1A00 // FORMAT_RR         ADD (32)
  1402  	op_ARK     uint32 = 0xB9F8 // FORMAT_RRF1       ADD (32)
  1403  	op_ASI     uint32 = 0xEB6A // FORMAT_SIY        ADD IMMEDIATE (32<-8)
  1404  	op_AU      uint32 = 0x7E00 // FORMAT_RX1        ADD UNNORMALIZED (short HFP)
  1405  	op_AUR     uint32 = 0x3E00 // FORMAT_RR         ADD UNNORMALIZED (short HFP)
  1406  	op_AW      uint32 = 0x6E00 // FORMAT_RX1        ADD UNNORMALIZED (long HFP)
  1407  	op_AWR     uint32 = 0x2E00 // FORMAT_RR         ADD UNNORMALIZED (long HFP)
  1408  	op_AXBR    uint32 = 0xB34A // FORMAT_RRE        ADD (extended BFP)
  1409  	op_AXR     uint32 = 0x3600 // FORMAT_RR         ADD NORMALIZED (extended HFP)
  1410  	op_AXTR    uint32 = 0xB3DA // FORMAT_RRF1       ADD (extended DFP)
  1411  	op_AXTRA   uint32 = 0xB3DA // FORMAT_RRF1       ADD (extended DFP)
  1412  	op_AY      uint32 = 0xE35A // FORMAT_RXY1       ADD (32)
  1413  	op_BAKR    uint32 = 0xB240 // FORMAT_RRE        BRANCH AND STACK
  1414  	op_BAL     uint32 = 0x4500 // FORMAT_RX1        BRANCH AND LINK
  1415  	op_BALR    uint32 = 0x0500 // FORMAT_RR         BRANCH AND LINK
  1416  	op_BAS     uint32 = 0x4D00 // FORMAT_RX1        BRANCH AND SAVE
  1417  	op_BASR    uint32 = 0x0D00 // FORMAT_RR         BRANCH AND SAVE
  1418  	op_BASSM   uint32 = 0x0C00 // FORMAT_RR         BRANCH AND SAVE AND SET MODE
  1419  	op_BC      uint32 = 0x4700 // FORMAT_RX2        BRANCH ON CONDITION
  1420  	op_BCR     uint32 = 0x0700 // FORMAT_RR         BRANCH ON CONDITION
  1421  	op_BCT     uint32 = 0x4600 // FORMAT_RX1        BRANCH ON COUNT (32)
  1422  	op_BCTG    uint32 = 0xE346 // FORMAT_RXY1       BRANCH ON COUNT (64)
  1423  	op_BCTGR   uint32 = 0xB946 // FORMAT_RRE        BRANCH ON COUNT (64)
  1424  	op_BCTR    uint32 = 0x0600 // FORMAT_RR         BRANCH ON COUNT (32)
  1425  	op_BPP     uint32 = 0xC700 // FORMAT_SMI        BRANCH PREDICTION PRELOAD
  1426  	op_BPRP    uint32 = 0xC500 // FORMAT_MII        BRANCH PREDICTION RELATIVE PRELOAD
  1427  	op_BRAS    uint32 = 0xA705 // FORMAT_RI2        BRANCH RELATIVE AND SAVE
  1428  	op_BRASL   uint32 = 0xC005 // FORMAT_RIL2       BRANCH RELATIVE AND SAVE LONG
  1429  	op_BRC     uint32 = 0xA704 // FORMAT_RI3        BRANCH RELATIVE ON CONDITION
  1430  	op_BRCL    uint32 = 0xC004 // FORMAT_RIL3       BRANCH RELATIVE ON CONDITION LONG
  1431  	op_BRCT    uint32 = 0xA706 // FORMAT_RI2        BRANCH RELATIVE ON COUNT (32)
  1432  	op_BRCTG   uint32 = 0xA707 // FORMAT_RI2        BRANCH RELATIVE ON COUNT (64)
  1433  	op_BRCTH   uint32 = 0xCC06 // FORMAT_RIL2       BRANCH RELATIVE ON COUNT HIGH (32)
  1434  	op_BRXH    uint32 = 0x8400 // FORMAT_RSI        BRANCH RELATIVE ON INDEX HIGH (32)
  1435  	op_BRXHG   uint32 = 0xEC44 // FORMAT_RIE5       BRANCH RELATIVE ON INDEX HIGH (64)
  1436  	op_BRXLE   uint32 = 0x8500 // FORMAT_RSI        BRANCH RELATIVE ON INDEX LOW OR EQ. (32)
  1437  	op_BRXLG   uint32 = 0xEC45 // FORMAT_RIE5       BRANCH RELATIVE ON INDEX LOW OR EQ. (64)
  1438  	op_BSA     uint32 = 0xB25A // FORMAT_RRE        BRANCH AND SET AUTHORITY
  1439  	op_BSG     uint32 = 0xB258 // FORMAT_RRE        BRANCH IN SUBSPACE GROUP
  1440  	op_BSM     uint32 = 0x0B00 // FORMAT_RR         BRANCH AND SET MODE
  1441  	op_BXH     uint32 = 0x8600 // FORMAT_RS1        BRANCH ON INDEX HIGH (32)
  1442  	op_BXHG    uint32 = 0xEB44 // FORMAT_RSY1       BRANCH ON INDEX HIGH (64)
  1443  	op_BXLE    uint32 = 0x8700 // FORMAT_RS1        BRANCH ON INDEX LOW OR EQUAL (32)
  1444  	op_BXLEG   uint32 = 0xEB45 // FORMAT_RSY1       BRANCH ON INDEX LOW OR EQUAL (64)
  1445  	op_C       uint32 = 0x5900 // FORMAT_RX1        COMPARE (32)
  1446  	op_CD      uint32 = 0x6900 // FORMAT_RX1        COMPARE (long HFP)
  1447  	op_CDB     uint32 = 0xED19 // FORMAT_RXE        COMPARE (long BFP)
  1448  	op_CDBR    uint32 = 0xB319 // FORMAT_RRE        COMPARE (long BFP)
  1449  	op_CDFBR   uint32 = 0xB395 // FORMAT_RRE        CONVERT FROM FIXED (32 to long BFP)
  1450  	op_CDFBRA  uint32 = 0xB395 // FORMAT_RRF5       CONVERT FROM FIXED (32 to long BFP)
  1451  	op_CDFR    uint32 = 0xB3B5 // FORMAT_RRE        CONVERT FROM FIXED (32 to long HFP)
  1452  	op_CDFTR   uint32 = 0xB951 // FORMAT_RRE        CONVERT FROM FIXED (32 to long DFP)
  1453  	op_CDGBR   uint32 = 0xB3A5 // FORMAT_RRE        CONVERT FROM FIXED (64 to long BFP)
  1454  	op_CDGBRA  uint32 = 0xB3A5 // FORMAT_RRF5       CONVERT FROM FIXED (64 to long BFP)
  1455  	op_CDGR    uint32 = 0xB3C5 // FORMAT_RRE        CONVERT FROM FIXED (64 to long HFP)
  1456  	op_CDGTR   uint32 = 0xB3F1 // FORMAT_RRE        CONVERT FROM FIXED (64 to long DFP)
  1457  	op_CDGTRA  uint32 = 0xB3F1 // FORMAT_RRF5       CONVERT FROM FIXED (64 to long DFP)
  1458  	op_CDLFBR  uint32 = 0xB391 // FORMAT_RRF5       CONVERT FROM LOGICAL (32 to long BFP)
  1459  	op_CDLFTR  uint32 = 0xB953 // FORMAT_RRF5       CONVERT FROM LOGICAL (32 to long DFP)
  1460  	op_CDLGBR  uint32 = 0xB3A1 // FORMAT_RRF5       CONVERT FROM LOGICAL (64 to long BFP)
  1461  	op_CDLGTR  uint32 = 0xB952 // FORMAT_RRF5       CONVERT FROM LOGICAL (64 to long DFP)
  1462  	op_CDR     uint32 = 0x2900 // FORMAT_RR         COMPARE (long HFP)
  1463  	op_CDS     uint32 = 0xBB00 // FORMAT_RS1        COMPARE DOUBLE AND SWAP (32)
  1464  	op_CDSG    uint32 = 0xEB3E // FORMAT_RSY1       COMPARE DOUBLE AND SWAP (64)
  1465  	op_CDSTR   uint32 = 0xB3F3 // FORMAT_RRE        CONVERT FROM SIGNED PACKED (64 to long DFP)
  1466  	op_CDSY    uint32 = 0xEB31 // FORMAT_RSY1       COMPARE DOUBLE AND SWAP (32)
  1467  	op_CDTR    uint32 = 0xB3E4 // FORMAT_RRE        COMPARE (long DFP)
  1468  	op_CDUTR   uint32 = 0xB3F2 // FORMAT_RRE        CONVERT FROM UNSIGNED PACKED (64 to long DFP)
  1469  	op_CDZT    uint32 = 0xEDAA // FORMAT_RSL        CONVERT FROM ZONED (to long DFP)
  1470  	op_CE      uint32 = 0x7900 // FORMAT_RX1        COMPARE (short HFP)
  1471  	op_CEB     uint32 = 0xED09 // FORMAT_RXE        COMPARE (short BFP)
  1472  	op_CEBR    uint32 = 0xB309 // FORMAT_RRE        COMPARE (short BFP)
  1473  	op_CEDTR   uint32 = 0xB3F4 // FORMAT_RRE        COMPARE BIASED EXPONENT (long DFP)
  1474  	op_CEFBR   uint32 = 0xB394 // FORMAT_RRE        CONVERT FROM FIXED (32 to short BFP)
  1475  	op_CEFBRA  uint32 = 0xB394 // FORMAT_RRF5       CONVERT FROM FIXED (32 to short BFP)
  1476  	op_CEFR    uint32 = 0xB3B4 // FORMAT_RRE        CONVERT FROM FIXED (32 to short HFP)
  1477  	op_CEGBR   uint32 = 0xB3A4 // FORMAT_RRE        CONVERT FROM FIXED (64 to short BFP)
  1478  	op_CEGBRA  uint32 = 0xB3A4 // FORMAT_RRF5       CONVERT FROM FIXED (64 to short BFP)
  1479  	op_CEGR    uint32 = 0xB3C4 // FORMAT_RRE        CONVERT FROM FIXED (64 to short HFP)
  1480  	op_CELFBR  uint32 = 0xB390 // FORMAT_RRF5       CONVERT FROM LOGICAL (32 to short BFP)
  1481  	op_CELGBR  uint32 = 0xB3A0 // FORMAT_RRF5       CONVERT FROM LOGICAL (64 to short BFP)
  1482  	op_CER     uint32 = 0x3900 // FORMAT_RR         COMPARE (short HFP)
  1483  	op_CEXTR   uint32 = 0xB3FC // FORMAT_RRE        COMPARE BIASED EXPONENT (extended DFP)
  1484  	op_CFC     uint32 = 0xB21A // FORMAT_S          COMPARE AND FORM CODEWORD
  1485  	op_CFDBR   uint32 = 0xB399 // FORMAT_RRF5       CONVERT TO FIXED (long BFP to 32)
  1486  	op_CFDBRA  uint32 = 0xB399 // FORMAT_RRF5       CONVERT TO FIXED (long BFP to 32)
  1487  	op_CFDR    uint32 = 0xB3B9 // FORMAT_RRF5       CONVERT TO FIXED (long HFP to 32)
  1488  	op_CFDTR   uint32 = 0xB941 // FORMAT_RRF5       CONVERT TO FIXED (long DFP to 32)
  1489  	op_CFEBR   uint32 = 0xB398 // FORMAT_RRF5       CONVERT TO FIXED (short BFP to 32)
  1490  	op_CFEBRA  uint32 = 0xB398 // FORMAT_RRF5       CONVERT TO FIXED (short BFP to 32)
  1491  	op_CFER    uint32 = 0xB3B8 // FORMAT_RRF5       CONVERT TO FIXED (short HFP to 32)
  1492  	op_CFI     uint32 = 0xC20D // FORMAT_RIL1       COMPARE IMMEDIATE (32)
  1493  	op_CFXBR   uint32 = 0xB39A // FORMAT_RRF5       CONVERT TO FIXED (extended BFP to 32)
  1494  	op_CFXBRA  uint32 = 0xB39A // FORMAT_RRF5       CONVERT TO FIXED (extended BFP to 32)
  1495  	op_CFXR    uint32 = 0xB3BA // FORMAT_RRF5       CONVERT TO FIXED (extended HFP to 32)
  1496  	op_CFXTR   uint32 = 0xB949 // FORMAT_RRF5       CONVERT TO FIXED (extended DFP to 32)
  1497  	op_CG      uint32 = 0xE320 // FORMAT_RXY1       COMPARE (64)
  1498  	op_CGDBR   uint32 = 0xB3A9 // FORMAT_RRF5       CONVERT TO FIXED (long BFP to 64)
  1499  	op_CGDBRA  uint32 = 0xB3A9 // FORMAT_RRF5       CONVERT TO FIXED (long BFP to 64)
  1500  	op_CGDR    uint32 = 0xB3C9 // FORMAT_RRF5       CONVERT TO FIXED (long HFP to 64)
  1501  	op_CGDTR   uint32 = 0xB3E1 // FORMAT_RRF5       CONVERT TO FIXED (long DFP to 64)
  1502  	op_CGDTRA  uint32 = 0xB3E1 // FORMAT_RRF5       CONVERT TO FIXED (long DFP to 64)
  1503  	op_CGEBR   uint32 = 0xB3A8 // FORMAT_RRF5       CONVERT TO FIXED (short BFP to 64)
  1504  	op_CGEBRA  uint32 = 0xB3A8 // FORMAT_RRF5       CONVERT TO FIXED (short BFP to 64)
  1505  	op_CGER    uint32 = 0xB3C8 // FORMAT_RRF5       CONVERT TO FIXED (short HFP to 64)
  1506  	op_CGF     uint32 = 0xE330 // FORMAT_RXY1       COMPARE (64<-32)
  1507  	op_CGFI    uint32 = 0xC20C // FORMAT_RIL1       COMPARE IMMEDIATE (64<-32)
  1508  	op_CGFR    uint32 = 0xB930 // FORMAT_RRE        COMPARE (64<-32)
  1509  	op_CGFRL   uint32 = 0xC60C // FORMAT_RIL2       COMPARE RELATIVE LONG (64<-32)
  1510  	op_CGH     uint32 = 0xE334 // FORMAT_RXY1       COMPARE HALFWORD (64<-16)
  1511  	op_CGHI    uint32 = 0xA70F // FORMAT_RI1        COMPARE HALFWORD IMMEDIATE (64<-16)
  1512  	op_CGHRL   uint32 = 0xC604 // FORMAT_RIL2       COMPARE HALFWORD RELATIVE LONG (64<-16)
  1513  	op_CGHSI   uint32 = 0xE558 // FORMAT_SIL        COMPARE HALFWORD IMMEDIATE (64<-16)
  1514  	op_CGIB    uint32 = 0xECFC // FORMAT_RIS        COMPARE IMMEDIATE AND BRANCH (64<-8)
  1515  	op_CGIJ    uint32 = 0xEC7C // FORMAT_RIE3       COMPARE IMMEDIATE AND BRANCH RELATIVE (64<-8)
  1516  	op_CGIT    uint32 = 0xEC70 // FORMAT_RIE1       COMPARE IMMEDIATE AND TRAP (64<-16)
  1517  	op_CGR     uint32 = 0xB920 // FORMAT_RRE        COMPARE (64)
  1518  	op_CGRB    uint32 = 0xECE4 // FORMAT_RRS        COMPARE AND BRANCH (64)
  1519  	op_CGRJ    uint32 = 0xEC64 // FORMAT_RIE2       COMPARE AND BRANCH RELATIVE (64)
  1520  	op_CGRL    uint32 = 0xC608 // FORMAT_RIL2       COMPARE RELATIVE LONG (64)
  1521  	op_CGRT    uint32 = 0xB960 // FORMAT_RRF3       COMPARE AND TRAP (64)
  1522  	op_CGXBR   uint32 = 0xB3AA // FORMAT_RRF5       CONVERT TO FIXED (extended BFP to 64)
  1523  	op_CGXBRA  uint32 = 0xB3AA // FORMAT_RRF5       CONVERT TO FIXED (extended BFP to 64)
  1524  	op_CGXR    uint32 = 0xB3CA // FORMAT_RRF5       CONVERT TO FIXED (extended HFP to 64)
  1525  	op_CGXTR   uint32 = 0xB3E9 // FORMAT_RRF5       CONVERT TO FIXED (extended DFP to 64)
  1526  	op_CGXTRA  uint32 = 0xB3E9 // FORMAT_RRF5       CONVERT TO FIXED (extended DFP to 64)
  1527  	op_CH      uint32 = 0x4900 // FORMAT_RX1        COMPARE HALFWORD (32<-16)
  1528  	op_CHF     uint32 = 0xE3CD // FORMAT_RXY1       COMPARE HIGH (32)
  1529  	op_CHHR    uint32 = 0xB9CD // FORMAT_RRE        COMPARE HIGH (32)
  1530  	op_CHHSI   uint32 = 0xE554 // FORMAT_SIL        COMPARE HALFWORD IMMEDIATE (16)
  1531  	op_CHI     uint32 = 0xA70E // FORMAT_RI1        COMPARE HALFWORD IMMEDIATE (32<-16)
  1532  	op_CHLR    uint32 = 0xB9DD // FORMAT_RRE        COMPARE HIGH (32)
  1533  	op_CHRL    uint32 = 0xC605 // FORMAT_RIL2       COMPARE HALFWORD RELATIVE LONG (32<-16)
  1534  	op_CHSI    uint32 = 0xE55C // FORMAT_SIL        COMPARE HALFWORD IMMEDIATE (32<-16)
  1535  	op_CHY     uint32 = 0xE379 // FORMAT_RXY1       COMPARE HALFWORD (32<-16)
  1536  	op_CIB     uint32 = 0xECFE // FORMAT_RIS        COMPARE IMMEDIATE AND BRANCH (32<-8)
  1537  	op_CIH     uint32 = 0xCC0D // FORMAT_RIL1       COMPARE IMMEDIATE HIGH (32)
  1538  	op_CIJ     uint32 = 0xEC7E // FORMAT_RIE3       COMPARE IMMEDIATE AND BRANCH RELATIVE (32<-8)
  1539  	op_CIT     uint32 = 0xEC72 // FORMAT_RIE1       COMPARE IMMEDIATE AND TRAP (32<-16)
  1540  	op_CKSM    uint32 = 0xB241 // FORMAT_RRE        CHECKSUM
  1541  	op_CL      uint32 = 0x5500 // FORMAT_RX1        COMPARE LOGICAL (32)
  1542  	op_CLC     uint32 = 0xD500 // FORMAT_SS1        COMPARE LOGICAL (character)
  1543  	op_CLCL    uint32 = 0x0F00 // FORMAT_RR         COMPARE LOGICAL LONG
  1544  	op_CLCLE   uint32 = 0xA900 // FORMAT_RS1        COMPARE LOGICAL LONG EXTENDED
  1545  	op_CLCLU   uint32 = 0xEB8F // FORMAT_RSY1       COMPARE LOGICAL LONG UNICODE
  1546  	op_CLFDBR  uint32 = 0xB39D // FORMAT_RRF5       CONVERT TO LOGICAL (long BFP to 32)
  1547  	op_CLFDTR  uint32 = 0xB943 // FORMAT_RRF5       CONVERT TO LOGICAL (long DFP to 32)
  1548  	op_CLFEBR  uint32 = 0xB39C // FORMAT_RRF5       CONVERT TO LOGICAL (short BFP to 32)
  1549  	op_CLFHSI  uint32 = 0xE55D // FORMAT_SIL        COMPARE LOGICAL IMMEDIATE (32<-16)
  1550  	op_CLFI    uint32 = 0xC20F // FORMAT_RIL1       COMPARE LOGICAL IMMEDIATE (32)
  1551  	op_CLFIT   uint32 = 0xEC73 // FORMAT_RIE1       COMPARE LOGICAL IMMEDIATE AND TRAP (32<-16)
  1552  	op_CLFXBR  uint32 = 0xB39E // FORMAT_RRF5       CONVERT TO LOGICAL (extended BFP to 32)
  1553  	op_CLFXTR  uint32 = 0xB94B // FORMAT_RRF5       CONVERT TO LOGICAL (extended DFP to 32)
  1554  	op_CLG     uint32 = 0xE321 // FORMAT_RXY1       COMPARE LOGICAL (64)
  1555  	op_CLGDBR  uint32 = 0xB3AD // FORMAT_RRF5       CONVERT TO LOGICAL (long BFP to 64)
  1556  	op_CLGDTR  uint32 = 0xB942 // FORMAT_RRF5       CONVERT TO LOGICAL (long DFP to 64)
  1557  	op_CLGEBR  uint32 = 0xB3AC // FORMAT_RRF5       CONVERT TO LOGICAL (short BFP to 64)
  1558  	op_CLGF    uint32 = 0xE331 // FORMAT_RXY1       COMPARE LOGICAL (64<-32)
  1559  	op_CLGFI   uint32 = 0xC20E // FORMAT_RIL1       COMPARE LOGICAL IMMEDIATE (64<-32)
  1560  	op_CLGFR   uint32 = 0xB931 // FORMAT_RRE        COMPARE LOGICAL (64<-32)
  1561  	op_CLGFRL  uint32 = 0xC60E // FORMAT_RIL2       COMPARE LOGICAL RELATIVE LONG (64<-32)
  1562  	op_CLGHRL  uint32 = 0xC606 // FORMAT_RIL2       COMPARE LOGICAL RELATIVE LONG (64<-16)
  1563  	op_CLGHSI  uint32 = 0xE559 // FORMAT_SIL        COMPARE LOGICAL IMMEDIATE (64<-16)
  1564  	op_CLGIB   uint32 = 0xECFD // FORMAT_RIS        COMPARE LOGICAL IMMEDIATE AND BRANCH (64<-8)
  1565  	op_CLGIJ   uint32 = 0xEC7D // FORMAT_RIE3       COMPARE LOGICAL IMMEDIATE AND BRANCH RELATIVE (64<-8)
  1566  	op_CLGIT   uint32 = 0xEC71 // FORMAT_RIE1       COMPARE LOGICAL IMMEDIATE AND TRAP (64<-16)
  1567  	op_CLGR    uint32 = 0xB921 // FORMAT_RRE        COMPARE LOGICAL (64)
  1568  	op_CLGRB   uint32 = 0xECE5 // FORMAT_RRS        COMPARE LOGICAL AND BRANCH (64)
  1569  	op_CLGRJ   uint32 = 0xEC65 // FORMAT_RIE2       COMPARE LOGICAL AND BRANCH RELATIVE (64)
  1570  	op_CLGRL   uint32 = 0xC60A // FORMAT_RIL2       COMPARE LOGICAL RELATIVE LONG (64)
  1571  	op_CLGRT   uint32 = 0xB961 // FORMAT_RRF3       COMPARE LOGICAL AND TRAP (64)
  1572  	op_CLGT    uint32 = 0xEB2B // FORMAT_RSY2       COMPARE LOGICAL AND TRAP (64)
  1573  	op_CLGXBR  uint32 = 0xB3AE // FORMAT_RRF5       CONVERT TO LOGICAL (extended BFP to 64)
  1574  	op_CLGXTR  uint32 = 0xB94A // FORMAT_RRF5       CONVERT TO LOGICAL (extended DFP to 64)
  1575  	op_CLHF    uint32 = 0xE3CF // FORMAT_RXY1       COMPARE LOGICAL HIGH (32)
  1576  	op_CLHHR   uint32 = 0xB9CF // FORMAT_RRE        COMPARE LOGICAL HIGH (32)
  1577  	op_CLHHSI  uint32 = 0xE555 // FORMAT_SIL        COMPARE LOGICAL IMMEDIATE (16)
  1578  	op_CLHLR   uint32 = 0xB9DF // FORMAT_RRE        COMPARE LOGICAL HIGH (32)
  1579  	op_CLHRL   uint32 = 0xC607 // FORMAT_RIL2       COMPARE LOGICAL RELATIVE LONG (32<-16)
  1580  	op_CLI     uint32 = 0x9500 // FORMAT_SI         COMPARE LOGICAL (immediate)
  1581  	op_CLIB    uint32 = 0xECFF // FORMAT_RIS        COMPARE LOGICAL IMMEDIATE AND BRANCH (32<-8)
  1582  	op_CLIH    uint32 = 0xCC0F // FORMAT_RIL1       COMPARE LOGICAL IMMEDIATE HIGH (32)
  1583  	op_CLIJ    uint32 = 0xEC7F // FORMAT_RIE3       COMPARE LOGICAL IMMEDIATE AND BRANCH RELATIVE (32<-8)
  1584  	op_CLIY    uint32 = 0xEB55 // FORMAT_SIY        COMPARE LOGICAL (immediate)
  1585  	op_CLM     uint32 = 0xBD00 // FORMAT_RS2        COMPARE LOGICAL CHAR. UNDER MASK (low)
  1586  	op_CLMH    uint32 = 0xEB20 // FORMAT_RSY2       COMPARE LOGICAL CHAR. UNDER MASK (high)
  1587  	op_CLMY    uint32 = 0xEB21 // FORMAT_RSY2       COMPARE LOGICAL CHAR. UNDER MASK (low)
  1588  	op_CLR     uint32 = 0x1500 // FORMAT_RR         COMPARE LOGICAL (32)
  1589  	op_CLRB    uint32 = 0xECF7 // FORMAT_RRS        COMPARE LOGICAL AND BRANCH (32)
  1590  	op_CLRJ    uint32 = 0xEC77 // FORMAT_RIE2       COMPARE LOGICAL AND BRANCH RELATIVE (32)
  1591  	op_CLRL    uint32 = 0xC60F // FORMAT_RIL2       COMPARE LOGICAL RELATIVE LONG (32)
  1592  	op_CLRT    uint32 = 0xB973 // FORMAT_RRF3       COMPARE LOGICAL AND TRAP (32)
  1593  	op_CLST    uint32 = 0xB25D // FORMAT_RRE        COMPARE LOGICAL STRING
  1594  	op_CLT     uint32 = 0xEB23 // FORMAT_RSY2       COMPARE LOGICAL AND TRAP (32)
  1595  	op_CLY     uint32 = 0xE355 // FORMAT_RXY1       COMPARE LOGICAL (32)
  1596  	op_CMPSC   uint32 = 0xB263 // FORMAT_RRE        COMPRESSION CALL
  1597  	op_CP      uint32 = 0xF900 // FORMAT_SS2        COMPARE DECIMAL
  1598  	op_CPSDR   uint32 = 0xB372 // FORMAT_RRF2       COPY SIGN (long)
  1599  	op_CPYA    uint32 = 0xB24D // FORMAT_RRE        COPY ACCESS
  1600  	op_CR      uint32 = 0x1900 // FORMAT_RR         COMPARE (32)
  1601  	op_CRB     uint32 = 0xECF6 // FORMAT_RRS        COMPARE AND BRANCH (32)
  1602  	op_CRDTE   uint32 = 0xB98F // FORMAT_RRF2       COMPARE AND REPLACE DAT TABLE ENTRY
  1603  	op_CRJ     uint32 = 0xEC76 // FORMAT_RIE2       COMPARE AND BRANCH RELATIVE (32)
  1604  	op_CRL     uint32 = 0xC60D // FORMAT_RIL2       COMPARE RELATIVE LONG (32)
  1605  	op_CRT     uint32 = 0xB972 // FORMAT_RRF3       COMPARE AND TRAP (32)
  1606  	op_CS      uint32 = 0xBA00 // FORMAT_RS1        COMPARE AND SWAP (32)
  1607  	op_CSCH    uint32 = 0xB230 // FORMAT_S          CLEAR SUBCHANNEL
  1608  	op_CSDTR   uint32 = 0xB3E3 // FORMAT_RRF4       CONVERT TO SIGNED PACKED (long DFP to 64)
  1609  	op_CSG     uint32 = 0xEB30 // FORMAT_RSY1       COMPARE AND SWAP (64)
  1610  	op_CSP     uint32 = 0xB250 // FORMAT_RRE        COMPARE AND SWAP AND PURGE
  1611  	op_CSPG    uint32 = 0xB98A // FORMAT_RRE        COMPARE AND SWAP AND PURGE
  1612  	op_CSST    uint32 = 0xC802 // FORMAT_SSF        COMPARE AND SWAP AND STORE
  1613  	op_CSXTR   uint32 = 0xB3EB // FORMAT_RRF4       CONVERT TO SIGNED PACKED (extended DFP to 128)
  1614  	op_CSY     uint32 = 0xEB14 // FORMAT_RSY1       COMPARE AND SWAP (32)
  1615  	op_CU12    uint32 = 0xB2A7 // FORMAT_RRF3       CONVERT UTF-8 TO UTF-16
  1616  	op_CU14    uint32 = 0xB9B0 // FORMAT_RRF3       CONVERT UTF-8 TO UTF-32
  1617  	op_CU21    uint32 = 0xB2A6 // FORMAT_RRF3       CONVERT UTF-16 TO UTF-8
  1618  	op_CU24    uint32 = 0xB9B1 // FORMAT_RRF3       CONVERT UTF-16 TO UTF-32
  1619  	op_CU41    uint32 = 0xB9B2 // FORMAT_RRE        CONVERT UTF-32 TO UTF-8
  1620  	op_CU42    uint32 = 0xB9B3 // FORMAT_RRE        CONVERT UTF-32 TO UTF-16
  1621  	op_CUDTR   uint32 = 0xB3E2 // FORMAT_RRE        CONVERT TO UNSIGNED PACKED (long DFP to 64)
  1622  	op_CUSE    uint32 = 0xB257 // FORMAT_RRE        COMPARE UNTIL SUBSTRING EQUAL
  1623  	op_CUTFU   uint32 = 0xB2A7 // FORMAT_RRF3       CONVERT UTF-8 TO UNICODE
  1624  	op_CUUTF   uint32 = 0xB2A6 // FORMAT_RRF3       CONVERT UNICODE TO UTF-8
  1625  	op_CUXTR   uint32 = 0xB3EA // FORMAT_RRE        CONVERT TO UNSIGNED PACKED (extended DFP to 128)
  1626  	op_CVB     uint32 = 0x4F00 // FORMAT_RX1        CONVERT TO BINARY (32)
  1627  	op_CVBG    uint32 = 0xE30E // FORMAT_RXY1       CONVERT TO BINARY (64)
  1628  	op_CVBY    uint32 = 0xE306 // FORMAT_RXY1       CONVERT TO BINARY (32)
  1629  	op_CVD     uint32 = 0x4E00 // FORMAT_RX1        CONVERT TO DECIMAL (32)
  1630  	op_CVDG    uint32 = 0xE32E // FORMAT_RXY1       CONVERT TO DECIMAL (64)
  1631  	op_CVDY    uint32 = 0xE326 // FORMAT_RXY1       CONVERT TO DECIMAL (32)
  1632  	op_CXBR    uint32 = 0xB349 // FORMAT_RRE        COMPARE (extended BFP)
  1633  	op_CXFBR   uint32 = 0xB396 // FORMAT_RRE        CONVERT FROM FIXED (32 to extended BFP)
  1634  	op_CXFBRA  uint32 = 0xB396 // FORMAT_RRF5       CONVERT FROM FIXED (32 to extended BFP)
  1635  	op_CXFR    uint32 = 0xB3B6 // FORMAT_RRE        CONVERT FROM FIXED (32 to extended HFP)
  1636  	op_CXFTR   uint32 = 0xB959 // FORMAT_RRE        CONVERT FROM FIXED (32 to extended DFP)
  1637  	op_CXGBR   uint32 = 0xB3A6 // FORMAT_RRE        CONVERT FROM FIXED (64 to extended BFP)
  1638  	op_CXGBRA  uint32 = 0xB3A6 // FORMAT_RRF5       CONVERT FROM FIXED (64 to extended BFP)
  1639  	op_CXGR    uint32 = 0xB3C6 // FORMAT_RRE        CONVERT FROM FIXED (64 to extended HFP)
  1640  	op_CXGTR   uint32 = 0xB3F9 // FORMAT_RRE        CONVERT FROM FIXED (64 to extended DFP)
  1641  	op_CXGTRA  uint32 = 0xB3F9 // FORMAT_RRF5       CONVERT FROM FIXED (64 to extended DFP)
  1642  	op_CXLFBR  uint32 = 0xB392 // FORMAT_RRF5       CONVERT FROM LOGICAL (32 to extended BFP)
  1643  	op_CXLFTR  uint32 = 0xB95B // FORMAT_RRF5       CONVERT FROM LOGICAL (32 to extended DFP)
  1644  	op_CXLGBR  uint32 = 0xB3A2 // FORMAT_RRF5       CONVERT FROM LOGICAL (64 to extended BFP)
  1645  	op_CXLGTR  uint32 = 0xB95A // FORMAT_RRF5       CONVERT FROM LOGICAL (64 to extended DFP)
  1646  	op_CXR     uint32 = 0xB369 // FORMAT_RRE        COMPARE (extended HFP)
  1647  	op_CXSTR   uint32 = 0xB3FB // FORMAT_RRE        CONVERT FROM SIGNED PACKED (128 to extended DFP)
  1648  	op_CXTR    uint32 = 0xB3EC // FORMAT_RRE        COMPARE (extended DFP)
  1649  	op_CXUTR   uint32 = 0xB3FA // FORMAT_RRE        CONVERT FROM UNSIGNED PACKED (128 to ext. DFP)
  1650  	op_CXZT    uint32 = 0xEDAB // FORMAT_RSL        CONVERT FROM ZONED (to extended DFP)
  1651  	op_CY      uint32 = 0xE359 // FORMAT_RXY1       COMPARE (32)
  1652  	op_CZDT    uint32 = 0xEDA8 // FORMAT_RSL        CONVERT TO ZONED (from long DFP)
  1653  	op_CZXT    uint32 = 0xEDA9 // FORMAT_RSL        CONVERT TO ZONED (from extended DFP)
  1654  	op_D       uint32 = 0x5D00 // FORMAT_RX1        DIVIDE (32<-64)
  1655  	op_DD      uint32 = 0x6D00 // FORMAT_RX1        DIVIDE (long HFP)
  1656  	op_DDB     uint32 = 0xED1D // FORMAT_RXE        DIVIDE (long BFP)
  1657  	op_DDBR    uint32 = 0xB31D // FORMAT_RRE        DIVIDE (long BFP)
  1658  	op_DDR     uint32 = 0x2D00 // FORMAT_RR         DIVIDE (long HFP)
  1659  	op_DDTR    uint32 = 0xB3D1 // FORMAT_RRF1       DIVIDE (long DFP)
  1660  	op_DDTRA   uint32 = 0xB3D1 // FORMAT_RRF1       DIVIDE (long DFP)
  1661  	op_DE      uint32 = 0x7D00 // FORMAT_RX1        DIVIDE (short HFP)
  1662  	op_DEB     uint32 = 0xED0D // FORMAT_RXE        DIVIDE (short BFP)
  1663  	op_DEBR    uint32 = 0xB30D // FORMAT_RRE        DIVIDE (short BFP)
  1664  	op_DER     uint32 = 0x3D00 // FORMAT_RR         DIVIDE (short HFP)
  1665  	op_DIDBR   uint32 = 0xB35B // FORMAT_RRF2       DIVIDE TO INTEGER (long BFP)
  1666  	op_DIEBR   uint32 = 0xB353 // FORMAT_RRF2       DIVIDE TO INTEGER (short BFP)
  1667  	op_DL      uint32 = 0xE397 // FORMAT_RXY1       DIVIDE LOGICAL (32<-64)
  1668  	op_DLG     uint32 = 0xE387 // FORMAT_RXY1       DIVIDE LOGICAL (64<-128)
  1669  	op_DLGR    uint32 = 0xB987 // FORMAT_RRE        DIVIDE LOGICAL (64<-128)
  1670  	op_DLR     uint32 = 0xB997 // FORMAT_RRE        DIVIDE LOGICAL (32<-64)
  1671  	op_DP      uint32 = 0xFD00 // FORMAT_SS2        DIVIDE DECIMAL
  1672  	op_DR      uint32 = 0x1D00 // FORMAT_RR         DIVIDE (32<-64)
  1673  	op_DSG     uint32 = 0xE30D // FORMAT_RXY1       DIVIDE SINGLE (64)
  1674  	op_DSGF    uint32 = 0xE31D // FORMAT_RXY1       DIVIDE SINGLE (64<-32)
  1675  	op_DSGFR   uint32 = 0xB91D // FORMAT_RRE        DIVIDE SINGLE (64<-32)
  1676  	op_DSGR    uint32 = 0xB90D // FORMAT_RRE        DIVIDE SINGLE (64)
  1677  	op_DXBR    uint32 = 0xB34D // FORMAT_RRE        DIVIDE (extended BFP)
  1678  	op_DXR     uint32 = 0xB22D // FORMAT_RRE        DIVIDE (extended HFP)
  1679  	op_DXTR    uint32 = 0xB3D9 // FORMAT_RRF1       DIVIDE (extended DFP)
  1680  	op_DXTRA   uint32 = 0xB3D9 // FORMAT_RRF1       DIVIDE (extended DFP)
  1681  	op_EAR     uint32 = 0xB24F // FORMAT_RRE        EXTRACT ACCESS
  1682  	op_ECAG    uint32 = 0xEB4C // FORMAT_RSY1       EXTRACT CACHE ATTRIBUTE
  1683  	op_ECTG    uint32 = 0xC801 // FORMAT_SSF        EXTRACT CPU TIME
  1684  	op_ED      uint32 = 0xDE00 // FORMAT_SS1        EDIT
  1685  	op_EDMK    uint32 = 0xDF00 // FORMAT_SS1        EDIT AND MARK
  1686  	op_EEDTR   uint32 = 0xB3E5 // FORMAT_RRE        EXTRACT BIASED EXPONENT (long DFP to 64)
  1687  	op_EEXTR   uint32 = 0xB3ED // FORMAT_RRE        EXTRACT BIASED EXPONENT (extended DFP to 64)
  1688  	op_EFPC    uint32 = 0xB38C // FORMAT_RRE        EXTRACT FPC
  1689  	op_EPAIR   uint32 = 0xB99A // FORMAT_RRE        EXTRACT PRIMARY ASN AND INSTANCE
  1690  	op_EPAR    uint32 = 0xB226 // FORMAT_RRE        EXTRACT PRIMARY ASN
  1691  	op_EPSW    uint32 = 0xB98D // FORMAT_RRE        EXTRACT PSW
  1692  	op_EREG    uint32 = 0xB249 // FORMAT_RRE        EXTRACT STACKED REGISTERS (32)
  1693  	op_EREGG   uint32 = 0xB90E // FORMAT_RRE        EXTRACT STACKED REGISTERS (64)
  1694  	op_ESAIR   uint32 = 0xB99B // FORMAT_RRE        EXTRACT SECONDARY ASN AND INSTANCE
  1695  	op_ESAR    uint32 = 0xB227 // FORMAT_RRE        EXTRACT SECONDARY ASN
  1696  	op_ESDTR   uint32 = 0xB3E7 // FORMAT_RRE        EXTRACT SIGNIFICANCE (long DFP)
  1697  	op_ESEA    uint32 = 0xB99D // FORMAT_RRE        EXTRACT AND SET EXTENDED AUTHORITY
  1698  	op_ESTA    uint32 = 0xB24A // FORMAT_RRE        EXTRACT STACKED STATE
  1699  	op_ESXTR   uint32 = 0xB3EF // FORMAT_RRE        EXTRACT SIGNIFICANCE (extended DFP)
  1700  	op_ETND    uint32 = 0xB2EC // FORMAT_RRE        EXTRACT TRANSACTION NESTING DEPTH
  1701  	op_EX      uint32 = 0x4400 // FORMAT_RX1        EXECUTE
  1702  	op_EXRL    uint32 = 0xC600 // FORMAT_RIL2       EXECUTE RELATIVE LONG
  1703  	op_FIDBR   uint32 = 0xB35F // FORMAT_RRF5       LOAD FP INTEGER (long BFP)
  1704  	op_FIDBRA  uint32 = 0xB35F // FORMAT_RRF5       LOAD FP INTEGER (long BFP)
  1705  	op_FIDR    uint32 = 0xB37F // FORMAT_RRE        LOAD FP INTEGER (long HFP)
  1706  	op_FIDTR   uint32 = 0xB3D7 // FORMAT_RRF5       LOAD FP INTEGER (long DFP)
  1707  	op_FIEBR   uint32 = 0xB357 // FORMAT_RRF5       LOAD FP INTEGER (short BFP)
  1708  	op_FIEBRA  uint32 = 0xB357 // FORMAT_RRF5       LOAD FP INTEGER (short BFP)
  1709  	op_FIER    uint32 = 0xB377 // FORMAT_RRE        LOAD FP INTEGER (short HFP)
  1710  	op_FIXBR   uint32 = 0xB347 // FORMAT_RRF5       LOAD FP INTEGER (extended BFP)
  1711  	op_FIXBRA  uint32 = 0xB347 // FORMAT_RRF5       LOAD FP INTEGER (extended BFP)
  1712  	op_FIXR    uint32 = 0xB367 // FORMAT_RRE        LOAD FP INTEGER (extended HFP)
  1713  	op_FIXTR   uint32 = 0xB3DF // FORMAT_RRF5       LOAD FP INTEGER (extended DFP)
  1714  	op_FLOGR   uint32 = 0xB983 // FORMAT_RRE        FIND LEFTMOST ONE
  1715  	op_HDR     uint32 = 0x2400 // FORMAT_RR         HALVE (long HFP)
  1716  	op_HER     uint32 = 0x3400 // FORMAT_RR         HALVE (short HFP)
  1717  	op_HSCH    uint32 = 0xB231 // FORMAT_S          HALT SUBCHANNEL
  1718  	op_IAC     uint32 = 0xB224 // FORMAT_RRE        INSERT ADDRESS SPACE CONTROL
  1719  	op_IC      uint32 = 0x4300 // FORMAT_RX1        INSERT CHARACTER
  1720  	op_ICM     uint32 = 0xBF00 // FORMAT_RS2        INSERT CHARACTERS UNDER MASK (low)
  1721  	op_ICMH    uint32 = 0xEB80 // FORMAT_RSY2       INSERT CHARACTERS UNDER MASK (high)
  1722  	op_ICMY    uint32 = 0xEB81 // FORMAT_RSY2       INSERT CHARACTERS UNDER MASK (low)
  1723  	op_ICY     uint32 = 0xE373 // FORMAT_RXY1       INSERT CHARACTER
  1724  	op_IDTE    uint32 = 0xB98E // FORMAT_RRF2       INVALIDATE DAT TABLE ENTRY
  1725  	op_IEDTR   uint32 = 0xB3F6 // FORMAT_RRF2       INSERT BIASED EXPONENT (64 to long DFP)
  1726  	op_IEXTR   uint32 = 0xB3FE // FORMAT_RRF2       INSERT BIASED EXPONENT (64 to extended DFP)
  1727  	op_IIHF    uint32 = 0xC008 // FORMAT_RIL1       INSERT IMMEDIATE (high)
  1728  	op_IIHH    uint32 = 0xA500 // FORMAT_RI1        INSERT IMMEDIATE (high high)
  1729  	op_IIHL    uint32 = 0xA501 // FORMAT_RI1        INSERT IMMEDIATE (high low)
  1730  	op_IILF    uint32 = 0xC009 // FORMAT_RIL1       INSERT IMMEDIATE (low)
  1731  	op_IILH    uint32 = 0xA502 // FORMAT_RI1        INSERT IMMEDIATE (low high)
  1732  	op_IILL    uint32 = 0xA503 // FORMAT_RI1        INSERT IMMEDIATE (low low)
  1733  	op_IPK     uint32 = 0xB20B // FORMAT_S          INSERT PSW KEY
  1734  	op_IPM     uint32 = 0xB222 // FORMAT_RRE        INSERT PROGRAM MASK
  1735  	op_IPTE    uint32 = 0xB221 // FORMAT_RRF1       INVALIDATE PAGE TABLE ENTRY
  1736  	op_ISKE    uint32 = 0xB229 // FORMAT_RRE        INSERT STORAGE KEY EXTENDED
  1737  	op_IVSK    uint32 = 0xB223 // FORMAT_RRE        INSERT VIRTUAL STORAGE KEY
  1738  	op_KDB     uint32 = 0xED18 // FORMAT_RXE        COMPARE AND SIGNAL (long BFP)
  1739  	op_KDBR    uint32 = 0xB318 // FORMAT_RRE        COMPARE AND SIGNAL (long BFP)
  1740  	op_KDTR    uint32 = 0xB3E0 // FORMAT_RRE        COMPARE AND SIGNAL (long DFP)
  1741  	op_KEB     uint32 = 0xED08 // FORMAT_RXE        COMPARE AND SIGNAL (short BFP)
  1742  	op_KEBR    uint32 = 0xB308 // FORMAT_RRE        COMPARE AND SIGNAL (short BFP)
  1743  	op_KIMD    uint32 = 0xB93E // FORMAT_RRE        COMPUTE INTERMEDIATE MESSAGE DIGEST
  1744  	op_KLMD    uint32 = 0xB93F // FORMAT_RRE        COMPUTE LAST MESSAGE DIGEST
  1745  	op_KM      uint32 = 0xB92E // FORMAT_RRE        CIPHER MESSAGE
  1746  	op_KMAC    uint32 = 0xB91E // FORMAT_RRE        COMPUTE MESSAGE AUTHENTICATION CODE
  1747  	op_KMC     uint32 = 0xB92F // FORMAT_RRE        CIPHER MESSAGE WITH CHAINING
  1748  	op_KMCTR   uint32 = 0xB92D // FORMAT_RRF2       CIPHER MESSAGE WITH COUNTER
  1749  	op_KMF     uint32 = 0xB92A // FORMAT_RRE        CIPHER MESSAGE WITH CFB
  1750  	op_KMO     uint32 = 0xB92B // FORMAT_RRE        CIPHER MESSAGE WITH OFB
  1751  	op_KXBR    uint32 = 0xB348 // FORMAT_RRE        COMPARE AND SIGNAL (extended BFP)
  1752  	op_KXTR    uint32 = 0xB3E8 // FORMAT_RRE        COMPARE AND SIGNAL (extended DFP)
  1753  	op_L       uint32 = 0x5800 // FORMAT_RX1        LOAD (32)
  1754  	op_LA      uint32 = 0x4100 // FORMAT_RX1        LOAD ADDRESS
  1755  	op_LAA     uint32 = 0xEBF8 // FORMAT_RSY1       LOAD AND ADD (32)
  1756  	op_LAAG    uint32 = 0xEBE8 // FORMAT_RSY1       LOAD AND ADD (64)
  1757  	op_LAAL    uint32 = 0xEBFA // FORMAT_RSY1       LOAD AND ADD LOGICAL (32)
  1758  	op_LAALG   uint32 = 0xEBEA // FORMAT_RSY1       LOAD AND ADD LOGICAL (64)
  1759  	op_LAE     uint32 = 0x5100 // FORMAT_RX1        LOAD ADDRESS EXTENDED
  1760  	op_LAEY    uint32 = 0xE375 // FORMAT_RXY1       LOAD ADDRESS EXTENDED
  1761  	op_LAM     uint32 = 0x9A00 // FORMAT_RS1        LOAD ACCESS MULTIPLE
  1762  	op_LAMY    uint32 = 0xEB9A // FORMAT_RSY1       LOAD ACCESS MULTIPLE
  1763  	op_LAN     uint32 = 0xEBF4 // FORMAT_RSY1       LOAD AND AND (32)
  1764  	op_LANG    uint32 = 0xEBE4 // FORMAT_RSY1       LOAD AND AND (64)
  1765  	op_LAO     uint32 = 0xEBF6 // FORMAT_RSY1       LOAD AND OR (32)
  1766  	op_LAOG    uint32 = 0xEBE6 // FORMAT_RSY1       LOAD AND OR (64)
  1767  	op_LARL    uint32 = 0xC000 // FORMAT_RIL2       LOAD ADDRESS RELATIVE LONG
  1768  	op_LASP    uint32 = 0xE500 // FORMAT_SSE        LOAD ADDRESS SPACE PARAMETERS
  1769  	op_LAT     uint32 = 0xE39F // FORMAT_RXY1       LOAD AND TRAP (32L<-32)
  1770  	op_LAX     uint32 = 0xEBF7 // FORMAT_RSY1       LOAD AND EXCLUSIVE OR (32)
  1771  	op_LAXG    uint32 = 0xEBE7 // FORMAT_RSY1       LOAD AND EXCLUSIVE OR (64)
  1772  	op_LAY     uint32 = 0xE371 // FORMAT_RXY1       LOAD ADDRESS
  1773  	op_LB      uint32 = 0xE376 // FORMAT_RXY1       LOAD BYTE (32)
  1774  	op_LBH     uint32 = 0xE3C0 // FORMAT_RXY1       LOAD BYTE HIGH (32<-8)
  1775  	op_LBR     uint32 = 0xB926 // FORMAT_RRE        LOAD BYTE (32)
  1776  	op_LCDBR   uint32 = 0xB313 // FORMAT_RRE        LOAD COMPLEMENT (long BFP)
  1777  	op_LCDFR   uint32 = 0xB373 // FORMAT_RRE        LOAD COMPLEMENT (long)
  1778  	op_LCDR    uint32 = 0x2300 // FORMAT_RR         LOAD COMPLEMENT (long HFP)
  1779  	op_LCEBR   uint32 = 0xB303 // FORMAT_RRE        LOAD COMPLEMENT (short BFP)
  1780  	op_LCER    uint32 = 0x3300 // FORMAT_RR         LOAD COMPLEMENT (short HFP)
  1781  	op_LCGFR   uint32 = 0xB913 // FORMAT_RRE        LOAD COMPLEMENT (64<-32)
  1782  	op_LCGR    uint32 = 0xB903 // FORMAT_RRE        LOAD COMPLEMENT (64)
  1783  	op_LCR     uint32 = 0x1300 // FORMAT_RR         LOAD COMPLEMENT (32)
  1784  	op_LCTL    uint32 = 0xB700 // FORMAT_RS1        LOAD CONTROL (32)
  1785  	op_LCTLG   uint32 = 0xEB2F // FORMAT_RSY1       LOAD CONTROL (64)
  1786  	op_LCXBR   uint32 = 0xB343 // FORMAT_RRE        LOAD COMPLEMENT (extended BFP)
  1787  	op_LCXR    uint32 = 0xB363 // FORMAT_RRE        LOAD COMPLEMENT (extended HFP)
  1788  	op_LD      uint32 = 0x6800 // FORMAT_RX1        LOAD (long)
  1789  	op_LDE     uint32 = 0xED24 // FORMAT_RXE        LOAD LENGTHENED (short to long HFP)
  1790  	op_LDEB    uint32 = 0xED04 // FORMAT_RXE        LOAD LENGTHENED (short to long BFP)
  1791  	op_LDEBR   uint32 = 0xB304 // FORMAT_RRE        LOAD LENGTHENED (short to long BFP)
  1792  	op_LDER    uint32 = 0xB324 // FORMAT_RRE        LOAD LENGTHENED (short to long HFP)
  1793  	op_LDETR   uint32 = 0xB3D4 // FORMAT_RRF4       LOAD LENGTHENED (short to long DFP)
  1794  	op_LDGR    uint32 = 0xB3C1 // FORMAT_RRE        LOAD FPR FROM GR (64 to long)
  1795  	op_LDR     uint32 = 0x2800 // FORMAT_RR         LOAD (long)
  1796  	op_LDXBR   uint32 = 0xB345 // FORMAT_RRE        LOAD ROUNDED (extended to long BFP)
  1797  	op_LDXBRA  uint32 = 0xB345 // FORMAT_RRF5       LOAD ROUNDED (extended to long BFP)
  1798  	op_LDXR    uint32 = 0x2500 // FORMAT_RR         LOAD ROUNDED (extended to long HFP)
  1799  	op_LDXTR   uint32 = 0xB3DD // FORMAT_RRF5       LOAD ROUNDED (extended to long DFP)
  1800  	op_LDY     uint32 = 0xED65 // FORMAT_RXY1       LOAD (long)
  1801  	op_LE      uint32 = 0x7800 // FORMAT_RX1        LOAD (short)
  1802  	op_LEDBR   uint32 = 0xB344 // FORMAT_RRE        LOAD ROUNDED (long to short BFP)
  1803  	op_LEDBRA  uint32 = 0xB344 // FORMAT_RRF5       LOAD ROUNDED (long to short BFP)
  1804  	op_LEDR    uint32 = 0x3500 // FORMAT_RR         LOAD ROUNDED (long to short HFP)
  1805  	op_LEDTR   uint32 = 0xB3D5 // FORMAT_RRF5       LOAD ROUNDED (long to short DFP)
  1806  	op_LER     uint32 = 0x3800 // FORMAT_RR         LOAD (short)
  1807  	op_LEXBR   uint32 = 0xB346 // FORMAT_RRE        LOAD ROUNDED (extended to short BFP)
  1808  	op_LEXBRA  uint32 = 0xB346 // FORMAT_RRF5       LOAD ROUNDED (extended to short BFP)
  1809  	op_LEXR    uint32 = 0xB366 // FORMAT_RRE        LOAD ROUNDED (extended to short HFP)
  1810  	op_LEY     uint32 = 0xED64 // FORMAT_RXY1       LOAD (short)
  1811  	op_LFAS    uint32 = 0xB2BD // FORMAT_S          LOAD FPC AND SIGNAL
  1812  	op_LFH     uint32 = 0xE3CA // FORMAT_RXY1       LOAD HIGH (32)
  1813  	op_LFHAT   uint32 = 0xE3C8 // FORMAT_RXY1       LOAD HIGH AND TRAP (32H<-32)
  1814  	op_LFPC    uint32 = 0xB29D // FORMAT_S          LOAD FPC
  1815  	op_LG      uint32 = 0xE304 // FORMAT_RXY1       LOAD (64)
  1816  	op_LGAT    uint32 = 0xE385 // FORMAT_RXY1       LOAD AND TRAP (64)
  1817  	op_LGB     uint32 = 0xE377 // FORMAT_RXY1       LOAD BYTE (64)
  1818  	op_LGBR    uint32 = 0xB906 // FORMAT_RRE        LOAD BYTE (64)
  1819  	op_LGDR    uint32 = 0xB3CD // FORMAT_RRE        LOAD GR FROM FPR (long to 64)
  1820  	op_LGF     uint32 = 0xE314 // FORMAT_RXY1       LOAD (64<-32)
  1821  	op_LGFI    uint32 = 0xC001 // FORMAT_RIL1       LOAD IMMEDIATE (64<-32)
  1822  	op_LGFR    uint32 = 0xB914 // FORMAT_RRE        LOAD (64<-32)
  1823  	op_LGFRL   uint32 = 0xC40C // FORMAT_RIL2       LOAD RELATIVE LONG (64<-32)
  1824  	op_LGH     uint32 = 0xE315 // FORMAT_RXY1       LOAD HALFWORD (64)
  1825  	op_LGHI    uint32 = 0xA709 // FORMAT_RI1        LOAD HALFWORD IMMEDIATE (64)
  1826  	op_LGHR    uint32 = 0xB907 // FORMAT_RRE        LOAD HALFWORD (64)
  1827  	op_LGHRL   uint32 = 0xC404 // FORMAT_RIL2       LOAD HALFWORD RELATIVE LONG (64<-16)
  1828  	op_LGR     uint32 = 0xB904 // FORMAT_RRE        LOAD (64)
  1829  	op_LGRL    uint32 = 0xC408 // FORMAT_RIL2       LOAD RELATIVE LONG (64)
  1830  	op_LH      uint32 = 0x4800 // FORMAT_RX1        LOAD HALFWORD (32)
  1831  	op_LHH     uint32 = 0xE3C4 // FORMAT_RXY1       LOAD HALFWORD HIGH (32<-16)
  1832  	op_LHI     uint32 = 0xA708 // FORMAT_RI1        LOAD HALFWORD IMMEDIATE (32)
  1833  	op_LHR     uint32 = 0xB927 // FORMAT_RRE        LOAD HALFWORD (32)
  1834  	op_LHRL    uint32 = 0xC405 // FORMAT_RIL2       LOAD HALFWORD RELATIVE LONG (32<-16)
  1835  	op_LHY     uint32 = 0xE378 // FORMAT_RXY1       LOAD HALFWORD (32)
  1836  	op_LLC     uint32 = 0xE394 // FORMAT_RXY1       LOAD LOGICAL CHARACTER (32)
  1837  	op_LLCH    uint32 = 0xE3C2 // FORMAT_RXY1       LOAD LOGICAL CHARACTER HIGH (32<-8)
  1838  	op_LLCR    uint32 = 0xB994 // FORMAT_RRE        LOAD LOGICAL CHARACTER (32)
  1839  	op_LLGC    uint32 = 0xE390 // FORMAT_RXY1       LOAD LOGICAL CHARACTER (64)
  1840  	op_LLGCR   uint32 = 0xB984 // FORMAT_RRE        LOAD LOGICAL CHARACTER (64)
  1841  	op_LLGF    uint32 = 0xE316 // FORMAT_RXY1       LOAD LOGICAL (64<-32)
  1842  	op_LLGFAT  uint32 = 0xE39D // FORMAT_RXY1       LOAD LOGICAL AND TRAP (64<-32)
  1843  	op_LLGFR   uint32 = 0xB916 // FORMAT_RRE        LOAD LOGICAL (64<-32)
  1844  	op_LLGFRL  uint32 = 0xC40E // FORMAT_RIL2       LOAD LOGICAL RELATIVE LONG (64<-32)
  1845  	op_LLGH    uint32 = 0xE391 // FORMAT_RXY1       LOAD LOGICAL HALFWORD (64)
  1846  	op_LLGHR   uint32 = 0xB985 // FORMAT_RRE        LOAD LOGICAL HALFWORD (64)
  1847  	op_LLGHRL  uint32 = 0xC406 // FORMAT_RIL2       LOAD LOGICAL HALFWORD RELATIVE LONG (64<-16)
  1848  	op_LLGT    uint32 = 0xE317 // FORMAT_RXY1       LOAD LOGICAL THIRTY ONE BITS
  1849  	op_LLGTAT  uint32 = 0xE39C // FORMAT_RXY1       LOAD LOGICAL THIRTY ONE BITS AND TRAP (64<-31)
  1850  	op_LLGTR   uint32 = 0xB917 // FORMAT_RRE        LOAD LOGICAL THIRTY ONE BITS
  1851  	op_LLH     uint32 = 0xE395 // FORMAT_RXY1       LOAD LOGICAL HALFWORD (32)
  1852  	op_LLHH    uint32 = 0xE3C6 // FORMAT_RXY1       LOAD LOGICAL HALFWORD HIGH (32<-16)
  1853  	op_LLHR    uint32 = 0xB995 // FORMAT_RRE        LOAD LOGICAL HALFWORD (32)
  1854  	op_LLHRL   uint32 = 0xC402 // FORMAT_RIL2       LOAD LOGICAL HALFWORD RELATIVE LONG (32<-16)
  1855  	op_LLIHF   uint32 = 0xC00E // FORMAT_RIL1       LOAD LOGICAL IMMEDIATE (high)
  1856  	op_LLIHH   uint32 = 0xA50C // FORMAT_RI1        LOAD LOGICAL IMMEDIATE (high high)
  1857  	op_LLIHL   uint32 = 0xA50D // FORMAT_RI1        LOAD LOGICAL IMMEDIATE (high low)
  1858  	op_LLILF   uint32 = 0xC00F // FORMAT_RIL1       LOAD LOGICAL IMMEDIATE (low)
  1859  	op_LLILH   uint32 = 0xA50E // FORMAT_RI1        LOAD LOGICAL IMMEDIATE (low high)
  1860  	op_LLILL   uint32 = 0xA50F // FORMAT_RI1        LOAD LOGICAL IMMEDIATE (low low)
  1861  	op_LM      uint32 = 0x9800 // FORMAT_RS1        LOAD MULTIPLE (32)
  1862  	op_LMD     uint32 = 0xEF00 // FORMAT_SS5        LOAD MULTIPLE DISJOINT
  1863  	op_LMG     uint32 = 0xEB04 // FORMAT_RSY1       LOAD MULTIPLE (64)
  1864  	op_LMH     uint32 = 0xEB96 // FORMAT_RSY1       LOAD MULTIPLE HIGH
  1865  	op_LMY     uint32 = 0xEB98 // FORMAT_RSY1       LOAD MULTIPLE (32)
  1866  	op_LNDBR   uint32 = 0xB311 // FORMAT_RRE        LOAD NEGATIVE (long BFP)
  1867  	op_LNDFR   uint32 = 0xB371 // FORMAT_RRE        LOAD NEGATIVE (long)
  1868  	op_LNDR    uint32 = 0x2100 // FORMAT_RR         LOAD NEGATIVE (long HFP)
  1869  	op_LNEBR   uint32 = 0xB301 // FORMAT_RRE        LOAD NEGATIVE (short BFP)
  1870  	op_LNER    uint32 = 0x3100 // FORMAT_RR         LOAD NEGATIVE (short HFP)
  1871  	op_LNGFR   uint32 = 0xB911 // FORMAT_RRE        LOAD NEGATIVE (64<-32)
  1872  	op_LNGR    uint32 = 0xB901 // FORMAT_RRE        LOAD NEGATIVE (64)
  1873  	op_LNR     uint32 = 0x1100 // FORMAT_RR         LOAD NEGATIVE (32)
  1874  	op_LNXBR   uint32 = 0xB341 // FORMAT_RRE        LOAD NEGATIVE (extended BFP)
  1875  	op_LNXR    uint32 = 0xB361 // FORMAT_RRE        LOAD NEGATIVE (extended HFP)
  1876  	op_LOC     uint32 = 0xEBF2 // FORMAT_RSY2       LOAD ON CONDITION (32)
  1877  	op_LOCG    uint32 = 0xEBE2 // FORMAT_RSY2       LOAD ON CONDITION (64)
  1878  	op_LOCGR   uint32 = 0xB9E2 // FORMAT_RRF3       LOAD ON CONDITION (64)
  1879  	op_LOCR    uint32 = 0xB9F2 // FORMAT_RRF3       LOAD ON CONDITION (32)
  1880  	op_LPD     uint32 = 0xC804 // FORMAT_SSF        LOAD PAIR DISJOINT (32)
  1881  	op_LPDBR   uint32 = 0xB310 // FORMAT_RRE        LOAD POSITIVE (long BFP)
  1882  	op_LPDFR   uint32 = 0xB370 // FORMAT_RRE        LOAD POSITIVE (long)
  1883  	op_LPDG    uint32 = 0xC805 // FORMAT_SSF        LOAD PAIR DISJOINT (64)
  1884  	op_LPDR    uint32 = 0x2000 // FORMAT_RR         LOAD POSITIVE (long HFP)
  1885  	op_LPEBR   uint32 = 0xB300 // FORMAT_RRE        LOAD POSITIVE (short BFP)
  1886  	op_LPER    uint32 = 0x3000 // FORMAT_RR         LOAD POSITIVE (short HFP)
  1887  	op_LPGFR   uint32 = 0xB910 // FORMAT_RRE        LOAD POSITIVE (64<-32)
  1888  	op_LPGR    uint32 = 0xB900 // FORMAT_RRE        LOAD POSITIVE (64)
  1889  	op_LPQ     uint32 = 0xE38F // FORMAT_RXY1       LOAD PAIR FROM QUADWORD
  1890  	op_LPR     uint32 = 0x1000 // FORMAT_RR         LOAD POSITIVE (32)
  1891  	op_LPSW    uint32 = 0x8200 // FORMAT_S          LOAD PSW
  1892  	op_LPSWE   uint32 = 0xB2B2 // FORMAT_S          LOAD PSW EXTENDED
  1893  	op_LPTEA   uint32 = 0xB9AA // FORMAT_RRF2       LOAD PAGE TABLE ENTRY ADDRESS
  1894  	op_LPXBR   uint32 = 0xB340 // FORMAT_RRE        LOAD POSITIVE (extended BFP)
  1895  	op_LPXR    uint32 = 0xB360 // FORMAT_RRE        LOAD POSITIVE (extended HFP)
  1896  	op_LR      uint32 = 0x1800 // FORMAT_RR         LOAD (32)
  1897  	op_LRA     uint32 = 0xB100 // FORMAT_RX1        LOAD REAL ADDRESS (32)
  1898  	op_LRAG    uint32 = 0xE303 // FORMAT_RXY1       LOAD REAL ADDRESS (64)
  1899  	op_LRAY    uint32 = 0xE313 // FORMAT_RXY1       LOAD REAL ADDRESS (32)
  1900  	op_LRDR    uint32 = 0x2500 // FORMAT_RR         LOAD ROUNDED (extended to long HFP)
  1901  	op_LRER    uint32 = 0x3500 // FORMAT_RR         LOAD ROUNDED (long to short HFP)
  1902  	op_LRL     uint32 = 0xC40D // FORMAT_RIL2       LOAD RELATIVE LONG (32)
  1903  	op_LRV     uint32 = 0xE31E // FORMAT_RXY1       LOAD REVERSED (32)
  1904  	op_LRVG    uint32 = 0xE30F // FORMAT_RXY1       LOAD REVERSED (64)
  1905  	op_LRVGR   uint32 = 0xB90F // FORMAT_RRE        LOAD REVERSED (64)
  1906  	op_LRVH    uint32 = 0xE31F // FORMAT_RXY1       LOAD REVERSED (16)
  1907  	op_LRVR    uint32 = 0xB91F // FORMAT_RRE        LOAD REVERSED (32)
  1908  	op_LT      uint32 = 0xE312 // FORMAT_RXY1       LOAD AND TEST (32)
  1909  	op_LTDBR   uint32 = 0xB312 // FORMAT_RRE        LOAD AND TEST (long BFP)
  1910  	op_LTDR    uint32 = 0x2200 // FORMAT_RR         LOAD AND TEST (long HFP)
  1911  	op_LTDTR   uint32 = 0xB3D6 // FORMAT_RRE        LOAD AND TEST (long DFP)
  1912  	op_LTEBR   uint32 = 0xB302 // FORMAT_RRE        LOAD AND TEST (short BFP)
  1913  	op_LTER    uint32 = 0x3200 // FORMAT_RR         LOAD AND TEST (short HFP)
  1914  	op_LTG     uint32 = 0xE302 // FORMAT_RXY1       LOAD AND TEST (64)
  1915  	op_LTGF    uint32 = 0xE332 // FORMAT_RXY1       LOAD AND TEST (64<-32)
  1916  	op_LTGFR   uint32 = 0xB912 // FORMAT_RRE        LOAD AND TEST (64<-32)
  1917  	op_LTGR    uint32 = 0xB902 // FORMAT_RRE        LOAD AND TEST (64)
  1918  	op_LTR     uint32 = 0x1200 // FORMAT_RR         LOAD AND TEST (32)
  1919  	op_LTXBR   uint32 = 0xB342 // FORMAT_RRE        LOAD AND TEST (extended BFP)
  1920  	op_LTXR    uint32 = 0xB362 // FORMAT_RRE        LOAD AND TEST (extended HFP)
  1921  	op_LTXTR   uint32 = 0xB3DE // FORMAT_RRE        LOAD AND TEST (extended DFP)
  1922  	op_LURA    uint32 = 0xB24B // FORMAT_RRE        LOAD USING REAL ADDRESS (32)
  1923  	op_LURAG   uint32 = 0xB905 // FORMAT_RRE        LOAD USING REAL ADDRESS (64)
  1924  	op_LXD     uint32 = 0xED25 // FORMAT_RXE        LOAD LENGTHENED (long to extended HFP)
  1925  	op_LXDB    uint32 = 0xED05 // FORMAT_RXE        LOAD LENGTHENED (long to extended BFP)
  1926  	op_LXDBR   uint32 = 0xB305 // FORMAT_RRE        LOAD LENGTHENED (long to extended BFP)
  1927  	op_LXDR    uint32 = 0xB325 // FORMAT_RRE        LOAD LENGTHENED (long to extended HFP)
  1928  	op_LXDTR   uint32 = 0xB3DC // FORMAT_RRF4       LOAD LENGTHENED (long to extended DFP)
  1929  	op_LXE     uint32 = 0xED26 // FORMAT_RXE        LOAD LENGTHENED (short to extended HFP)
  1930  	op_LXEB    uint32 = 0xED06 // FORMAT_RXE        LOAD LENGTHENED (short to extended BFP)
  1931  	op_LXEBR   uint32 = 0xB306 // FORMAT_RRE        LOAD LENGTHENED (short to extended BFP)
  1932  	op_LXER    uint32 = 0xB326 // FORMAT_RRE        LOAD LENGTHENED (short to extended HFP)
  1933  	op_LXR     uint32 = 0xB365 // FORMAT_RRE        LOAD (extended)
  1934  	op_LY      uint32 = 0xE358 // FORMAT_RXY1       LOAD (32)
  1935  	op_LZDR    uint32 = 0xB375 // FORMAT_RRE        LOAD ZERO (long)
  1936  	op_LZER    uint32 = 0xB374 // FORMAT_RRE        LOAD ZERO (short)
  1937  	op_LZXR    uint32 = 0xB376 // FORMAT_RRE        LOAD ZERO (extended)
  1938  	op_M       uint32 = 0x5C00 // FORMAT_RX1        MULTIPLY (64<-32)
  1939  	op_MAD     uint32 = 0xED3E // FORMAT_RXF        MULTIPLY AND ADD (long HFP)
  1940  	op_MADB    uint32 = 0xED1E // FORMAT_RXF        MULTIPLY AND ADD (long BFP)
  1941  	op_MADBR   uint32 = 0xB31E // FORMAT_RRD        MULTIPLY AND ADD (long BFP)
  1942  	op_MADR    uint32 = 0xB33E // FORMAT_RRD        MULTIPLY AND ADD (long HFP)
  1943  	op_MAE     uint32 = 0xED2E // FORMAT_RXF        MULTIPLY AND ADD (short HFP)
  1944  	op_MAEB    uint32 = 0xED0E // FORMAT_RXF        MULTIPLY AND ADD (short BFP)
  1945  	op_MAEBR   uint32 = 0xB30E // FORMAT_RRD        MULTIPLY AND ADD (short BFP)
  1946  	op_MAER    uint32 = 0xB32E // FORMAT_RRD        MULTIPLY AND ADD (short HFP)
  1947  	op_MAY     uint32 = 0xED3A // FORMAT_RXF        MULTIPLY & ADD UNNORMALIZED (long to ext. HFP)
  1948  	op_MAYH    uint32 = 0xED3C // FORMAT_RXF        MULTIPLY AND ADD UNNRM. (long to ext. high HFP)
  1949  	op_MAYHR   uint32 = 0xB33C // FORMAT_RRD        MULTIPLY AND ADD UNNRM. (long to ext. high HFP)
  1950  	op_MAYL    uint32 = 0xED38 // FORMAT_RXF        MULTIPLY AND ADD UNNRM. (long to ext. low HFP)
  1951  	op_MAYLR   uint32 = 0xB338 // FORMAT_RRD        MULTIPLY AND ADD UNNRM. (long to ext. low HFP)
  1952  	op_MAYR    uint32 = 0xB33A // FORMAT_RRD        MULTIPLY & ADD UNNORMALIZED (long to ext. HFP)
  1953  	op_MC      uint32 = 0xAF00 // FORMAT_SI         MONITOR CALL
  1954  	op_MD      uint32 = 0x6C00 // FORMAT_RX1        MULTIPLY (long HFP)
  1955  	op_MDB     uint32 = 0xED1C // FORMAT_RXE        MULTIPLY (long BFP)
  1956  	op_MDBR    uint32 = 0xB31C // FORMAT_RRE        MULTIPLY (long BFP)
  1957  	op_MDE     uint32 = 0x7C00 // FORMAT_RX1        MULTIPLY (short to long HFP)
  1958  	op_MDEB    uint32 = 0xED0C // FORMAT_RXE        MULTIPLY (short to long BFP)
  1959  	op_MDEBR   uint32 = 0xB30C // FORMAT_RRE        MULTIPLY (short to long BFP)
  1960  	op_MDER    uint32 = 0x3C00 // FORMAT_RR         MULTIPLY (short to long HFP)
  1961  	op_MDR     uint32 = 0x2C00 // FORMAT_RR         MULTIPLY (long HFP)
  1962  	op_MDTR    uint32 = 0xB3D0 // FORMAT_RRF1       MULTIPLY (long DFP)
  1963  	op_MDTRA   uint32 = 0xB3D0 // FORMAT_RRF1       MULTIPLY (long DFP)
  1964  	op_ME      uint32 = 0x7C00 // FORMAT_RX1        MULTIPLY (short to long HFP)
  1965  	op_MEE     uint32 = 0xED37 // FORMAT_RXE        MULTIPLY (short HFP)
  1966  	op_MEEB    uint32 = 0xED17 // FORMAT_RXE        MULTIPLY (short BFP)
  1967  	op_MEEBR   uint32 = 0xB317 // FORMAT_RRE        MULTIPLY (short BFP)
  1968  	op_MEER    uint32 = 0xB337 // FORMAT_RRE        MULTIPLY (short HFP)
  1969  	op_MER     uint32 = 0x3C00 // FORMAT_RR         MULTIPLY (short to long HFP)
  1970  	op_MFY     uint32 = 0xE35C // FORMAT_RXY1       MULTIPLY (64<-32)
  1971  	op_MGHI    uint32 = 0xA70D // FORMAT_RI1        MULTIPLY HALFWORD IMMEDIATE (64)
  1972  	op_MH      uint32 = 0x4C00 // FORMAT_RX1        MULTIPLY HALFWORD (32)
  1973  	op_MHI     uint32 = 0xA70C // FORMAT_RI1        MULTIPLY HALFWORD IMMEDIATE (32)
  1974  	op_MHY     uint32 = 0xE37C // FORMAT_RXY1       MULTIPLY HALFWORD (32)
  1975  	op_ML      uint32 = 0xE396 // FORMAT_RXY1       MULTIPLY LOGICAL (64<-32)
  1976  	op_MLG     uint32 = 0xE386 // FORMAT_RXY1       MULTIPLY LOGICAL (128<-64)
  1977  	op_MLGR    uint32 = 0xB986 // FORMAT_RRE        MULTIPLY LOGICAL (128<-64)
  1978  	op_MLR     uint32 = 0xB996 // FORMAT_RRE        MULTIPLY LOGICAL (64<-32)
  1979  	op_MP      uint32 = 0xFC00 // FORMAT_SS2        MULTIPLY DECIMAL
  1980  	op_MR      uint32 = 0x1C00 // FORMAT_RR         MULTIPLY (64<-32)
  1981  	op_MS      uint32 = 0x7100 // FORMAT_RX1        MULTIPLY SINGLE (32)
  1982  	op_MSCH    uint32 = 0xB232 // FORMAT_S          MODIFY SUBCHANNEL
  1983  	op_MSD     uint32 = 0xED3F // FORMAT_RXF        MULTIPLY AND SUBTRACT (long HFP)
  1984  	op_MSDB    uint32 = 0xED1F // FORMAT_RXF        MULTIPLY AND SUBTRACT (long BFP)
  1985  	op_MSDBR   uint32 = 0xB31F // FORMAT_RRD        MULTIPLY AND SUBTRACT (long BFP)
  1986  	op_MSDR    uint32 = 0xB33F // FORMAT_RRD        MULTIPLY AND SUBTRACT (long HFP)
  1987  	op_MSE     uint32 = 0xED2F // FORMAT_RXF        MULTIPLY AND SUBTRACT (short HFP)
  1988  	op_MSEB    uint32 = 0xED0F // FORMAT_RXF        MULTIPLY AND SUBTRACT (short BFP)
  1989  	op_MSEBR   uint32 = 0xB30F // FORMAT_RRD        MULTIPLY AND SUBTRACT (short BFP)
  1990  	op_MSER    uint32 = 0xB32F // FORMAT_RRD        MULTIPLY AND SUBTRACT (short HFP)
  1991  	op_MSFI    uint32 = 0xC201 // FORMAT_RIL1       MULTIPLY SINGLE IMMEDIATE (32)
  1992  	op_MSG     uint32 = 0xE30C // FORMAT_RXY1       MULTIPLY SINGLE (64)
  1993  	op_MSGF    uint32 = 0xE31C // FORMAT_RXY1       MULTIPLY SINGLE (64<-32)
  1994  	op_MSGFI   uint32 = 0xC200 // FORMAT_RIL1       MULTIPLY SINGLE IMMEDIATE (64<-32)
  1995  	op_MSGFR   uint32 = 0xB91C // FORMAT_RRE        MULTIPLY SINGLE (64<-32)
  1996  	op_MSGR    uint32 = 0xB90C // FORMAT_RRE        MULTIPLY SINGLE (64)
  1997  	op_MSR     uint32 = 0xB252 // FORMAT_RRE        MULTIPLY SINGLE (32)
  1998  	op_MSTA    uint32 = 0xB247 // FORMAT_RRE        MODIFY STACKED STATE
  1999  	op_MSY     uint32 = 0xE351 // FORMAT_RXY1       MULTIPLY SINGLE (32)
  2000  	op_MVC     uint32 = 0xD200 // FORMAT_SS1        MOVE (character)
  2001  	op_MVCDK   uint32 = 0xE50F // FORMAT_SSE        MOVE WITH DESTINATION KEY
  2002  	op_MVCIN   uint32 = 0xE800 // FORMAT_SS1        MOVE INVERSE
  2003  	op_MVCK    uint32 = 0xD900 // FORMAT_SS4        MOVE WITH KEY
  2004  	op_MVCL    uint32 = 0x0E00 // FORMAT_RR         MOVE LONG
  2005  	op_MVCLE   uint32 = 0xA800 // FORMAT_RS1        MOVE LONG EXTENDED
  2006  	op_MVCLU   uint32 = 0xEB8E // FORMAT_RSY1       MOVE LONG UNICODE
  2007  	op_MVCOS   uint32 = 0xC800 // FORMAT_SSF        MOVE WITH OPTIONAL SPECIFICATIONS
  2008  	op_MVCP    uint32 = 0xDA00 // FORMAT_SS4        MOVE TO PRIMARY
  2009  	op_MVCS    uint32 = 0xDB00 // FORMAT_SS4        MOVE TO SECONDARY
  2010  	op_MVCSK   uint32 = 0xE50E // FORMAT_SSE        MOVE WITH SOURCE KEY
  2011  	op_MVGHI   uint32 = 0xE548 // FORMAT_SIL        MOVE (64<-16)
  2012  	op_MVHHI   uint32 = 0xE544 // FORMAT_SIL        MOVE (16<-16)
  2013  	op_MVHI    uint32 = 0xE54C // FORMAT_SIL        MOVE (32<-16)
  2014  	op_MVI     uint32 = 0x9200 // FORMAT_SI         MOVE (immediate)
  2015  	op_MVIY    uint32 = 0xEB52 // FORMAT_SIY        MOVE (immediate)
  2016  	op_MVN     uint32 = 0xD100 // FORMAT_SS1        MOVE NUMERICS
  2017  	op_MVO     uint32 = 0xF100 // FORMAT_SS2        MOVE WITH OFFSET
  2018  	op_MVPG    uint32 = 0xB254 // FORMAT_RRE        MOVE PAGE
  2019  	op_MVST    uint32 = 0xB255 // FORMAT_RRE        MOVE STRING
  2020  	op_MVZ     uint32 = 0xD300 // FORMAT_SS1        MOVE ZONES
  2021  	op_MXBR    uint32 = 0xB34C // FORMAT_RRE        MULTIPLY (extended BFP)
  2022  	op_MXD     uint32 = 0x6700 // FORMAT_RX1        MULTIPLY (long to extended HFP)
  2023  	op_MXDB    uint32 = 0xED07 // FORMAT_RXE        MULTIPLY (long to extended BFP)
  2024  	op_MXDBR   uint32 = 0xB307 // FORMAT_RRE        MULTIPLY (long to extended BFP)
  2025  	op_MXDR    uint32 = 0x2700 // FORMAT_RR         MULTIPLY (long to extended HFP)
  2026  	op_MXR     uint32 = 0x2600 // FORMAT_RR         MULTIPLY (extended HFP)
  2027  	op_MXTR    uint32 = 0xB3D8 // FORMAT_RRF1       MULTIPLY (extended DFP)
  2028  	op_MXTRA   uint32 = 0xB3D8 // FORMAT_RRF1       MULTIPLY (extended DFP)
  2029  	op_MY      uint32 = 0xED3B // FORMAT_RXF        MULTIPLY UNNORMALIZED (long to ext. HFP)
  2030  	op_MYH     uint32 = 0xED3D // FORMAT_RXF        MULTIPLY UNNORM. (long to ext. high HFP)
  2031  	op_MYHR    uint32 = 0xB33D // FORMAT_RRD        MULTIPLY UNNORM. (long to ext. high HFP)
  2032  	op_MYL     uint32 = 0xED39 // FORMAT_RXF        MULTIPLY UNNORM. (long to ext. low HFP)
  2033  	op_MYLR    uint32 = 0xB339 // FORMAT_RRD        MULTIPLY UNNORM. (long to ext. low HFP)
  2034  	op_MYR     uint32 = 0xB33B // FORMAT_RRD        MULTIPLY UNNORMALIZED (long to ext. HFP)
  2035  	op_N       uint32 = 0x5400 // FORMAT_RX1        AND (32)
  2036  	op_NC      uint32 = 0xD400 // FORMAT_SS1        AND (character)
  2037  	op_NG      uint32 = 0xE380 // FORMAT_RXY1       AND (64)
  2038  	op_NGR     uint32 = 0xB980 // FORMAT_RRE        AND (64)
  2039  	op_NGRK    uint32 = 0xB9E4 // FORMAT_RRF1       AND (64)
  2040  	op_NI      uint32 = 0x9400 // FORMAT_SI         AND (immediate)
  2041  	op_NIAI    uint32 = 0xB2FA // FORMAT_IE         NEXT INSTRUCTION ACCESS INTENT
  2042  	op_NIHF    uint32 = 0xC00A // FORMAT_RIL1       AND IMMEDIATE (high)
  2043  	op_NIHH    uint32 = 0xA504 // FORMAT_RI1        AND IMMEDIATE (high high)
  2044  	op_NIHL    uint32 = 0xA505 // FORMAT_RI1        AND IMMEDIATE (high low)
  2045  	op_NILF    uint32 = 0xC00B // FORMAT_RIL1       AND IMMEDIATE (low)
  2046  	op_NILH    uint32 = 0xA506 // FORMAT_RI1        AND IMMEDIATE (low high)
  2047  	op_NILL    uint32 = 0xA507 // FORMAT_RI1        AND IMMEDIATE (low low)
  2048  	op_NIY     uint32 = 0xEB54 // FORMAT_SIY        AND (immediate)
  2049  	op_NR      uint32 = 0x1400 // FORMAT_RR         AND (32)
  2050  	op_NRK     uint32 = 0xB9F4 // FORMAT_RRF1       AND (32)
  2051  	op_NTSTG   uint32 = 0xE325 // FORMAT_RXY1       NONTRANSACTIONAL STORE
  2052  	op_NY      uint32 = 0xE354 // FORMAT_RXY1       AND (32)
  2053  	op_O       uint32 = 0x5600 // FORMAT_RX1        OR (32)
  2054  	op_OC      uint32 = 0xD600 // FORMAT_SS1        OR (character)
  2055  	op_OG      uint32 = 0xE381 // FORMAT_RXY1       OR (64)
  2056  	op_OGR     uint32 = 0xB981 // FORMAT_RRE        OR (64)
  2057  	op_OGRK    uint32 = 0xB9E6 // FORMAT_RRF1       OR (64)
  2058  	op_OI      uint32 = 0x9600 // FORMAT_SI         OR (immediate)
  2059  	op_OIHF    uint32 = 0xC00C // FORMAT_RIL1       OR IMMEDIATE (high)
  2060  	op_OIHH    uint32 = 0xA508 // FORMAT_RI1        OR IMMEDIATE (high high)
  2061  	op_OIHL    uint32 = 0xA509 // FORMAT_RI1        OR IMMEDIATE (high low)
  2062  	op_OILF    uint32 = 0xC00D // FORMAT_RIL1       OR IMMEDIATE (low)
  2063  	op_OILH    uint32 = 0xA50A // FORMAT_RI1        OR IMMEDIATE (low high)
  2064  	op_OILL    uint32 = 0xA50B // FORMAT_RI1        OR IMMEDIATE (low low)
  2065  	op_OIY     uint32 = 0xEB56 // FORMAT_SIY        OR (immediate)
  2066  	op_OR      uint32 = 0x1600 // FORMAT_RR         OR (32)
  2067  	op_ORK     uint32 = 0xB9F6 // FORMAT_RRF1       OR (32)
  2068  	op_OY      uint32 = 0xE356 // FORMAT_RXY1       OR (32)
  2069  	op_PACK    uint32 = 0xF200 // FORMAT_SS2        PACK
  2070  	op_PALB    uint32 = 0xB248 // FORMAT_RRE        PURGE ALB
  2071  	op_PC      uint32 = 0xB218 // FORMAT_S          PROGRAM CALL
  2072  	op_PCC     uint32 = 0xB92C // FORMAT_RRE        PERFORM CRYPTOGRAPHIC COMPUTATION
  2073  	op_PCKMO   uint32 = 0xB928 // FORMAT_RRE        PERFORM CRYPTOGRAPHIC KEY MGMT. OPERATIONS
  2074  	op_PFD     uint32 = 0xE336 // FORMAT_RXY2       PREFETCH DATA
  2075  	op_PFDRL   uint32 = 0xC602 // FORMAT_RIL3       PREFETCH DATA RELATIVE LONG
  2076  	op_PFMF    uint32 = 0xB9AF // FORMAT_RRE        PERFORM FRAME MANAGEMENT FUNCTION
  2077  	op_PFPO    uint32 = 0x010A // FORMAT_E          PERFORM FLOATING-POINT OPERATION
  2078  	op_PGIN    uint32 = 0xB22E // FORMAT_RRE        PAGE IN
  2079  	op_PGOUT   uint32 = 0xB22F // FORMAT_RRE        PAGE OUT
  2080  	op_PKA     uint32 = 0xE900 // FORMAT_SS6        PACK ASCII
  2081  	op_PKU     uint32 = 0xE100 // FORMAT_SS6        PACK UNICODE
  2082  	op_PLO     uint32 = 0xEE00 // FORMAT_SS5        PERFORM LOCKED OPERATION
  2083  	op_POPCNT  uint32 = 0xB9E1 // FORMAT_RRE        POPULATION COUNT
  2084  	op_PPA     uint32 = 0xB2E8 // FORMAT_RRF3       PERFORM PROCESSOR ASSIST
  2085  	op_PR      uint32 = 0x0101 // FORMAT_E          PROGRAM RETURN
  2086  	op_PT      uint32 = 0xB228 // FORMAT_RRE        PROGRAM TRANSFER
  2087  	op_PTF     uint32 = 0xB9A2 // FORMAT_RRE        PERFORM TOPOLOGY FUNCTION
  2088  	op_PTFF    uint32 = 0x0104 // FORMAT_E          PERFORM TIMING FACILITY FUNCTION
  2089  	op_PTI     uint32 = 0xB99E // FORMAT_RRE        PROGRAM TRANSFER WITH INSTANCE
  2090  	op_PTLB    uint32 = 0xB20D // FORMAT_S          PURGE TLB
  2091  	op_QADTR   uint32 = 0xB3F5 // FORMAT_RRF2       QUANTIZE (long DFP)
  2092  	op_QAXTR   uint32 = 0xB3FD // FORMAT_RRF2       QUANTIZE (extended DFP)
  2093  	op_RCHP    uint32 = 0xB23B // FORMAT_S          RESET CHANNEL PATH
  2094  	op_RISBG   uint32 = 0xEC55 // FORMAT_RIE6       ROTATE THEN INSERT SELECTED BITS
  2095  	op_RISBGN  uint32 = 0xEC59 // FORMAT_RIE6       ROTATE THEN INSERT SELECTED BITS
  2096  	op_RISBHG  uint32 = 0xEC5D // FORMAT_RIE6       ROTATE THEN INSERT SELECTED BITS HIGH
  2097  	op_RISBLG  uint32 = 0xEC51 // FORMAT_RIE6       ROTATE THEN INSERT SELECTED BITS LOW
  2098  	op_RLL     uint32 = 0xEB1D // FORMAT_RSY1       ROTATE LEFT SINGLE LOGICAL (32)
  2099  	op_RLLG    uint32 = 0xEB1C // FORMAT_RSY1       ROTATE LEFT SINGLE LOGICAL (64)
  2100  	op_RNSBG   uint32 = 0xEC54 // FORMAT_RIE6       ROTATE THEN AND SELECTED BITS
  2101  	op_ROSBG   uint32 = 0xEC56 // FORMAT_RIE6       ROTATE THEN OR SELECTED BITS
  2102  	op_RP      uint32 = 0xB277 // FORMAT_S          RESUME PROGRAM
  2103  	op_RRBE    uint32 = 0xB22A // FORMAT_RRE        RESET REFERENCE BIT EXTENDED
  2104  	op_RRBM    uint32 = 0xB9AE // FORMAT_RRE        RESET REFERENCE BITS MULTIPLE
  2105  	op_RRDTR   uint32 = 0xB3F7 // FORMAT_RRF2       REROUND (long DFP)
  2106  	op_RRXTR   uint32 = 0xB3FF // FORMAT_RRF2       REROUND (extended DFP)
  2107  	op_RSCH    uint32 = 0xB238 // FORMAT_S          RESUME SUBCHANNEL
  2108  	op_RXSBG   uint32 = 0xEC57 // FORMAT_RIE6       ROTATE THEN EXCLUSIVE OR SELECTED BITS
  2109  	op_S       uint32 = 0x5B00 // FORMAT_RX1        SUBTRACT (32)
  2110  	op_SAC     uint32 = 0xB219 // FORMAT_S          SET ADDRESS SPACE CONTROL
  2111  	op_SACF    uint32 = 0xB279 // FORMAT_S          SET ADDRESS SPACE CONTROL FAST
  2112  	op_SAL     uint32 = 0xB237 // FORMAT_S          SET ADDRESS LIMIT
  2113  	op_SAM24   uint32 = 0x010C // FORMAT_E          SET ADDRESSING MODE (24)
  2114  	op_SAM31   uint32 = 0x010D // FORMAT_E          SET ADDRESSING MODE (31)
  2115  	op_SAM64   uint32 = 0x010E // FORMAT_E          SET ADDRESSING MODE (64)
  2116  	op_SAR     uint32 = 0xB24E // FORMAT_RRE        SET ACCESS
  2117  	op_SCHM    uint32 = 0xB23C // FORMAT_S          SET CHANNEL MONITOR
  2118  	op_SCK     uint32 = 0xB204 // FORMAT_S          SET CLOCK
  2119  	op_SCKC    uint32 = 0xB206 // FORMAT_S          SET CLOCK COMPARATOR
  2120  	op_SCKPF   uint32 = 0x0107 // FORMAT_E          SET CLOCK PROGRAMMABLE FIELD
  2121  	op_SD      uint32 = 0x6B00 // FORMAT_RX1        SUBTRACT NORMALIZED (long HFP)
  2122  	op_SDB     uint32 = 0xED1B // FORMAT_RXE        SUBTRACT (long BFP)
  2123  	op_SDBR    uint32 = 0xB31B // FORMAT_RRE        SUBTRACT (long BFP)
  2124  	op_SDR     uint32 = 0x2B00 // FORMAT_RR         SUBTRACT NORMALIZED (long HFP)
  2125  	op_SDTR    uint32 = 0xB3D3 // FORMAT_RRF1       SUBTRACT (long DFP)
  2126  	op_SDTRA   uint32 = 0xB3D3 // FORMAT_RRF1       SUBTRACT (long DFP)
  2127  	op_SE      uint32 = 0x7B00 // FORMAT_RX1        SUBTRACT NORMALIZED (short HFP)
  2128  	op_SEB     uint32 = 0xED0B // FORMAT_RXE        SUBTRACT (short BFP)
  2129  	op_SEBR    uint32 = 0xB30B // FORMAT_RRE        SUBTRACT (short BFP)
  2130  	op_SER     uint32 = 0x3B00 // FORMAT_RR         SUBTRACT NORMALIZED (short HFP)
  2131  	op_SFASR   uint32 = 0xB385 // FORMAT_RRE        SET FPC AND SIGNAL
  2132  	op_SFPC    uint32 = 0xB384 // FORMAT_RRE        SET FPC
  2133  	op_SG      uint32 = 0xE309 // FORMAT_RXY1       SUBTRACT (64)
  2134  	op_SGF     uint32 = 0xE319 // FORMAT_RXY1       SUBTRACT (64<-32)
  2135  	op_SGFR    uint32 = 0xB919 // FORMAT_RRE        SUBTRACT (64<-32)
  2136  	op_SGR     uint32 = 0xB909 // FORMAT_RRE        SUBTRACT (64)
  2137  	op_SGRK    uint32 = 0xB9E9 // FORMAT_RRF1       SUBTRACT (64)
  2138  	op_SH      uint32 = 0x4B00 // FORMAT_RX1        SUBTRACT HALFWORD
  2139  	op_SHHHR   uint32 = 0xB9C9 // FORMAT_RRF1       SUBTRACT HIGH (32)
  2140  	op_SHHLR   uint32 = 0xB9D9 // FORMAT_RRF1       SUBTRACT HIGH (32)
  2141  	op_SHY     uint32 = 0xE37B // FORMAT_RXY1       SUBTRACT HALFWORD
  2142  	op_SIGP    uint32 = 0xAE00 // FORMAT_RS1        SIGNAL PROCESSOR
  2143  	op_SL      uint32 = 0x5F00 // FORMAT_RX1        SUBTRACT LOGICAL (32)
  2144  	op_SLA     uint32 = 0x8B00 // FORMAT_RS1        SHIFT LEFT SINGLE (32)
  2145  	op_SLAG    uint32 = 0xEB0B // FORMAT_RSY1       SHIFT LEFT SINGLE (64)
  2146  	op_SLAK    uint32 = 0xEBDD // FORMAT_RSY1       SHIFT LEFT SINGLE (32)
  2147  	op_SLB     uint32 = 0xE399 // FORMAT_RXY1       SUBTRACT LOGICAL WITH BORROW (32)
  2148  	op_SLBG    uint32 = 0xE389 // FORMAT_RXY1       SUBTRACT LOGICAL WITH BORROW (64)
  2149  	op_SLBGR   uint32 = 0xB989 // FORMAT_RRE        SUBTRACT LOGICAL WITH BORROW (64)
  2150  	op_SLBR    uint32 = 0xB999 // FORMAT_RRE        SUBTRACT LOGICAL WITH BORROW (32)
  2151  	op_SLDA    uint32 = 0x8F00 // FORMAT_RS1        SHIFT LEFT DOUBLE
  2152  	op_SLDL    uint32 = 0x8D00 // FORMAT_RS1        SHIFT LEFT DOUBLE LOGICAL
  2153  	op_SLDT    uint32 = 0xED40 // FORMAT_RXF        SHIFT SIGNIFICAND LEFT (long DFP)
  2154  	op_SLFI    uint32 = 0xC205 // FORMAT_RIL1       SUBTRACT LOGICAL IMMEDIATE (32)
  2155  	op_SLG     uint32 = 0xE30B // FORMAT_RXY1       SUBTRACT LOGICAL (64)
  2156  	op_SLGF    uint32 = 0xE31B // FORMAT_RXY1       SUBTRACT LOGICAL (64<-32)
  2157  	op_SLGFI   uint32 = 0xC204 // FORMAT_RIL1       SUBTRACT LOGICAL IMMEDIATE (64<-32)
  2158  	op_SLGFR   uint32 = 0xB91B // FORMAT_RRE        SUBTRACT LOGICAL (64<-32)
  2159  	op_SLGR    uint32 = 0xB90B // FORMAT_RRE        SUBTRACT LOGICAL (64)
  2160  	op_SLGRK   uint32 = 0xB9EB // FORMAT_RRF1       SUBTRACT LOGICAL (64)
  2161  	op_SLHHHR  uint32 = 0xB9CB // FORMAT_RRF1       SUBTRACT LOGICAL HIGH (32)
  2162  	op_SLHHLR  uint32 = 0xB9DB // FORMAT_RRF1       SUBTRACT LOGICAL HIGH (32)
  2163  	op_SLL     uint32 = 0x8900 // FORMAT_RS1        SHIFT LEFT SINGLE LOGICAL (32)
  2164  	op_SLLG    uint32 = 0xEB0D // FORMAT_RSY1       SHIFT LEFT SINGLE LOGICAL (64)
  2165  	op_SLLK    uint32 = 0xEBDF // FORMAT_RSY1       SHIFT LEFT SINGLE LOGICAL (32)
  2166  	op_SLR     uint32 = 0x1F00 // FORMAT_RR         SUBTRACT LOGICAL (32)
  2167  	op_SLRK    uint32 = 0xB9FB // FORMAT_RRF1       SUBTRACT LOGICAL (32)
  2168  	op_SLXT    uint32 = 0xED48 // FORMAT_RXF        SHIFT SIGNIFICAND LEFT (extended DFP)
  2169  	op_SLY     uint32 = 0xE35F // FORMAT_RXY1       SUBTRACT LOGICAL (32)
  2170  	op_SP      uint32 = 0xFB00 // FORMAT_SS2        SUBTRACT DECIMAL
  2171  	op_SPKA    uint32 = 0xB20A // FORMAT_S          SET PSW KEY FROM ADDRESS
  2172  	op_SPM     uint32 = 0x0400 // FORMAT_RR         SET PROGRAM MASK
  2173  	op_SPT     uint32 = 0xB208 // FORMAT_S          SET CPU TIMER
  2174  	op_SPX     uint32 = 0xB210 // FORMAT_S          SET PREFIX
  2175  	op_SQD     uint32 = 0xED35 // FORMAT_RXE        SQUARE ROOT (long HFP)
  2176  	op_SQDB    uint32 = 0xED15 // FORMAT_RXE        SQUARE ROOT (long BFP)
  2177  	op_SQDBR   uint32 = 0xB315 // FORMAT_RRE        SQUARE ROOT (long BFP)
  2178  	op_SQDR    uint32 = 0xB244 // FORMAT_RRE        SQUARE ROOT (long HFP)
  2179  	op_SQE     uint32 = 0xED34 // FORMAT_RXE        SQUARE ROOT (short HFP)
  2180  	op_SQEB    uint32 = 0xED14 // FORMAT_RXE        SQUARE ROOT (short BFP)
  2181  	op_SQEBR   uint32 = 0xB314 // FORMAT_RRE        SQUARE ROOT (short BFP)
  2182  	op_SQER    uint32 = 0xB245 // FORMAT_RRE        SQUARE ROOT (short HFP)
  2183  	op_SQXBR   uint32 = 0xB316 // FORMAT_RRE        SQUARE ROOT (extended BFP)
  2184  	op_SQXR    uint32 = 0xB336 // FORMAT_RRE        SQUARE ROOT (extended HFP)
  2185  	op_SR      uint32 = 0x1B00 // FORMAT_RR         SUBTRACT (32)
  2186  	op_SRA     uint32 = 0x8A00 // FORMAT_RS1        SHIFT RIGHT SINGLE (32)
  2187  	op_SRAG    uint32 = 0xEB0A // FORMAT_RSY1       SHIFT RIGHT SINGLE (64)
  2188  	op_SRAK    uint32 = 0xEBDC // FORMAT_RSY1       SHIFT RIGHT SINGLE (32)
  2189  	op_SRDA    uint32 = 0x8E00 // FORMAT_RS1        SHIFT RIGHT DOUBLE
  2190  	op_SRDL    uint32 = 0x8C00 // FORMAT_RS1        SHIFT RIGHT DOUBLE LOGICAL
  2191  	op_SRDT    uint32 = 0xED41 // FORMAT_RXF        SHIFT SIGNIFICAND RIGHT (long DFP)
  2192  	op_SRK     uint32 = 0xB9F9 // FORMAT_RRF1       SUBTRACT (32)
  2193  	op_SRL     uint32 = 0x8800 // FORMAT_RS1        SHIFT RIGHT SINGLE LOGICAL (32)
  2194  	op_SRLG    uint32 = 0xEB0C // FORMAT_RSY1       SHIFT RIGHT SINGLE LOGICAL (64)
  2195  	op_SRLK    uint32 = 0xEBDE // FORMAT_RSY1       SHIFT RIGHT SINGLE LOGICAL (32)
  2196  	op_SRNM    uint32 = 0xB299 // FORMAT_S          SET BFP ROUNDING MODE (2 bit)
  2197  	op_SRNMB   uint32 = 0xB2B8 // FORMAT_S          SET BFP ROUNDING MODE (3 bit)
  2198  	op_SRNMT   uint32 = 0xB2B9 // FORMAT_S          SET DFP ROUNDING MODE
  2199  	op_SRP     uint32 = 0xF000 // FORMAT_SS3        SHIFT AND ROUND DECIMAL
  2200  	op_SRST    uint32 = 0xB25E // FORMAT_RRE        SEARCH STRING
  2201  	op_SRSTU   uint32 = 0xB9BE // FORMAT_RRE        SEARCH STRING UNICODE
  2202  	op_SRXT    uint32 = 0xED49 // FORMAT_RXF        SHIFT SIGNIFICAND RIGHT (extended DFP)
  2203  	op_SSAIR   uint32 = 0xB99F // FORMAT_RRE        SET SECONDARY ASN WITH INSTANCE
  2204  	op_SSAR    uint32 = 0xB225 // FORMAT_RRE        SET SECONDARY ASN
  2205  	op_SSCH    uint32 = 0xB233 // FORMAT_S          START SUBCHANNEL
  2206  	op_SSKE    uint32 = 0xB22B // FORMAT_RRF3       SET STORAGE KEY EXTENDED
  2207  	op_SSM     uint32 = 0x8000 // FORMAT_S          SET SYSTEM MASK
  2208  	op_ST      uint32 = 0x5000 // FORMAT_RX1        STORE (32)
  2209  	op_STAM    uint32 = 0x9B00 // FORMAT_RS1        STORE ACCESS MULTIPLE
  2210  	op_STAMY   uint32 = 0xEB9B // FORMAT_RSY1       STORE ACCESS MULTIPLE
  2211  	op_STAP    uint32 = 0xB212 // FORMAT_S          STORE CPU ADDRESS
  2212  	op_STC     uint32 = 0x4200 // FORMAT_RX1        STORE CHARACTER
  2213  	op_STCH    uint32 = 0xE3C3 // FORMAT_RXY1       STORE CHARACTER HIGH (8)
  2214  	op_STCK    uint32 = 0xB205 // FORMAT_S          STORE CLOCK
  2215  	op_STCKC   uint32 = 0xB207 // FORMAT_S          STORE CLOCK COMPARATOR
  2216  	op_STCKE   uint32 = 0xB278 // FORMAT_S          STORE CLOCK EXTENDED
  2217  	op_STCKF   uint32 = 0xB27C // FORMAT_S          STORE CLOCK FAST
  2218  	op_STCM    uint32 = 0xBE00 // FORMAT_RS2        STORE CHARACTERS UNDER MASK (low)
  2219  	op_STCMH   uint32 = 0xEB2C // FORMAT_RSY2       STORE CHARACTERS UNDER MASK (high)
  2220  	op_STCMY   uint32 = 0xEB2D // FORMAT_RSY2       STORE CHARACTERS UNDER MASK (low)
  2221  	op_STCPS   uint32 = 0xB23A // FORMAT_S          STORE CHANNEL PATH STATUS
  2222  	op_STCRW   uint32 = 0xB239 // FORMAT_S          STORE CHANNEL REPORT WORD
  2223  	op_STCTG   uint32 = 0xEB25 // FORMAT_RSY1       STORE CONTROL (64)
  2224  	op_STCTL   uint32 = 0xB600 // FORMAT_RS1        STORE CONTROL (32)
  2225  	op_STCY    uint32 = 0xE372 // FORMAT_RXY1       STORE CHARACTER
  2226  	op_STD     uint32 = 0x6000 // FORMAT_RX1        STORE (long)
  2227  	op_STDY    uint32 = 0xED67 // FORMAT_RXY1       STORE (long)
  2228  	op_STE     uint32 = 0x7000 // FORMAT_RX1        STORE (short)
  2229  	op_STEY    uint32 = 0xED66 // FORMAT_RXY1       STORE (short)
  2230  	op_STFH    uint32 = 0xE3CB // FORMAT_RXY1       STORE HIGH (32)
  2231  	op_STFL    uint32 = 0xB2B1 // FORMAT_S          STORE FACILITY LIST
  2232  	op_STFLE   uint32 = 0xB2B0 // FORMAT_S          STORE FACILITY LIST EXTENDED
  2233  	op_STFPC   uint32 = 0xB29C // FORMAT_S          STORE FPC
  2234  	op_STG     uint32 = 0xE324 // FORMAT_RXY1       STORE (64)
  2235  	op_STGRL   uint32 = 0xC40B // FORMAT_RIL2       STORE RELATIVE LONG (64)
  2236  	op_STH     uint32 = 0x4000 // FORMAT_RX1        STORE HALFWORD
  2237  	op_STHH    uint32 = 0xE3C7 // FORMAT_RXY1       STORE HALFWORD HIGH (16)
  2238  	op_STHRL   uint32 = 0xC407 // FORMAT_RIL2       STORE HALFWORD RELATIVE LONG
  2239  	op_STHY    uint32 = 0xE370 // FORMAT_RXY1       STORE HALFWORD
  2240  	op_STIDP   uint32 = 0xB202 // FORMAT_S          STORE CPU ID
  2241  	op_STM     uint32 = 0x9000 // FORMAT_RS1        STORE MULTIPLE (32)
  2242  	op_STMG    uint32 = 0xEB24 // FORMAT_RSY1       STORE MULTIPLE (64)
  2243  	op_STMH    uint32 = 0xEB26 // FORMAT_RSY1       STORE MULTIPLE HIGH
  2244  	op_STMY    uint32 = 0xEB90 // FORMAT_RSY1       STORE MULTIPLE (32)
  2245  	op_STNSM   uint32 = 0xAC00 // FORMAT_SI         STORE THEN AND SYSTEM MASK
  2246  	op_STOC    uint32 = 0xEBF3 // FORMAT_RSY2       STORE ON CONDITION (32)
  2247  	op_STOCG   uint32 = 0xEBE3 // FORMAT_RSY2       STORE ON CONDITION (64)
  2248  	op_STOSM   uint32 = 0xAD00 // FORMAT_SI         STORE THEN OR SYSTEM MASK
  2249  	op_STPQ    uint32 = 0xE38E // FORMAT_RXY1       STORE PAIR TO QUADWORD
  2250  	op_STPT    uint32 = 0xB209 // FORMAT_S          STORE CPU TIMER
  2251  	op_STPX    uint32 = 0xB211 // FORMAT_S          STORE PREFIX
  2252  	op_STRAG   uint32 = 0xE502 // FORMAT_SSE        STORE REAL ADDRESS
  2253  	op_STRL    uint32 = 0xC40F // FORMAT_RIL2       STORE RELATIVE LONG (32)
  2254  	op_STRV    uint32 = 0xE33E // FORMAT_RXY1       STORE REVERSED (32)
  2255  	op_STRVG   uint32 = 0xE32F // FORMAT_RXY1       STORE REVERSED (64)
  2256  	op_STRVH   uint32 = 0xE33F // FORMAT_RXY1       STORE REVERSED (16)
  2257  	op_STSCH   uint32 = 0xB234 // FORMAT_S          STORE SUBCHANNEL
  2258  	op_STSI    uint32 = 0xB27D // FORMAT_S          STORE SYSTEM INFORMATION
  2259  	op_STURA   uint32 = 0xB246 // FORMAT_RRE        STORE USING REAL ADDRESS (32)
  2260  	op_STURG   uint32 = 0xB925 // FORMAT_RRE        STORE USING REAL ADDRESS (64)
  2261  	op_STY     uint32 = 0xE350 // FORMAT_RXY1       STORE (32)
  2262  	op_SU      uint32 = 0x7F00 // FORMAT_RX1        SUBTRACT UNNORMALIZED (short HFP)
  2263  	op_SUR     uint32 = 0x3F00 // FORMAT_RR         SUBTRACT UNNORMALIZED (short HFP)
  2264  	op_SVC     uint32 = 0x0A00 // FORMAT_I          SUPERVISOR CALL
  2265  	op_SW      uint32 = 0x6F00 // FORMAT_RX1        SUBTRACT UNNORMALIZED (long HFP)
  2266  	op_SWR     uint32 = 0x2F00 // FORMAT_RR         SUBTRACT UNNORMALIZED (long HFP)
  2267  	op_SXBR    uint32 = 0xB34B // FORMAT_RRE        SUBTRACT (extended BFP)
  2268  	op_SXR     uint32 = 0x3700 // FORMAT_RR         SUBTRACT NORMALIZED (extended HFP)
  2269  	op_SXTR    uint32 = 0xB3DB // FORMAT_RRF1       SUBTRACT (extended DFP)
  2270  	op_SXTRA   uint32 = 0xB3DB // FORMAT_RRF1       SUBTRACT (extended DFP)
  2271  	op_SY      uint32 = 0xE35B // FORMAT_RXY1       SUBTRACT (32)
  2272  	op_TABORT  uint32 = 0xB2FC // FORMAT_S          TRANSACTION ABORT
  2273  	op_TAM     uint32 = 0x010B // FORMAT_E          TEST ADDRESSING MODE
  2274  	op_TAR     uint32 = 0xB24C // FORMAT_RRE        TEST ACCESS
  2275  	op_TB      uint32 = 0xB22C // FORMAT_RRE        TEST BLOCK
  2276  	op_TBDR    uint32 = 0xB351 // FORMAT_RRF5       CONVERT HFP TO BFP (long)
  2277  	op_TBEDR   uint32 = 0xB350 // FORMAT_RRF5       CONVERT HFP TO BFP (long to short)
  2278  	op_TBEGIN  uint32 = 0xE560 // FORMAT_SIL        TRANSACTION BEGIN
  2279  	op_TBEGINC uint32 = 0xE561 // FORMAT_SIL        TRANSACTION BEGIN
  2280  	op_TCDB    uint32 = 0xED11 // FORMAT_RXE        TEST DATA CLASS (long BFP)
  2281  	op_TCEB    uint32 = 0xED10 // FORMAT_RXE        TEST DATA CLASS (short BFP)
  2282  	op_TCXB    uint32 = 0xED12 // FORMAT_RXE        TEST DATA CLASS (extended BFP)
  2283  	op_TDCDT   uint32 = 0xED54 // FORMAT_RXE        TEST DATA CLASS (long DFP)
  2284  	op_TDCET   uint32 = 0xED50 // FORMAT_RXE        TEST DATA CLASS (short DFP)
  2285  	op_TDCXT   uint32 = 0xED58 // FORMAT_RXE        TEST DATA CLASS (extended DFP)
  2286  	op_TDGDT   uint32 = 0xED55 // FORMAT_RXE        TEST DATA GROUP (long DFP)
  2287  	op_TDGET   uint32 = 0xED51 // FORMAT_RXE        TEST DATA GROUP (short DFP)
  2288  	op_TDGXT   uint32 = 0xED59 // FORMAT_RXE        TEST DATA GROUP (extended DFP)
  2289  	op_TEND    uint32 = 0xB2F8 // FORMAT_S          TRANSACTION END
  2290  	op_THDER   uint32 = 0xB358 // FORMAT_RRE        CONVERT BFP TO HFP (short to long)
  2291  	op_THDR    uint32 = 0xB359 // FORMAT_RRE        CONVERT BFP TO HFP (long)
  2292  	op_TM      uint32 = 0x9100 // FORMAT_SI         TEST UNDER MASK
  2293  	op_TMH     uint32 = 0xA700 // FORMAT_RI1        TEST UNDER MASK HIGH
  2294  	op_TMHH    uint32 = 0xA702 // FORMAT_RI1        TEST UNDER MASK (high high)
  2295  	op_TMHL    uint32 = 0xA703 // FORMAT_RI1        TEST UNDER MASK (high low)
  2296  	op_TML     uint32 = 0xA701 // FORMAT_RI1        TEST UNDER MASK LOW
  2297  	op_TMLH    uint32 = 0xA700 // FORMAT_RI1        TEST UNDER MASK (low high)
  2298  	op_TMLL    uint32 = 0xA701 // FORMAT_RI1        TEST UNDER MASK (low low)
  2299  	op_TMY     uint32 = 0xEB51 // FORMAT_SIY        TEST UNDER MASK
  2300  	op_TP      uint32 = 0xEBC0 // FORMAT_RSL        TEST DECIMAL
  2301  	op_TPI     uint32 = 0xB236 // FORMAT_S          TEST PENDING INTERRUPTION
  2302  	op_TPROT   uint32 = 0xE501 // FORMAT_SSE        TEST PROTECTION
  2303  	op_TR      uint32 = 0xDC00 // FORMAT_SS1        TRANSLATE
  2304  	op_TRACE   uint32 = 0x9900 // FORMAT_RS1        TRACE (32)
  2305  	op_TRACG   uint32 = 0xEB0F // FORMAT_RSY1       TRACE (64)
  2306  	op_TRAP2   uint32 = 0x01FF // FORMAT_E          TRAP
  2307  	op_TRAP4   uint32 = 0xB2FF // FORMAT_S          TRAP
  2308  	op_TRE     uint32 = 0xB2A5 // FORMAT_RRE        TRANSLATE EXTENDED
  2309  	op_TROO    uint32 = 0xB993 // FORMAT_RRF3       TRANSLATE ONE TO ONE
  2310  	op_TROT    uint32 = 0xB992 // FORMAT_RRF3       TRANSLATE ONE TO TWO
  2311  	op_TRT     uint32 = 0xDD00 // FORMAT_SS1        TRANSLATE AND TEST
  2312  	op_TRTE    uint32 = 0xB9BF // FORMAT_RRF3       TRANSLATE AND TEST EXTENDED
  2313  	op_TRTO    uint32 = 0xB991 // FORMAT_RRF3       TRANSLATE TWO TO ONE
  2314  	op_TRTR    uint32 = 0xD000 // FORMAT_SS1        TRANSLATE AND TEST REVERSE
  2315  	op_TRTRE   uint32 = 0xB9BD // FORMAT_RRF3       TRANSLATE AND TEST REVERSE EXTENDED
  2316  	op_TRTT    uint32 = 0xB990 // FORMAT_RRF3       TRANSLATE TWO TO TWO
  2317  	op_TS      uint32 = 0x9300 // FORMAT_S          TEST AND SET
  2318  	op_TSCH    uint32 = 0xB235 // FORMAT_S          TEST SUBCHANNEL
  2319  	op_UNPK    uint32 = 0xF300 // FORMAT_SS2        UNPACK
  2320  	op_UNPKA   uint32 = 0xEA00 // FORMAT_SS1        UNPACK ASCII
  2321  	op_UNPKU   uint32 = 0xE200 // FORMAT_SS1        UNPACK UNICODE
  2322  	op_UPT     uint32 = 0x0102 // FORMAT_E          UPDATE TREE
  2323  	op_X       uint32 = 0x5700 // FORMAT_RX1        EXCLUSIVE OR (32)
  2324  	op_XC      uint32 = 0xD700 // FORMAT_SS1        EXCLUSIVE OR (character)
  2325  	op_XG      uint32 = 0xE382 // FORMAT_RXY1       EXCLUSIVE OR (64)
  2326  	op_XGR     uint32 = 0xB982 // FORMAT_RRE        EXCLUSIVE OR (64)
  2327  	op_XGRK    uint32 = 0xB9E7 // FORMAT_RRF1       EXCLUSIVE OR (64)
  2328  	op_XI      uint32 = 0x9700 // FORMAT_SI         EXCLUSIVE OR (immediate)
  2329  	op_XIHF    uint32 = 0xC006 // FORMAT_RIL1       EXCLUSIVE OR IMMEDIATE (high)
  2330  	op_XILF    uint32 = 0xC007 // FORMAT_RIL1       EXCLUSIVE OR IMMEDIATE (low)
  2331  	op_XIY     uint32 = 0xEB57 // FORMAT_SIY        EXCLUSIVE OR (immediate)
  2332  	op_XR      uint32 = 0x1700 // FORMAT_RR         EXCLUSIVE OR (32)
  2333  	op_XRK     uint32 = 0xB9F7 // FORMAT_RRF1       EXCLUSIVE OR (32)
  2334  	op_XSCH    uint32 = 0xB276 // FORMAT_S          CANCEL SUBCHANNEL
  2335  	op_XY      uint32 = 0xE357 // FORMAT_RXY1       EXCLUSIVE OR (32)
  2336  	op_ZAP     uint32 = 0xF800 // FORMAT_SS2        ZERO AND ADD
  2337  
  2338  	// added in z13
  2339  	op_CXPT   uint32 = 0xEDAF // 	RSL-b	CONVERT FROM PACKED (to extended DFP)
  2340  	op_CDPT   uint32 = 0xEDAE // 	RSL-b	CONVERT FROM PACKED (to long DFP)
  2341  	op_CPXT   uint32 = 0xEDAD // 	RSL-b	CONVERT TO PACKED (from extended DFP)
  2342  	op_CPDT   uint32 = 0xEDAC // 	RSL-b	CONVERT TO PACKED (from long DFP)
  2343  	op_LZRF   uint32 = 0xE33B // 	RXY-a	LOAD AND ZERO RIGHTMOST BYTE (32)
  2344  	op_LZRG   uint32 = 0xE32A // 	RXY-a	LOAD AND ZERO RIGHTMOST BYTE (64)
  2345  	op_LCCB   uint32 = 0xE727 // 	RXE	LOAD COUNT TO BLOCK BOUNDARY
  2346  	op_LOCHHI uint32 = 0xEC4E // 	RIE-g	LOAD HALFWORD HIGH IMMEDIATE ON CONDITION (32←16)
  2347  	op_LOCHI  uint32 = 0xEC42 // 	RIE-g	LOAD HALFWORD IMMEDIATE ON CONDITION (32←16)
  2348  	op_LOCGHI uint32 = 0xEC46 // 	RIE-g	LOAD HALFWORD IMMEDIATE ON CONDITION (64←16)
  2349  	op_LOCFH  uint32 = 0xEBE0 // 	RSY-b	LOAD HIGH ON CONDITION (32)
  2350  	op_LOCFHR uint32 = 0xB9E0 // 	RRF-c	LOAD HIGH ON CONDITION (32)
  2351  	op_LLZRGF uint32 = 0xE33A // 	RXY-a	LOAD LOGICAL AND ZERO RIGHTMOST BYTE (64←32)
  2352  	op_STOCFH uint32 = 0xEBE1 // 	RSY-b	STORE HIGH ON CONDITION
  2353  	op_VA     uint32 = 0xE7F3 // 	VRR-c	VECTOR ADD
  2354  	op_VACC   uint32 = 0xE7F1 // 	VRR-c	VECTOR ADD COMPUTE CARRY
  2355  	op_VAC    uint32 = 0xE7BB // 	VRR-d	VECTOR ADD WITH CARRY
  2356  	op_VACCC  uint32 = 0xE7B9 // 	VRR-d	VECTOR ADD WITH CARRY COMPUTE CARRY
  2357  	op_VN     uint32 = 0xE768 // 	VRR-c	VECTOR AND
  2358  	op_VNC    uint32 = 0xE769 // 	VRR-c	VECTOR AND WITH COMPLEMENT
  2359  	op_VAVG   uint32 = 0xE7F2 // 	VRR-c	VECTOR AVERAGE
  2360  	op_VAVGL  uint32 = 0xE7F0 // 	VRR-c	VECTOR AVERAGE LOGICAL
  2361  	op_VCKSM  uint32 = 0xE766 // 	VRR-c	VECTOR CHECKSUM
  2362  	op_VCEQ   uint32 = 0xE7F8 // 	VRR-b	VECTOR COMPARE EQUAL
  2363  	op_VCH    uint32 = 0xE7FB // 	VRR-b	VECTOR COMPARE HIGH
  2364  	op_VCHL   uint32 = 0xE7F9 // 	VRR-b	VECTOR COMPARE HIGH LOGICAL
  2365  	op_VCLZ   uint32 = 0xE753 // 	VRR-a	VECTOR COUNT LEADING ZEROS
  2366  	op_VCTZ   uint32 = 0xE752 // 	VRR-a	VECTOR COUNT TRAILING ZEROS
  2367  	op_VEC    uint32 = 0xE7DB // 	VRR-a	VECTOR ELEMENT COMPARE
  2368  	op_VECL   uint32 = 0xE7D9 // 	VRR-a	VECTOR ELEMENT COMPARE LOGICAL
  2369  	op_VERIM  uint32 = 0xE772 // 	VRI-d	VECTOR ELEMENT ROTATE AND INSERT UNDER MASK
  2370  	op_VERLL  uint32 = 0xE733 // 	VRS-a	VECTOR ELEMENT ROTATE LEFT LOGICAL
  2371  	op_VERLLV uint32 = 0xE773 // 	VRR-c	VECTOR ELEMENT ROTATE LEFT LOGICAL
  2372  	op_VESLV  uint32 = 0xE770 // 	VRR-c	VECTOR ELEMENT SHIFT LEFT
  2373  	op_VESL   uint32 = 0xE730 // 	VRS-a	VECTOR ELEMENT SHIFT LEFT
  2374  	op_VESRA  uint32 = 0xE73A // 	VRS-a	VECTOR ELEMENT SHIFT RIGHT ARITHMETIC
  2375  	op_VESRAV uint32 = 0xE77A // 	VRR-c	VECTOR ELEMENT SHIFT RIGHT ARITHMETIC
  2376  	op_VESRL  uint32 = 0xE738 // 	VRS-a	VECTOR ELEMENT SHIFT RIGHT LOGICAL
  2377  	op_VESRLV uint32 = 0xE778 // 	VRR-c	VECTOR ELEMENT SHIFT RIGHT LOGICAL
  2378  	op_VX     uint32 = 0xE76D // 	VRR-c	VECTOR EXCLUSIVE OR
  2379  	op_VFAE   uint32 = 0xE782 // 	VRR-b	VECTOR FIND ANY ELEMENT EQUAL
  2380  	op_VFEE   uint32 = 0xE780 // 	VRR-b	VECTOR FIND ELEMENT EQUAL
  2381  	op_VFENE  uint32 = 0xE781 // 	VRR-b	VECTOR FIND ELEMENT NOT EQUAL
  2382  	op_VFA    uint32 = 0xE7E3 // 	VRR-c	VECTOR FP ADD
  2383  	op_WFK    uint32 = 0xE7CA // 	VRR-a	VECTOR FP COMPARE AND SIGNAL SCALAR
  2384  	op_VFCE   uint32 = 0xE7E8 // 	VRR-c	VECTOR FP COMPARE EQUAL
  2385  	op_VFCH   uint32 = 0xE7EB // 	VRR-c	VECTOR FP COMPARE HIGH
  2386  	op_VFCHE  uint32 = 0xE7EA // 	VRR-c	VECTOR FP COMPARE HIGH OR EQUAL
  2387  	op_WFC    uint32 = 0xE7CB // 	VRR-a	VECTOR FP COMPARE SCALAR
  2388  	op_VCDG   uint32 = 0xE7C3 // 	VRR-a	VECTOR FP CONVERT FROM FIXED 64-BIT
  2389  	op_VCDLG  uint32 = 0xE7C1 // 	VRR-a	VECTOR FP CONVERT FROM LOGICAL 64-BIT
  2390  	op_VCGD   uint32 = 0xE7C2 // 	VRR-a	VECTOR FP CONVERT TO FIXED 64-BIT
  2391  	op_VCLGD  uint32 = 0xE7C0 // 	VRR-a	VECTOR FP CONVERT TO LOGICAL 64-BIT
  2392  	op_VFD    uint32 = 0xE7E5 // 	VRR-c	VECTOR FP DIVIDE
  2393  	op_VLDE   uint32 = 0xE7C4 // 	VRR-a	VECTOR FP LOAD LENGTHENED
  2394  	op_VLED   uint32 = 0xE7C5 // 	VRR-a	VECTOR FP LOAD ROUNDED
  2395  	op_VFM    uint32 = 0xE7E7 // 	VRR-c	VECTOR FP MULTIPLY
  2396  	op_VFMA   uint32 = 0xE78F // 	VRR-e	VECTOR FP MULTIPLY AND ADD
  2397  	op_VFMS   uint32 = 0xE78E // 	VRR-e	VECTOR FP MULTIPLY AND SUBTRACT
  2398  	op_VFPSO  uint32 = 0xE7CC // 	VRR-a	VECTOR FP PERFORM SIGN OPERATION
  2399  	op_VFSQ   uint32 = 0xE7CE // 	VRR-a	VECTOR FP SQUARE ROOT
  2400  	op_VFS    uint32 = 0xE7E2 // 	VRR-c	VECTOR FP SUBTRACT
  2401  	op_VFTCI  uint32 = 0xE74A // 	VRI-e	VECTOR FP TEST DATA CLASS IMMEDIATE
  2402  	op_VGFM   uint32 = 0xE7B4 // 	VRR-c	VECTOR GALOIS FIELD MULTIPLY SUM
  2403  	op_VGFMA  uint32 = 0xE7BC // 	VRR-d	VECTOR GALOIS FIELD MULTIPLY SUM AND ACCUMULATE
  2404  	op_VGEF   uint32 = 0xE713 // 	VRV	VECTOR GATHER ELEMENT (32)
  2405  	op_VGEG   uint32 = 0xE712 // 	VRV	VECTOR GATHER ELEMENT (64)
  2406  	op_VGBM   uint32 = 0xE744 // 	VRI-a	VECTOR GENERATE BYTE MASK
  2407  	op_VGM    uint32 = 0xE746 // 	VRI-b	VECTOR GENERATE MASK
  2408  	op_VISTR  uint32 = 0xE75C // 	VRR-a	VECTOR ISOLATE STRING
  2409  	op_VL     uint32 = 0xE706 // 	VRX	VECTOR LOAD
  2410  	op_VLR    uint32 = 0xE756 // 	VRR-a	VECTOR LOAD
  2411  	op_VLREP  uint32 = 0xE705 // 	VRX	VECTOR LOAD AND REPLICATE
  2412  	op_VLC    uint32 = 0xE7DE // 	VRR-a	VECTOR LOAD COMPLEMENT
  2413  	op_VLEH   uint32 = 0xE701 // 	VRX	VECTOR LOAD ELEMENT (16)
  2414  	op_VLEF   uint32 = 0xE703 // 	VRX	VECTOR LOAD ELEMENT (32)
  2415  	op_VLEG   uint32 = 0xE702 // 	VRX	VECTOR LOAD ELEMENT (64)
  2416  	op_VLEB   uint32 = 0xE700 // 	VRX	VECTOR LOAD ELEMENT (8)
  2417  	op_VLEIH  uint32 = 0xE741 // 	VRI-a	VECTOR LOAD ELEMENT IMMEDIATE (16)
  2418  	op_VLEIF  uint32 = 0xE743 // 	VRI-a	VECTOR LOAD ELEMENT IMMEDIATE (32)
  2419  	op_VLEIG  uint32 = 0xE742 // 	VRI-a	VECTOR LOAD ELEMENT IMMEDIATE (64)
  2420  	op_VLEIB  uint32 = 0xE740 // 	VRI-a	VECTOR LOAD ELEMENT IMMEDIATE (8)
  2421  	op_VFI    uint32 = 0xE7C7 // 	VRR-a	VECTOR LOAD FP INTEGER
  2422  	op_VLGV   uint32 = 0xE721 // 	VRS-c	VECTOR LOAD GR FROM VR ELEMENT
  2423  	op_VLLEZ  uint32 = 0xE704 // 	VRX	VECTOR LOAD LOGICAL ELEMENT AND ZERO
  2424  	op_VLM    uint32 = 0xE736 // 	VRS-a	VECTOR LOAD MULTIPLE
  2425  	op_VLP    uint32 = 0xE7DF // 	VRR-a	VECTOR LOAD POSITIVE
  2426  	op_VLBB   uint32 = 0xE707 // 	VRX	VECTOR LOAD TO BLOCK BOUNDARY
  2427  	op_VLVG   uint32 = 0xE722 // 	VRS-b	VECTOR LOAD VR ELEMENT FROM GR
  2428  	op_VLVGP  uint32 = 0xE762 // 	VRR-f	VECTOR LOAD VR FROM GRS DISJOINT
  2429  	op_VLL    uint32 = 0xE737 // 	VRS-b	VECTOR LOAD WITH LENGTH
  2430  	op_VMX    uint32 = 0xE7FF // 	VRR-c	VECTOR MAXIMUM
  2431  	op_VMXL   uint32 = 0xE7FD // 	VRR-c	VECTOR MAXIMUM LOGICAL
  2432  	op_VMRH   uint32 = 0xE761 // 	VRR-c	VECTOR MERGE HIGH
  2433  	op_VMRL   uint32 = 0xE760 // 	VRR-c	VECTOR MERGE LOW
  2434  	op_VMN    uint32 = 0xE7FE // 	VRR-c	VECTOR MINIMUM
  2435  	op_VMNL   uint32 = 0xE7FC // 	VRR-c	VECTOR MINIMUM LOGICAL
  2436  	op_VMAE   uint32 = 0xE7AE // 	VRR-d	VECTOR MULTIPLY AND ADD EVEN
  2437  	op_VMAH   uint32 = 0xE7AB // 	VRR-d	VECTOR MULTIPLY AND ADD HIGH
  2438  	op_VMALE  uint32 = 0xE7AC // 	VRR-d	VECTOR MULTIPLY AND ADD LOGICAL EVEN
  2439  	op_VMALH  uint32 = 0xE7A9 // 	VRR-d	VECTOR MULTIPLY AND ADD LOGICAL HIGH
  2440  	op_VMALO  uint32 = 0xE7AD // 	VRR-d	VECTOR MULTIPLY AND ADD LOGICAL ODD
  2441  	op_VMAL   uint32 = 0xE7AA // 	VRR-d	VECTOR MULTIPLY AND ADD LOW
  2442  	op_VMAO   uint32 = 0xE7AF // 	VRR-d	VECTOR MULTIPLY AND ADD ODD
  2443  	op_VME    uint32 = 0xE7A6 // 	VRR-c	VECTOR MULTIPLY EVEN
  2444  	op_VMH    uint32 = 0xE7A3 // 	VRR-c	VECTOR MULTIPLY HIGH
  2445  	op_VMLE   uint32 = 0xE7A4 // 	VRR-c	VECTOR MULTIPLY EVEN LOGICAL
  2446  	op_VMLH   uint32 = 0xE7A1 // 	VRR-c	VECTOR MULTIPLY HIGH LOGICAL
  2447  	op_VMLO   uint32 = 0xE7A5 // 	VRR-c	VECTOR MULTIPLY ODD LOGICAL
  2448  	op_VML    uint32 = 0xE7A2 // 	VRR-c	VECTOR MULTIPLY LOW
  2449  	op_VMO    uint32 = 0xE7A7 // 	VRR-c	VECTOR MULTIPLY ODD
  2450  	op_VNO    uint32 = 0xE76B // 	VRR-c	VECTOR NOR
  2451  	op_VO     uint32 = 0xE76A // 	VRR-c	VECTOR OR
  2452  	op_VPK    uint32 = 0xE794 // 	VRR-c	VECTOR PACK
  2453  	op_VPKLS  uint32 = 0xE795 // 	VRR-b	VECTOR PACK LOGICAL SATURATE
  2454  	op_VPKS   uint32 = 0xE797 // 	VRR-b	VECTOR PACK SATURATE
  2455  	op_VPERM  uint32 = 0xE78C // 	VRR-e	VECTOR PERMUTE
  2456  	op_VPDI   uint32 = 0xE784 // 	VRR-c	VECTOR PERMUTE DOUBLEWORD IMMEDIATE
  2457  	op_VPOPCT uint32 = 0xE750 // 	VRR-a	VECTOR POPULATION COUNT
  2458  	op_VREP   uint32 = 0xE74D // 	VRI-c	VECTOR REPLICATE
  2459  	op_VREPI  uint32 = 0xE745 // 	VRI-a	VECTOR REPLICATE IMMEDIATE
  2460  	op_VSCEF  uint32 = 0xE71B // 	VRV	VECTOR SCATTER ELEMENT (32)
  2461  	op_VSCEG  uint32 = 0xE71A // 	VRV	VECTOR SCATTER ELEMENT (64)
  2462  	op_VSEL   uint32 = 0xE78D // 	VRR-e	VECTOR SELECT
  2463  	op_VSL    uint32 = 0xE774 // 	VRR-c	VECTOR SHIFT LEFT
  2464  	op_VSLB   uint32 = 0xE775 // 	VRR-c	VECTOR SHIFT LEFT BY BYTE
  2465  	op_VSLDB  uint32 = 0xE777 // 	VRI-d	VECTOR SHIFT LEFT DOUBLE BY BYTE
  2466  	op_VSRA   uint32 = 0xE77E // 	VRR-c	VECTOR SHIFT RIGHT ARITHMETIC
  2467  	op_VSRAB  uint32 = 0xE77F // 	VRR-c	VECTOR SHIFT RIGHT ARITHMETIC BY BYTE
  2468  	op_VSRL   uint32 = 0xE77C // 	VRR-c	VECTOR SHIFT RIGHT LOGICAL
  2469  	op_VSRLB  uint32 = 0xE77D // 	VRR-c	VECTOR SHIFT RIGHT LOGICAL BY BYTE
  2470  	op_VSEG   uint32 = 0xE75F // 	VRR-a	VECTOR SIGN EXTEND TO DOUBLEWORD
  2471  	op_VST    uint32 = 0xE70E // 	VRX	VECTOR STORE
  2472  	op_VSTEH  uint32 = 0xE709 // 	VRX	VECTOR STORE ELEMENT (16)
  2473  	op_VSTEF  uint32 = 0xE70B // 	VRX	VECTOR STORE ELEMENT (32)
  2474  	op_VSTEG  uint32 = 0xE70A // 	VRX	VECTOR STORE ELEMENT (64)
  2475  	op_VSTEB  uint32 = 0xE708 // 	VRX	VECTOR STORE ELEMENT (8)
  2476  	op_VSTM   uint32 = 0xE73E // 	VRS-a	VECTOR STORE MULTIPLE
  2477  	op_VSTL   uint32 = 0xE73F // 	VRS-b	VECTOR STORE WITH LENGTH
  2478  	op_VSTRC  uint32 = 0xE78A // 	VRR-d	VECTOR STRING RANGE COMPARE
  2479  	op_VS     uint32 = 0xE7F7 // 	VRR-c	VECTOR SUBTRACT
  2480  	op_VSCBI  uint32 = 0xE7F5 // 	VRR-c	VECTOR SUBTRACT COMPUTE BORROW INDICATION
  2481  	op_VSBCBI uint32 = 0xE7BD // 	VRR-d	VECTOR SUBTRACT WITH BORROW COMPUTE BORROW INDICATION
  2482  	op_VSBI   uint32 = 0xE7BF // 	VRR-d	VECTOR SUBTRACT WITH BORROW INDICATION
  2483  	op_VSUMG  uint32 = 0xE765 // 	VRR-c	VECTOR SUM ACROSS DOUBLEWORD
  2484  	op_VSUMQ  uint32 = 0xE767 // 	VRR-c	VECTOR SUM ACROSS QUADWORD
  2485  	op_VSUM   uint32 = 0xE764 // 	VRR-c	VECTOR SUM ACROSS WORD
  2486  	op_VTM    uint32 = 0xE7D8 // 	VRR-a	VECTOR TEST UNDER MASK
  2487  	op_VUPH   uint32 = 0xE7D7 // 	VRR-a	VECTOR UNPACK HIGH
  2488  	op_VUPLH  uint32 = 0xE7D5 // 	VRR-a	VECTOR UNPACK LOGICAL HIGH
  2489  	op_VUPLL  uint32 = 0xE7D4 // 	VRR-a	VECTOR UNPACK LOGICAL LOW
  2490  	op_VUPL   uint32 = 0xE7D6 // 	VRR-a	VECTOR UNPACK LOW
  2491  )
  2492  
  2493  func oclass(a *obj.Addr) int {
  2494  	return int(a.Class) - 1
  2495  }
  2496  
  2497  // Add a relocation for the immediate in a RIL style instruction.
  2498  // The addend will be adjusted as required.
  2499  func (c *ctxtz) addrilreloc(sym *obj.LSym, add int64) *obj.Reloc {
  2500  	if sym == nil {
  2501  		c.ctxt.Diag("require symbol to apply relocation")
  2502  	}
  2503  	offset := int64(2) // relocation offset from start of instruction
  2504  	rel := obj.Addrel(c.cursym)
  2505  	rel.Off = int32(c.pc + offset)
  2506  	rel.Siz = 4
  2507  	rel.Sym = sym
  2508  	rel.Add = add + offset + int64(rel.Siz)
  2509  	rel.Type = obj.R_PCRELDBL
  2510  	return rel
  2511  }
  2512  
  2513  func (c *ctxtz) addrilrelocoffset(sym *obj.LSym, add, offset int64) *obj.Reloc {
  2514  	if sym == nil {
  2515  		c.ctxt.Diag("require symbol to apply relocation")
  2516  	}
  2517  	offset += int64(2) // relocation offset from start of instruction
  2518  	rel := obj.Addrel(c.cursym)
  2519  	rel.Off = int32(c.pc + offset)
  2520  	rel.Siz = 4
  2521  	rel.Sym = sym
  2522  	rel.Add = add + offset + int64(rel.Siz)
  2523  	rel.Type = obj.R_PCRELDBL
  2524  	return rel
  2525  }
  2526  
  2527  // Add a CALL relocation for the immediate in a RIL style instruction.
  2528  // The addend will be adjusted as required.
  2529  func (c *ctxtz) addcallreloc(sym *obj.LSym, add int64) *obj.Reloc {
  2530  	if sym == nil {
  2531  		c.ctxt.Diag("require symbol to apply relocation")
  2532  	}
  2533  	offset := int64(2) // relocation offset from start of instruction
  2534  	rel := obj.Addrel(c.cursym)
  2535  	rel.Off = int32(c.pc + offset)
  2536  	rel.Siz = 4
  2537  	rel.Sym = sym
  2538  	rel.Add = add + offset + int64(rel.Siz)
  2539  	rel.Type = obj.R_CALL
  2540  	return rel
  2541  }
  2542  
  2543  func (c *ctxtz) branchMask(p *obj.Prog) uint32 {
  2544  	switch p.As {
  2545  	case ABEQ, ACMPBEQ, ACMPUBEQ, AMOVDEQ:
  2546  		return 0x8
  2547  	case ABGE, ACMPBGE, ACMPUBGE, AMOVDGE:
  2548  		return 0xA
  2549  	case ABGT, ACMPBGT, ACMPUBGT, AMOVDGT:
  2550  		return 0x2
  2551  	case ABLE, ACMPBLE, ACMPUBLE, AMOVDLE:
  2552  		return 0xC
  2553  	case ABLT, ACMPBLT, ACMPUBLT, AMOVDLT:
  2554  		return 0x4
  2555  	case ABNE, ACMPBNE, ACMPUBNE, AMOVDNE:
  2556  		return 0x7
  2557  	case ABLEU: // LE or unordered
  2558  		return 0xD
  2559  	case ABLTU: // LT or unordered
  2560  		return 0x5
  2561  	case ABVC:
  2562  		return 0x0 // needs extra instruction
  2563  	case ABVS:
  2564  		return 0x1 // unordered
  2565  	}
  2566  	c.ctxt.Diag("unknown conditional branch %v", p.As)
  2567  	return 0xF
  2568  }
  2569  
  2570  func (c *ctxtz) asmout(p *obj.Prog, asm *[]byte) {
  2571  	o := c.oplook(p)
  2572  
  2573  	switch o.type_ {
  2574  	default:
  2575  		c.ctxt.Diag("unknown type %d", o.type_)
  2576  
  2577  	case 0: // PSEUDO OPS
  2578  		break
  2579  
  2580  	case 1: // mov reg reg
  2581  		switch p.As {
  2582  		default:
  2583  			c.ctxt.Diag("unhandled operation: %v", p.As)
  2584  		case AMOVD:
  2585  			zRRE(op_LGR, uint32(p.To.Reg), uint32(p.From.Reg), asm)
  2586  		// sign extend
  2587  		case AMOVW:
  2588  			zRRE(op_LGFR, uint32(p.To.Reg), uint32(p.From.Reg), asm)
  2589  		case AMOVH:
  2590  			zRRE(op_LGHR, uint32(p.To.Reg), uint32(p.From.Reg), asm)
  2591  		case AMOVB:
  2592  			zRRE(op_LGBR, uint32(p.To.Reg), uint32(p.From.Reg), asm)
  2593  		// zero extend
  2594  		case AMOVWZ:
  2595  			zRRE(op_LLGFR, uint32(p.To.Reg), uint32(p.From.Reg), asm)
  2596  		case AMOVHZ:
  2597  			zRRE(op_LLGHR, uint32(p.To.Reg), uint32(p.From.Reg), asm)
  2598  		case AMOVBZ:
  2599  			zRRE(op_LLGCR, uint32(p.To.Reg), uint32(p.From.Reg), asm)
  2600  		// reverse bytes
  2601  		case AMOVDBR:
  2602  			zRRE(op_LRVGR, uint32(p.To.Reg), uint32(p.From.Reg), asm)
  2603  		case AMOVWBR:
  2604  			zRRE(op_LRVR, uint32(p.To.Reg), uint32(p.From.Reg), asm)
  2605  		// floating point
  2606  		case AFMOVD, AFMOVS:
  2607  			zRR(op_LDR, uint32(p.To.Reg), uint32(p.From.Reg), asm)
  2608  		}
  2609  
  2610  	case 2: // arithmetic op reg [reg] reg
  2611  		r := p.Reg
  2612  		if r == 0 {
  2613  			r = p.To.Reg
  2614  		}
  2615  
  2616  		var opcode uint32
  2617  
  2618  		switch p.As {
  2619  		default:
  2620  			c.ctxt.Diag("invalid opcode")
  2621  		case AADD:
  2622  			opcode = op_AGRK
  2623  		case AADDC:
  2624  			opcode = op_ALGRK
  2625  		case AADDE:
  2626  			opcode = op_ALCGR
  2627  		case AADDW:
  2628  			opcode = op_ARK
  2629  		case AMULLW:
  2630  			opcode = op_MSGFR
  2631  		case AMULLD:
  2632  			opcode = op_MSGR
  2633  		case ADIVW, AMODW:
  2634  			opcode = op_DSGFR
  2635  		case ADIVWU, AMODWU:
  2636  			opcode = op_DLR
  2637  		case ADIVD, AMODD:
  2638  			opcode = op_DSGR
  2639  		case ADIVDU, AMODDU:
  2640  			opcode = op_DLGR
  2641  		}
  2642  
  2643  		switch p.As {
  2644  		default:
  2645  
  2646  		case AADD, AADDC, AADDW:
  2647  			if p.As == AADDW && r == p.To.Reg {
  2648  				zRR(op_AR, uint32(p.To.Reg), uint32(p.From.Reg), asm)
  2649  			} else {
  2650  				zRRF(opcode, uint32(p.From.Reg), 0, uint32(p.To.Reg), uint32(r), asm)
  2651  			}
  2652  
  2653  		case AADDE, AMULLW, AMULLD:
  2654  			if r == p.To.Reg {
  2655  				zRRE(opcode, uint32(p.To.Reg), uint32(p.From.Reg), asm)
  2656  			} else if p.From.Reg == p.To.Reg {
  2657  				zRRE(opcode, uint32(p.To.Reg), uint32(r), asm)
  2658  			} else {
  2659  				zRRE(op_LGR, uint32(p.To.Reg), uint32(r), asm)
  2660  				zRRE(opcode, uint32(p.To.Reg), uint32(p.From.Reg), asm)
  2661  			}
  2662  
  2663  		case ADIVW, ADIVWU, ADIVD, ADIVDU:
  2664  			if p.As == ADIVWU || p.As == ADIVDU {
  2665  				zRI(op_LGHI, REGTMP, 0, asm)
  2666  			}
  2667  			zRRE(op_LGR, REGTMP2, uint32(r), asm)
  2668  			zRRE(opcode, REGTMP, uint32(p.From.Reg), asm)
  2669  			zRRE(op_LGR, uint32(p.To.Reg), REGTMP2, asm)
  2670  
  2671  		case AMODW, AMODWU, AMODD, AMODDU:
  2672  			if p.As == AMODWU || p.As == AMODDU {
  2673  				zRI(op_LGHI, REGTMP, 0, asm)
  2674  			}
  2675  			zRRE(op_LGR, REGTMP2, uint32(r), asm)
  2676  			zRRE(opcode, REGTMP, uint32(p.From.Reg), asm)
  2677  			zRRE(op_LGR, uint32(p.To.Reg), REGTMP, asm)
  2678  
  2679  		}
  2680  
  2681  	case 3: // mov $constant reg
  2682  		v := c.vregoff(&p.From)
  2683  		switch p.As {
  2684  		case AMOVBZ:
  2685  			v = int64(uint8(v))
  2686  		case AMOVHZ:
  2687  			v = int64(uint16(v))
  2688  		case AMOVWZ:
  2689  			v = int64(uint32(v))
  2690  		case AMOVB:
  2691  			v = int64(int8(v))
  2692  		case AMOVH:
  2693  			v = int64(int16(v))
  2694  		case AMOVW:
  2695  			v = int64(int32(v))
  2696  		}
  2697  		if int64(int16(v)) == v {
  2698  			zRI(op_LGHI, uint32(p.To.Reg), uint32(v), asm)
  2699  		} else if v&0xffff0000 == v {
  2700  			zRI(op_LLILH, uint32(p.To.Reg), uint32(v>>16), asm)
  2701  		} else if v&0xffff00000000 == v {
  2702  			zRI(op_LLIHL, uint32(p.To.Reg), uint32(v>>32), asm)
  2703  		} else if uint64(v)&0xffff000000000000 == uint64(v) {
  2704  			zRI(op_LLIHH, uint32(p.To.Reg), uint32(v>>48), asm)
  2705  		} else if int64(int32(v)) == v {
  2706  			zRIL(_a, op_LGFI, uint32(p.To.Reg), uint32(v), asm)
  2707  		} else if int64(uint32(v)) == v {
  2708  			zRIL(_a, op_LLILF, uint32(p.To.Reg), uint32(v), asm)
  2709  		} else if uint64(v)&0xffffffff00000000 == uint64(v) {
  2710  			zRIL(_a, op_LLIHF, uint32(p.To.Reg), uint32(v>>32), asm)
  2711  		} else {
  2712  			zRIL(_a, op_LLILF, uint32(p.To.Reg), uint32(v), asm)
  2713  			zRIL(_a, op_IIHF, uint32(p.To.Reg), uint32(v>>32), asm)
  2714  		}
  2715  
  2716  	case 4: // multiply high (a*b)>>64
  2717  		r := p.Reg
  2718  		if r == 0 {
  2719  			r = p.To.Reg
  2720  		}
  2721  		zRRE(op_LGR, REGTMP2, uint32(r), asm)
  2722  		zRRE(op_MLGR, REGTMP, uint32(p.From.Reg), asm)
  2723  		switch p.As {
  2724  		case AMULHDU:
  2725  			// Unsigned: move result into correct register.
  2726  			zRRE(op_LGR, uint32(p.To.Reg), REGTMP, asm)
  2727  		case AMULHD:
  2728  			// Signed: need to convert result.
  2729  			// See Hacker's Delight 8-3.
  2730  			zRSY(op_SRAG, REGTMP2, uint32(p.From.Reg), 0, 63, asm)
  2731  			zRRE(op_NGR, REGTMP2, uint32(r), asm)
  2732  			zRRE(op_SGR, REGTMP, REGTMP2, asm)
  2733  			zRSY(op_SRAG, REGTMP2, uint32(r), 0, 63, asm)
  2734  			zRRE(op_NGR, REGTMP2, uint32(p.From.Reg), asm)
  2735  			zRRF(op_SGRK, REGTMP2, 0, uint32(p.To.Reg), REGTMP, asm)
  2736  		}
  2737  
  2738  	case 5: // syscall
  2739  		zI(op_SVC, 0, asm)
  2740  
  2741  	case 6: // logical op reg [reg] reg
  2742  		var oprr, oprre, oprrf uint32
  2743  		switch p.As {
  2744  		case AAND:
  2745  			oprre = op_NGR
  2746  			oprrf = op_NGRK
  2747  		case AANDW:
  2748  			oprr = op_NR
  2749  			oprrf = op_NRK
  2750  		case AOR:
  2751  			oprre = op_OGR
  2752  			oprrf = op_OGRK
  2753  		case AORW:
  2754  			oprr = op_OR
  2755  			oprrf = op_ORK
  2756  		case AXOR:
  2757  			oprre = op_XGR
  2758  			oprrf = op_XGRK
  2759  		case AXORW:
  2760  			oprr = op_XR
  2761  			oprrf = op_XRK
  2762  		}
  2763  		if p.Reg == 0 {
  2764  			if oprr != 0 {
  2765  				zRR(oprr, uint32(p.To.Reg), uint32(p.From.Reg), asm)
  2766  			} else {
  2767  				zRRE(oprre, uint32(p.To.Reg), uint32(p.From.Reg), asm)
  2768  			}
  2769  		} else {
  2770  			zRRF(oprrf, uint32(p.Reg), 0, uint32(p.To.Reg), uint32(p.From.Reg), asm)
  2771  		}
  2772  
  2773  	case 7: // shift/rotate reg [reg] reg
  2774  		d2 := c.vregoff(&p.From)
  2775  		b2 := p.From.Reg
  2776  		r3 := p.Reg
  2777  		if r3 == 0 {
  2778  			r3 = p.To.Reg
  2779  		}
  2780  		r1 := p.To.Reg
  2781  		var opcode uint32
  2782  		switch p.As {
  2783  		default:
  2784  		case ASLD:
  2785  			opcode = op_SLLG
  2786  		case ASRD:
  2787  			opcode = op_SRLG
  2788  		case ASLW:
  2789  			opcode = op_SLLK
  2790  		case ASRW:
  2791  			opcode = op_SRLK
  2792  		case ARLL:
  2793  			opcode = op_RLL
  2794  		case ARLLG:
  2795  			opcode = op_RLLG
  2796  		case ASRAW:
  2797  			opcode = op_SRAK
  2798  		case ASRAD:
  2799  			opcode = op_SRAG
  2800  		}
  2801  		zRSY(opcode, uint32(r1), uint32(r3), uint32(b2), uint32(d2), asm)
  2802  
  2803  	case 8: // find leftmost one
  2804  		if p.To.Reg&1 != 0 {
  2805  			c.ctxt.Diag("target must be an even-numbered register")
  2806  		}
  2807  		// FLOGR also writes a mask to p.To.Reg+1.
  2808  		zRRE(op_FLOGR, uint32(p.To.Reg), uint32(p.From.Reg), asm)
  2809  
  2810  	case 10: // subtract reg [reg] reg
  2811  		r := int(p.Reg)
  2812  
  2813  		switch p.As {
  2814  		default:
  2815  		case ASUB:
  2816  			if r == 0 {
  2817  				zRRE(op_SGR, uint32(p.To.Reg), uint32(p.From.Reg), asm)
  2818  			} else {
  2819  				zRRF(op_SGRK, uint32(p.From.Reg), 0, uint32(p.To.Reg), uint32(r), asm)
  2820  			}
  2821  		case ASUBC:
  2822  			if r == 0 {
  2823  				zRRE(op_SLGR, uint32(p.To.Reg), uint32(p.From.Reg), asm)
  2824  			} else {
  2825  				zRRF(op_SLGRK, uint32(p.From.Reg), 0, uint32(p.To.Reg), uint32(r), asm)
  2826  			}
  2827  		case ASUBE:
  2828  			if r == 0 {
  2829  				r = int(p.To.Reg)
  2830  			}
  2831  			if r == int(p.To.Reg) {
  2832  				zRRE(op_SLBGR, uint32(p.To.Reg), uint32(p.From.Reg), asm)
  2833  			} else if p.From.Reg == p.To.Reg {
  2834  				zRRE(op_LGR, REGTMP, uint32(p.From.Reg), asm)
  2835  				zRRE(op_LGR, uint32(p.To.Reg), uint32(r), asm)
  2836  				zRRE(op_SLBGR, uint32(p.To.Reg), REGTMP, asm)
  2837  			} else {
  2838  				zRRE(op_LGR, uint32(p.To.Reg), uint32(r), asm)
  2839  				zRRE(op_SLBGR, uint32(p.To.Reg), uint32(p.From.Reg), asm)
  2840  			}
  2841  		case ASUBW:
  2842  			if r == 0 {
  2843  				zRR(op_SR, uint32(p.To.Reg), uint32(p.From.Reg), asm)
  2844  			} else {
  2845  				zRRF(op_SRK, uint32(p.From.Reg), 0, uint32(p.To.Reg), uint32(r), asm)
  2846  			}
  2847  		}
  2848  
  2849  	case 11: // br/bl
  2850  		v := int32(0)
  2851  
  2852  		if p.Pcond != nil {
  2853  			v = int32((p.Pcond.Pc - p.Pc) >> 1)
  2854  		}
  2855  
  2856  		if p.As == ABR && p.To.Sym == nil && int32(int16(v)) == v {
  2857  			zRI(op_BRC, 0xF, uint32(v), asm)
  2858  		} else {
  2859  			if p.As == ABL {
  2860  				zRIL(_b, op_BRASL, uint32(REG_LR), uint32(v), asm)
  2861  			} else {
  2862  				zRIL(_c, op_BRCL, 0xF, uint32(v), asm)
  2863  			}
  2864  			if p.To.Sym != nil {
  2865  				c.addcallreloc(p.To.Sym, p.To.Offset)
  2866  			}
  2867  		}
  2868  
  2869  	case 12:
  2870  		r1 := p.To.Reg
  2871  		d2 := c.vregoff(&p.From)
  2872  		b2 := p.From.Reg
  2873  		if b2 == 0 {
  2874  			b2 = o.param
  2875  		}
  2876  		x2 := p.From.Index
  2877  		if -DISP20/2 > d2 || d2 >= DISP20/2 {
  2878  			zRIL(_a, op_LGFI, REGTMP, uint32(d2), asm)
  2879  			if x2 != 0 {
  2880  				zRX(op_LA, REGTMP, REGTMP, uint32(x2), 0, asm)
  2881  			}
  2882  			x2 = REGTMP
  2883  			d2 = 0
  2884  		}
  2885  		var opx, opxy uint32
  2886  		switch p.As {
  2887  		case AADD:
  2888  			opxy = op_AG
  2889  		case AADDC:
  2890  			opxy = op_ALG
  2891  		case AADDW:
  2892  			opx = op_A
  2893  			opxy = op_AY
  2894  		case AMULLW:
  2895  			opx = op_MS
  2896  			opxy = op_MSY
  2897  		case AMULLD:
  2898  			opxy = op_MSG
  2899  		case ASUB:
  2900  			opxy = op_SG
  2901  		case ASUBC:
  2902  			opxy = op_SLG
  2903  		case ASUBE:
  2904  			opxy = op_SLBG
  2905  		case ASUBW:
  2906  			opx = op_S
  2907  			opxy = op_SY
  2908  		case AAND:
  2909  			opxy = op_NG
  2910  		case AANDW:
  2911  			opx = op_N
  2912  			opxy = op_NY
  2913  		case AOR:
  2914  			opxy = op_OG
  2915  		case AORW:
  2916  			opx = op_O
  2917  			opxy = op_OY
  2918  		case AXOR:
  2919  			opxy = op_XG
  2920  		case AXORW:
  2921  			opx = op_X
  2922  			opxy = op_XY
  2923  		}
  2924  		if opx != 0 && 0 <= d2 && d2 < DISP12 {
  2925  			zRX(opx, uint32(r1), uint32(x2), uint32(b2), uint32(d2), asm)
  2926  		} else {
  2927  			zRXY(opxy, uint32(r1), uint32(x2), uint32(b2), uint32(d2), asm)
  2928  		}
  2929  
  2930  	case 15: // br/bl (reg)
  2931  		r := p.To.Reg
  2932  		if p.As == ABCL || p.As == ABL {
  2933  			zRR(op_BASR, uint32(REG_LR), uint32(r), asm)
  2934  		} else {
  2935  			zRR(op_BCR, 0xF, uint32(r), asm)
  2936  		}
  2937  
  2938  	case 16: // conditional branch
  2939  		v := int32(0)
  2940  		if p.Pcond != nil {
  2941  			v = int32((p.Pcond.Pc - p.Pc) >> 1)
  2942  		}
  2943  		mask := c.branchMask(p)
  2944  		if p.To.Sym == nil && int32(int16(v)) == v {
  2945  			zRI(op_BRC, mask, uint32(v), asm)
  2946  		} else {
  2947  			zRIL(_c, op_BRCL, mask, uint32(v), asm)
  2948  		}
  2949  		if p.To.Sym != nil {
  2950  			c.addrilreloc(p.To.Sym, p.To.Offset)
  2951  		}
  2952  
  2953  	case 17: // move on condition
  2954  		m3 := c.branchMask(p)
  2955  		zRRF(op_LOCGR, m3, 0, uint32(p.To.Reg), uint32(p.From.Reg), asm)
  2956  
  2957  	case 18: // br/bl reg
  2958  		if p.As == ABL {
  2959  			zRR(op_BASR, uint32(REG_LR), uint32(p.To.Reg), asm)
  2960  		} else {
  2961  			zRR(op_BCR, 0xF, uint32(p.To.Reg), asm)
  2962  		}
  2963  
  2964  	case 19: // mov $sym+n(SB) reg
  2965  		d := c.vregoff(&p.From)
  2966  		zRIL(_b, op_LARL, uint32(p.To.Reg), 0, asm)
  2967  		if d&1 != 0 {
  2968  			zRX(op_LA, uint32(p.To.Reg), uint32(p.To.Reg), 0, 1, asm)
  2969  			d -= 1
  2970  		}
  2971  		c.addrilreloc(p.From.Sym, d)
  2972  
  2973  	case 21: // subtract $constant [reg] reg
  2974  		v := c.vregoff(&p.From)
  2975  		r := p.Reg
  2976  		if r == 0 {
  2977  			r = p.To.Reg
  2978  		}
  2979  		switch p.As {
  2980  		case ASUB:
  2981  			zRIL(_a, op_LGFI, uint32(REGTMP), uint32(v), asm)
  2982  			zRRF(op_SLGRK, uint32(REGTMP), 0, uint32(p.To.Reg), uint32(r), asm)
  2983  		case ASUBC:
  2984  			if r != p.To.Reg {
  2985  				zRRE(op_LGR, uint32(p.To.Reg), uint32(r), asm)
  2986  			}
  2987  			zRIL(_a, op_SLGFI, uint32(p.To.Reg), uint32(v), asm)
  2988  		case ASUBW:
  2989  			if r != p.To.Reg {
  2990  				zRR(op_LR, uint32(p.To.Reg), uint32(r), asm)
  2991  			}
  2992  			zRIL(_a, op_SLFI, uint32(p.To.Reg), uint32(v), asm)
  2993  		}
  2994  
  2995  	case 22: // add/multiply $constant [reg] reg
  2996  		v := c.vregoff(&p.From)
  2997  		r := p.Reg
  2998  		if r == 0 {
  2999  			r = p.To.Reg
  3000  		}
  3001  		var opri, opril, oprie uint32
  3002  		switch p.As {
  3003  		case AADD:
  3004  			opri = op_AGHI
  3005  			opril = op_AGFI
  3006  			oprie = op_AGHIK
  3007  		case AADDC:
  3008  			opril = op_ALGFI
  3009  			oprie = op_ALGHSIK
  3010  		case AADDW:
  3011  			opri = op_AHI
  3012  			opril = op_AFI
  3013  			oprie = op_AHIK
  3014  		case AMULLW:
  3015  			opri = op_MHI
  3016  			opril = op_MSFI
  3017  		case AMULLD:
  3018  			opri = op_MGHI
  3019  			opril = op_MSGFI
  3020  		}
  3021  		if r != p.To.Reg && (oprie == 0 || int64(int16(v)) != v) {
  3022  			switch p.As {
  3023  			case AADD, AADDC, AMULLD:
  3024  				zRRE(op_LGR, uint32(p.To.Reg), uint32(r), asm)
  3025  			case AADDW, AMULLW:
  3026  				zRR(op_LR, uint32(p.To.Reg), uint32(r), asm)
  3027  			}
  3028  			r = p.To.Reg
  3029  		}
  3030  		if r == p.To.Reg {
  3031  			if opri != 0 && int64(int16(v)) == v {
  3032  				zRI(opri, uint32(p.To.Reg), uint32(v), asm)
  3033  			} else {
  3034  				zRIL(_a, opril, uint32(p.To.Reg), uint32(v), asm)
  3035  			}
  3036  		} else {
  3037  			zRIE(_d, oprie, uint32(p.To.Reg), uint32(r), uint32(v), 0, 0, 0, 0, asm)
  3038  		}
  3039  
  3040  	case 23: // 64-bit logical op $constant reg
  3041  		// TODO(mundaym): merge with case 24.
  3042  		v := c.vregoff(&p.From)
  3043  		switch p.As {
  3044  		default:
  3045  			c.ctxt.Diag("%v is not supported", p)
  3046  		case AAND:
  3047  			if v >= 0 { // needs zero extend
  3048  				zRIL(_a, op_LGFI, REGTMP, uint32(v), asm)
  3049  				zRRE(op_NGR, uint32(p.To.Reg), REGTMP, asm)
  3050  			} else if int64(int16(v)) == v {
  3051  				zRI(op_NILL, uint32(p.To.Reg), uint32(v), asm)
  3052  			} else { //  r.To.Reg & 0xffffffff00000000 & uint32(v)
  3053  				zRIL(_a, op_NILF, uint32(p.To.Reg), uint32(v), asm)
  3054  			}
  3055  		case AOR:
  3056  			if int64(uint32(v)) != v { // needs sign extend
  3057  				zRIL(_a, op_LGFI, REGTMP, uint32(v), asm)
  3058  				zRRE(op_OGR, uint32(p.To.Reg), REGTMP, asm)
  3059  			} else if int64(uint16(v)) == v {
  3060  				zRI(op_OILL, uint32(p.To.Reg), uint32(v), asm)
  3061  			} else {
  3062  				zRIL(_a, op_OILF, uint32(p.To.Reg), uint32(v), asm)
  3063  			}
  3064  		case AXOR:
  3065  			if int64(uint32(v)) != v { // needs sign extend
  3066  				zRIL(_a, op_LGFI, REGTMP, uint32(v), asm)
  3067  				zRRE(op_XGR, uint32(p.To.Reg), REGTMP, asm)
  3068  			} else {
  3069  				zRIL(_a, op_XILF, uint32(p.To.Reg), uint32(v), asm)
  3070  			}
  3071  		}
  3072  
  3073  	case 24: // 32-bit logical op $constant reg
  3074  		v := c.vregoff(&p.From)
  3075  		switch p.As {
  3076  		case AANDW:
  3077  			if uint32(v&0xffff0000) == 0xffff0000 {
  3078  				zRI(op_NILL, uint32(p.To.Reg), uint32(v), asm)
  3079  			} else if uint32(v&0x0000ffff) == 0x0000ffff {
  3080  				zRI(op_NILH, uint32(p.To.Reg), uint32(v)>>16, asm)
  3081  			} else {
  3082  				zRIL(_a, op_NILF, uint32(p.To.Reg), uint32(v), asm)
  3083  			}
  3084  		case AORW:
  3085  			if uint32(v&0xffff0000) == 0 {
  3086  				zRI(op_OILL, uint32(p.To.Reg), uint32(v), asm)
  3087  			} else if uint32(v&0x0000ffff) == 0 {
  3088  				zRI(op_OILH, uint32(p.To.Reg), uint32(v)>>16, asm)
  3089  			} else {
  3090  				zRIL(_a, op_OILF, uint32(p.To.Reg), uint32(v), asm)
  3091  			}
  3092  		case AXORW:
  3093  			zRIL(_a, op_XILF, uint32(p.To.Reg), uint32(v), asm)
  3094  		}
  3095  
  3096  	case 26: // MOVD $offset(base)(index), reg
  3097  		v := c.regoff(&p.From)
  3098  		r := p.From.Reg
  3099  		if r == 0 {
  3100  			r = o.param
  3101  		}
  3102  		i := p.From.Index
  3103  		if v >= 0 && v < DISP12 {
  3104  			zRX(op_LA, uint32(p.To.Reg), uint32(r), uint32(i), uint32(v), asm)
  3105  		} else if v >= -DISP20/2 && v < DISP20/2 {
  3106  			zRXY(op_LAY, uint32(p.To.Reg), uint32(r), uint32(i), uint32(v), asm)
  3107  		} else {
  3108  			zRIL(_a, op_LGFI, REGTMP, uint32(v), asm)
  3109  			zRX(op_LA, uint32(p.To.Reg), uint32(r), REGTMP, uint32(i), asm)
  3110  		}
  3111  
  3112  	case 31: // dword
  3113  		wd := uint64(c.vregoff(&p.From))
  3114  		*asm = append(*asm,
  3115  			uint8(wd>>56),
  3116  			uint8(wd>>48),
  3117  			uint8(wd>>40),
  3118  			uint8(wd>>32),
  3119  			uint8(wd>>24),
  3120  			uint8(wd>>16),
  3121  			uint8(wd>>8),
  3122  			uint8(wd))
  3123  
  3124  	case 32: // float op freg freg
  3125  		var opcode uint32
  3126  		switch p.As {
  3127  		default:
  3128  			c.ctxt.Diag("invalid opcode")
  3129  		case AFADD:
  3130  			opcode = op_ADBR
  3131  		case AFADDS:
  3132  			opcode = op_AEBR
  3133  		case AFDIV:
  3134  			opcode = op_DDBR
  3135  		case AFDIVS:
  3136  			opcode = op_DEBR
  3137  		case AFMUL:
  3138  			opcode = op_MDBR
  3139  		case AFMULS:
  3140  			opcode = op_MEEBR
  3141  		case AFSUB:
  3142  			opcode = op_SDBR
  3143  		case AFSUBS:
  3144  			opcode = op_SEBR
  3145  		}
  3146  		zRRE(opcode, uint32(p.To.Reg), uint32(p.From.Reg), asm)
  3147  
  3148  	case 33: // float op [freg] freg
  3149  		r := p.From.Reg
  3150  		if oclass(&p.From) == C_NONE {
  3151  			r = p.To.Reg
  3152  		}
  3153  		var opcode uint32
  3154  		switch p.As {
  3155  		default:
  3156  		case AFABS:
  3157  			opcode = op_LPDBR
  3158  		case AFNABS:
  3159  			opcode = op_LNDBR
  3160  		case AFNEG:
  3161  			opcode = op_LCDFR
  3162  		case AFNEGS:
  3163  			opcode = op_LCEBR
  3164  		case ALEDBR:
  3165  			opcode = op_LEDBR
  3166  		case ALDEBR:
  3167  			opcode = op_LDEBR
  3168  		case AFSQRT:
  3169  			opcode = op_SQDBR
  3170  		case AFSQRTS:
  3171  			opcode = op_SQEBR
  3172  		}
  3173  		zRRE(opcode, uint32(p.To.Reg), uint32(r), asm)
  3174  
  3175  	case 34: // float multiply-add freg freg freg
  3176  		var opcode uint32
  3177  		switch p.As {
  3178  		default:
  3179  			c.ctxt.Diag("invalid opcode")
  3180  		case AFMADD:
  3181  			opcode = op_MADBR
  3182  		case AFMADDS:
  3183  			opcode = op_MAEBR
  3184  		case AFMSUB:
  3185  			opcode = op_MSDBR
  3186  		case AFMSUBS:
  3187  			opcode = op_MSEBR
  3188  		}
  3189  		zRRD(opcode, uint32(p.To.Reg), uint32(p.From.Reg), uint32(p.Reg), asm)
  3190  
  3191  	case 35: // mov reg mem (no relocation)
  3192  		d2 := c.regoff(&p.To)
  3193  		b2 := p.To.Reg
  3194  		if b2 == 0 {
  3195  			b2 = o.param
  3196  		}
  3197  		x2 := p.To.Index
  3198  		if d2 < -DISP20/2 || d2 >= DISP20/2 {
  3199  			zRIL(_a, op_LGFI, REGTMP, uint32(d2), asm)
  3200  			if x2 != 0 {
  3201  				zRX(op_LA, REGTMP, REGTMP, uint32(x2), 0, asm)
  3202  			}
  3203  			x2 = REGTMP
  3204  			d2 = 0
  3205  		}
  3206  		zRXY(c.zopstore(p.As), uint32(p.From.Reg), uint32(x2), uint32(b2), uint32(d2), asm)
  3207  
  3208  	case 36: // mov mem reg (no relocation)
  3209  		d2 := c.regoff(&p.From)
  3210  		b2 := p.From.Reg
  3211  		if b2 == 0 {
  3212  			b2 = o.param
  3213  		}
  3214  		x2 := p.From.Index
  3215  		if d2 < -DISP20/2 || d2 >= DISP20/2 {
  3216  			zRIL(_a, op_LGFI, REGTMP, uint32(d2), asm)
  3217  			if x2 != 0 {
  3218  				zRX(op_LA, REGTMP, REGTMP, uint32(x2), 0, asm)
  3219  			}
  3220  			x2 = REGTMP
  3221  			d2 = 0
  3222  		}
  3223  		zRXY(c.zopload(p.As), uint32(p.To.Reg), uint32(x2), uint32(b2), uint32(d2), asm)
  3224  
  3225  	case 40: // word/byte
  3226  		wd := uint32(c.regoff(&p.From))
  3227  		if p.As == AWORD { //WORD
  3228  			*asm = append(*asm, uint8(wd>>24), uint8(wd>>16), uint8(wd>>8), uint8(wd))
  3229  		} else { //BYTE
  3230  			*asm = append(*asm, uint8(wd))
  3231  		}
  3232  
  3233  	case 47: // negate [reg] reg
  3234  		r := p.From.Reg
  3235  		if r == 0 {
  3236  			r = p.To.Reg
  3237  		}
  3238  		switch p.As {
  3239  		case ANEG:
  3240  			zRRE(op_LCGR, uint32(p.To.Reg), uint32(r), asm)
  3241  		case ANEGW:
  3242  			zRRE(op_LCGFR, uint32(p.To.Reg), uint32(r), asm)
  3243  		}
  3244  
  3245  	case 48: // floating-point round to integer
  3246  		m3 := c.vregoff(&p.From)
  3247  		if 0 > m3 || m3 > 7 {
  3248  			c.ctxt.Diag("mask (%v) must be in the range [0, 7]", m3)
  3249  		}
  3250  		var opcode uint32
  3251  		switch p.As {
  3252  		case AFIEBR:
  3253  			opcode = op_FIEBR
  3254  		case AFIDBR:
  3255  			opcode = op_FIDBR
  3256  		}
  3257  		zRRF(opcode, uint32(m3), 0, uint32(p.To.Reg), uint32(p.Reg), asm)
  3258  
  3259  	case 67: // fmov $0 freg
  3260  		var opcode uint32
  3261  		switch p.As {
  3262  		case AFMOVS:
  3263  			opcode = op_LZER
  3264  		case AFMOVD:
  3265  			opcode = op_LZDR
  3266  		}
  3267  		zRRE(opcode, uint32(p.To.Reg), 0, asm)
  3268  
  3269  	case 68: // movw areg reg
  3270  		zRRE(op_EAR, uint32(p.To.Reg), uint32(p.From.Reg-REG_AR0), asm)
  3271  
  3272  	case 69: // movw reg areg
  3273  		zRRE(op_SAR, uint32(p.To.Reg-REG_AR0), uint32(p.From.Reg), asm)
  3274  
  3275  	case 70: // cmp reg reg
  3276  		if p.As == ACMPW || p.As == ACMPWU {
  3277  			zRR(c.zoprr(p.As), uint32(p.From.Reg), uint32(p.To.Reg), asm)
  3278  		} else {
  3279  			zRRE(c.zoprre(p.As), uint32(p.From.Reg), uint32(p.To.Reg), asm)
  3280  		}
  3281  
  3282  	case 71: // cmp reg $constant
  3283  		v := c.vregoff(&p.To)
  3284  		switch p.As {
  3285  		case ACMP, ACMPW:
  3286  			if int64(int32(v)) != v {
  3287  				c.ctxt.Diag("%v overflows an int32", v)
  3288  			}
  3289  		case ACMPU, ACMPWU:
  3290  			if int64(uint32(v)) != v {
  3291  				c.ctxt.Diag("%v overflows a uint32", v)
  3292  			}
  3293  		}
  3294  		if p.As == ACMP && int64(int16(v)) == v {
  3295  			zRI(op_CGHI, uint32(p.From.Reg), uint32(v), asm)
  3296  		} else if p.As == ACMPW && int64(int16(v)) == v {
  3297  			zRI(op_CHI, uint32(p.From.Reg), uint32(v), asm)
  3298  		} else {
  3299  			zRIL(_a, c.zopril(p.As), uint32(p.From.Reg), uint32(v), asm)
  3300  		}
  3301  
  3302  	case 72: // mov $constant mem
  3303  		v := c.regoff(&p.From)
  3304  		d := c.regoff(&p.To)
  3305  		r := p.To.Reg
  3306  		x := p.To.Index
  3307  		if r == 0 {
  3308  			r = o.param
  3309  		}
  3310  		if int32(int16(v)) == v && x == 0 {
  3311  			if d < 0 || d >= DISP12 {
  3312  				if r == REGTMP || r == REGTMP2 {
  3313  					zRIL(_a, op_AGFI, uint32(r), uint32(d), asm)
  3314  				} else {
  3315  					zRIL(_a, op_LGFI, REGTMP, uint32(d), asm)
  3316  					zRRE(op_AGR, REGTMP, uint32(r), asm)
  3317  					r = REGTMP
  3318  				}
  3319  				d = 0
  3320  			}
  3321  			var opcode uint32
  3322  			switch p.As {
  3323  			case AMOVD:
  3324  				opcode = op_MVGHI
  3325  			case AMOVW, AMOVWZ:
  3326  				opcode = op_MVHI
  3327  			case AMOVH, AMOVHZ:
  3328  				opcode = op_MVHHI
  3329  			case AMOVB, AMOVBZ:
  3330  				opcode = op_MVI
  3331  			}
  3332  			if opcode == op_MVI {
  3333  				zSI(opcode, uint32(v), uint32(r), uint32(d), asm)
  3334  			} else {
  3335  				zSIL(opcode, uint32(r), uint32(d), uint32(v), asm)
  3336  			}
  3337  		} else {
  3338  			zRIL(_a, op_LGFI, REGTMP2, uint32(v), asm)
  3339  			if d < -DISP20/2 || d >= DISP20/2 {
  3340  				if r == REGTMP {
  3341  					zRIL(_a, op_AGFI, REGTMP, uint32(d), asm)
  3342  				} else {
  3343  					zRIL(_a, op_LGFI, REGTMP, uint32(d), asm)
  3344  					if x != 0 {
  3345  						zRRE(op_AGR, REGTMP, uint32(x), asm)
  3346  					}
  3347  					x = REGTMP
  3348  				}
  3349  				d = 0
  3350  			}
  3351  			zRXY(c.zopstore(p.As), REGTMP2, uint32(x), uint32(r), uint32(d), asm)
  3352  		}
  3353  
  3354  	case 73: // mov $constant addr (including relocation)
  3355  		v := c.regoff(&p.From)
  3356  		d := c.regoff(&p.To)
  3357  		a := uint32(0)
  3358  		if d&1 != 0 {
  3359  			d -= 1
  3360  			a = 1
  3361  		}
  3362  		zRIL(_b, op_LARL, REGTMP, uint32(d), asm)
  3363  		c.addrilreloc(p.To.Sym, int64(d))
  3364  		if int32(int16(v)) == v {
  3365  			var opcode uint32
  3366  			switch p.As {
  3367  			case AMOVD:
  3368  				opcode = op_MVGHI
  3369  			case AMOVW, AMOVWZ:
  3370  				opcode = op_MVHI
  3371  			case AMOVH, AMOVHZ:
  3372  				opcode = op_MVHHI
  3373  			case AMOVB, AMOVBZ:
  3374  				opcode = op_MVI
  3375  			}
  3376  			if opcode == op_MVI {
  3377  				zSI(opcode, uint32(v), REGTMP, a, asm)
  3378  			} else {
  3379  				zSIL(opcode, REGTMP, a, uint32(v), asm)
  3380  			}
  3381  		} else {
  3382  			zRIL(_a, op_LGFI, REGTMP2, uint32(v), asm)
  3383  			zRXY(c.zopstore(p.As), REGTMP2, 0, REGTMP, a, asm)
  3384  		}
  3385  
  3386  	case 74: // mov reg addr (including relocation)
  3387  		i2 := c.regoff(&p.To)
  3388  		switch p.As {
  3389  		case AMOVD:
  3390  			zRIL(_b, op_STGRL, uint32(p.From.Reg), 0, asm)
  3391  		case AMOVW, AMOVWZ: // The zero extension doesn't affect store instructions
  3392  			zRIL(_b, op_STRL, uint32(p.From.Reg), 0, asm)
  3393  		case AMOVH, AMOVHZ: // The zero extension doesn't affect store instructions
  3394  			zRIL(_b, op_STHRL, uint32(p.From.Reg), 0, asm)
  3395  		case AMOVB, AMOVBZ: // The zero extension doesn't affect store instructions
  3396  			zRIL(_b, op_LARL, REGTMP, 0, asm)
  3397  			adj := uint32(0) // adjustment needed for odd addresses
  3398  			if i2&1 != 0 {
  3399  				i2 -= 1
  3400  				adj = 1
  3401  			}
  3402  			zRX(op_STC, uint32(p.From.Reg), 0, REGTMP, adj, asm)
  3403  		case AFMOVD:
  3404  			zRIL(_b, op_LARL, REGTMP, 0, asm)
  3405  			zRX(op_STD, uint32(p.From.Reg), 0, REGTMP, 0, asm)
  3406  		case AFMOVS:
  3407  			zRIL(_b, op_LARL, REGTMP, 0, asm)
  3408  			zRX(op_STE, uint32(p.From.Reg), 0, REGTMP, 0, asm)
  3409  		}
  3410  		c.addrilreloc(p.To.Sym, int64(i2))
  3411  
  3412  	case 75: // mov addr reg (including relocation)
  3413  		i2 := c.regoff(&p.From)
  3414  		switch p.As {
  3415  		case AMOVD:
  3416  			if i2&1 != 0 {
  3417  				zRIL(_b, op_LARL, REGTMP, 0, asm)
  3418  				zRXY(op_LG, uint32(p.To.Reg), REGTMP, 0, 1, asm)
  3419  				i2 -= 1
  3420  			} else {
  3421  				zRIL(_b, op_LGRL, uint32(p.To.Reg), 0, asm)
  3422  			}
  3423  		case AMOVW:
  3424  			zRIL(_b, op_LGFRL, uint32(p.To.Reg), 0, asm)
  3425  		case AMOVWZ:
  3426  			zRIL(_b, op_LLGFRL, uint32(p.To.Reg), 0, asm)
  3427  		case AMOVH:
  3428  			zRIL(_b, op_LGHRL, uint32(p.To.Reg), 0, asm)
  3429  		case AMOVHZ:
  3430  			zRIL(_b, op_LLGHRL, uint32(p.To.Reg), 0, asm)
  3431  		case AMOVB, AMOVBZ:
  3432  			zRIL(_b, op_LARL, REGTMP, 0, asm)
  3433  			adj := uint32(0) // adjustment needed for odd addresses
  3434  			if i2&1 != 0 {
  3435  				i2 -= 1
  3436  				adj = 1
  3437  			}
  3438  			switch p.As {
  3439  			case AMOVB:
  3440  				zRXY(op_LGB, uint32(p.To.Reg), 0, REGTMP, adj, asm)
  3441  			case AMOVBZ:
  3442  				zRXY(op_LLGC, uint32(p.To.Reg), 0, REGTMP, adj, asm)
  3443  			}
  3444  		case AFMOVD:
  3445  			zRIL(_a, op_LARL, REGTMP, 0, asm)
  3446  			zRX(op_LD, uint32(p.To.Reg), 0, REGTMP, 0, asm)
  3447  		case AFMOVS:
  3448  			zRIL(_a, op_LARL, REGTMP, 0, asm)
  3449  			zRX(op_LE, uint32(p.To.Reg), 0, REGTMP, 0, asm)
  3450  		}
  3451  		c.addrilreloc(p.From.Sym, int64(i2))
  3452  
  3453  	case 77: // syscall $constant
  3454  		if p.From.Offset > 255 || p.From.Offset < 1 {
  3455  			c.ctxt.Diag("illegal system call; system call number out of range: %v", p)
  3456  			zE(op_TRAP2, asm) // trap always
  3457  		} else {
  3458  			zI(op_SVC, uint32(p.From.Offset), asm)
  3459  		}
  3460  
  3461  	case 78: // undef
  3462  		// "An instruction consisting entirely of binary 0s is guaranteed
  3463  		// always to be an illegal instruction."
  3464  		*asm = append(*asm, 0, 0, 0, 0)
  3465  
  3466  	case 79: // compare and swap reg reg reg
  3467  		v := c.regoff(&p.To)
  3468  		if v < 0 {
  3469  			v = 0
  3470  		}
  3471  		if p.As == ACS {
  3472  			zRS(op_CS, uint32(p.From.Reg), uint32(p.Reg), uint32(p.To.Reg), uint32(v), asm)
  3473  		} else if p.As == ACSG {
  3474  			zRSY(op_CSG, uint32(p.From.Reg), uint32(p.Reg), uint32(p.To.Reg), uint32(v), asm)
  3475  		}
  3476  
  3477  	case 81: // sync
  3478  		zRR(op_BCR, 0xE, 0, asm)
  3479  
  3480  	case 82: // fixed to float conversion
  3481  		var opcode uint32
  3482  		switch p.As {
  3483  		default:
  3484  			log.Fatalf("unexpected opcode %v", p.As)
  3485  		case ACEFBRA:
  3486  			opcode = op_CEFBRA
  3487  		case ACDFBRA:
  3488  			opcode = op_CDFBRA
  3489  		case ACEGBRA:
  3490  			opcode = op_CEGBRA
  3491  		case ACDGBRA:
  3492  			opcode = op_CDGBRA
  3493  		case ACELFBR:
  3494  			opcode = op_CELFBR
  3495  		case ACDLFBR:
  3496  			opcode = op_CDLFBR
  3497  		case ACELGBR:
  3498  			opcode = op_CELGBR
  3499  		case ACDLGBR:
  3500  			opcode = op_CDLGBR
  3501  		}
  3502  		// set immediate operand M3 to 0 to use the default BFP rounding mode
  3503  		// (usually round to nearest, ties to even)
  3504  		// TODO(mundaym): should this be fixed at round to nearest, ties to even?
  3505  		// M4 is reserved and must be 0
  3506  		zRRF(opcode, 0, 0, uint32(p.To.Reg), uint32(p.From.Reg), asm)
  3507  
  3508  	case 83: // float to fixed conversion
  3509  		var opcode uint32
  3510  		switch p.As {
  3511  		default:
  3512  			log.Fatalf("unexpected opcode %v", p.As)
  3513  		case ACFEBRA:
  3514  			opcode = op_CFEBRA
  3515  		case ACFDBRA:
  3516  			opcode = op_CFDBRA
  3517  		case ACGEBRA:
  3518  			opcode = op_CGEBRA
  3519  		case ACGDBRA:
  3520  			opcode = op_CGDBRA
  3521  		case ACLFEBR:
  3522  			opcode = op_CLFEBR
  3523  		case ACLFDBR:
  3524  			opcode = op_CLFDBR
  3525  		case ACLGEBR:
  3526  			opcode = op_CLGEBR
  3527  		case ACLGDBR:
  3528  			opcode = op_CLGDBR
  3529  		}
  3530  		// set immediate operand M3 to 5 for rounding toward zero (required by Go spec)
  3531  		// M4 is reserved and must be 0
  3532  		zRRF(opcode, 5, 0, uint32(p.To.Reg), uint32(p.From.Reg), asm)
  3533  
  3534  	case 84: // storage-and-storage operations $length mem mem (length in From3)
  3535  		l := c.regoff(p.From3)
  3536  		if l < 1 || l > 256 {
  3537  			c.ctxt.Diag("number of bytes (%v) not in range [1,256]", l)
  3538  		}
  3539  		if p.From.Index != 0 || p.To.Index != 0 {
  3540  			c.ctxt.Diag("cannot use index reg")
  3541  		}
  3542  		b1 := p.To.Reg
  3543  		b2 := p.From.Reg
  3544  		if b1 == 0 {
  3545  			b1 = o.param
  3546  		}
  3547  		if b2 == 0 {
  3548  			b2 = o.param
  3549  		}
  3550  		d1 := c.regoff(&p.To)
  3551  		d2 := c.regoff(&p.From)
  3552  		if d1 < 0 || d1 >= DISP12 {
  3553  			if b2 == REGTMP {
  3554  				c.ctxt.Diag("REGTMP conflict")
  3555  			}
  3556  			if b1 != REGTMP {
  3557  				zRRE(op_LGR, REGTMP, uint32(b1), asm)
  3558  			}
  3559  			zRIL(_a, op_AGFI, REGTMP, uint32(d1), asm)
  3560  			if d1 == d2 && b1 == b2 {
  3561  				d2 = 0
  3562  				b2 = REGTMP
  3563  			}
  3564  			d1 = 0
  3565  			b1 = REGTMP
  3566  		}
  3567  		if d2 < 0 || d2 >= DISP12 {
  3568  			if b1 == REGTMP2 {
  3569  				c.ctxt.Diag("REGTMP2 conflict")
  3570  			}
  3571  			if b2 != REGTMP2 {
  3572  				zRRE(op_LGR, REGTMP2, uint32(b2), asm)
  3573  			}
  3574  			zRIL(_a, op_AGFI, REGTMP2, uint32(d2), asm)
  3575  			d2 = 0
  3576  			b2 = REGTMP2
  3577  		}
  3578  		var opcode uint32
  3579  		switch p.As {
  3580  		default:
  3581  			c.ctxt.Diag("unexpected opcode %v", p.As)
  3582  		case AMVC:
  3583  			opcode = op_MVC
  3584  		case ACLC:
  3585  			opcode = op_CLC
  3586  			// swap operand order for CLC so that it matches CMP
  3587  			b1, b2 = b2, b1
  3588  			d1, d2 = d2, d1
  3589  		case AXC:
  3590  			opcode = op_XC
  3591  		case AOC:
  3592  			opcode = op_OC
  3593  		case ANC:
  3594  			opcode = op_NC
  3595  		}
  3596  		zSS(_a, opcode, uint32(l-1), 0, uint32(b1), uint32(d1), uint32(b2), uint32(d2), asm)
  3597  
  3598  	case 85: // load address relative long
  3599  		v := c.regoff(&p.From)
  3600  		if p.From.Sym == nil {
  3601  			if (v & 1) != 0 {
  3602  				c.ctxt.Diag("cannot use LARL with odd offset: %v", v)
  3603  			}
  3604  		} else {
  3605  			c.addrilreloc(p.From.Sym, int64(v))
  3606  			v = 0
  3607  		}
  3608  		zRIL(_b, op_LARL, uint32(p.To.Reg), uint32(v>>1), asm)
  3609  
  3610  	case 86: // load address
  3611  		d := c.vregoff(&p.From)
  3612  		x := p.From.Index
  3613  		b := p.From.Reg
  3614  		if b == 0 {
  3615  			b = o.param
  3616  		}
  3617  		switch p.As {
  3618  		case ALA:
  3619  			zRX(op_LA, uint32(p.To.Reg), uint32(x), uint32(b), uint32(d), asm)
  3620  		case ALAY:
  3621  			zRXY(op_LAY, uint32(p.To.Reg), uint32(x), uint32(b), uint32(d), asm)
  3622  		}
  3623  
  3624  	case 87: // execute relative long
  3625  		v := c.vregoff(&p.From)
  3626  		if p.From.Sym == nil {
  3627  			if v&1 != 0 {
  3628  				c.ctxt.Diag("cannot use EXRL with odd offset: %v", v)
  3629  			}
  3630  		} else {
  3631  			c.addrilreloc(p.From.Sym, v)
  3632  			v = 0
  3633  		}
  3634  		zRIL(_b, op_EXRL, uint32(p.To.Reg), uint32(v>>1), asm)
  3635  
  3636  	case 88: // store clock
  3637  		var opcode uint32
  3638  		switch p.As {
  3639  		case ASTCK:
  3640  			opcode = op_STCK
  3641  		case ASTCKC:
  3642  			opcode = op_STCKC
  3643  		case ASTCKE:
  3644  			opcode = op_STCKE
  3645  		case ASTCKF:
  3646  			opcode = op_STCKF
  3647  		}
  3648  		v := c.vregoff(&p.To)
  3649  		r := int(p.To.Reg)
  3650  		if r == 0 {
  3651  			r = int(o.param)
  3652  		}
  3653  		zS(opcode, uint32(r), uint32(v), asm)
  3654  
  3655  	case 89: // compare and branch reg reg
  3656  		var v int32
  3657  		if p.Pcond != nil {
  3658  			v = int32((p.Pcond.Pc - p.Pc) >> 1)
  3659  		}
  3660  		var opcode, opcode2 uint32
  3661  		switch p.As {
  3662  		case ACMPBEQ, ACMPBGE, ACMPBGT, ACMPBLE, ACMPBLT, ACMPBNE:
  3663  			opcode = op_CGRJ
  3664  			opcode2 = op_CGR
  3665  		case ACMPUBEQ, ACMPUBGE, ACMPUBGT, ACMPUBLE, ACMPUBLT, ACMPUBNE:
  3666  			opcode = op_CLGRJ
  3667  			opcode2 = op_CLGR
  3668  		}
  3669  		mask := c.branchMask(p)
  3670  		if int32(int16(v)) != v {
  3671  			zRRE(opcode2, uint32(p.From.Reg), uint32(p.Reg), asm)
  3672  			zRIL(_c, op_BRCL, mask, uint32(v-sizeRRE/2), asm)
  3673  		} else {
  3674  			zRIE(_b, opcode, uint32(p.From.Reg), uint32(p.Reg), uint32(v), 0, 0, mask, 0, asm)
  3675  		}
  3676  
  3677  	case 90: // compare and branch reg $constant
  3678  		var v int32
  3679  		if p.Pcond != nil {
  3680  			v = int32((p.Pcond.Pc - p.Pc) >> 1)
  3681  		}
  3682  		var opcode, opcode2 uint32
  3683  		switch p.As {
  3684  		case ACMPBEQ, ACMPBGE, ACMPBGT, ACMPBLE, ACMPBLT, ACMPBNE:
  3685  			opcode = op_CGIJ
  3686  			opcode2 = op_CGFI
  3687  		case ACMPUBEQ, ACMPUBGE, ACMPUBGT, ACMPUBLE, ACMPUBLT, ACMPUBNE:
  3688  			opcode = op_CLGIJ
  3689  			opcode2 = op_CLGFI
  3690  		}
  3691  		mask := c.branchMask(p)
  3692  		if int32(int16(v)) != v {
  3693  			zRIL(_a, opcode2, uint32(p.From.Reg), uint32(c.regoff(p.From3)), asm)
  3694  			zRIL(_c, op_BRCL, mask, uint32(v-sizeRIL/2), asm)
  3695  		} else {
  3696  			zRIE(_c, opcode, uint32(p.From.Reg), mask, uint32(v), 0, 0, 0, uint32(c.regoff(p.From3)), asm)
  3697  		}
  3698  
  3699  	case 93: // GOT lookup
  3700  		v := c.vregoff(&p.To)
  3701  		if v != 0 {
  3702  			c.ctxt.Diag("invalid offset against GOT slot %v", p)
  3703  		}
  3704  		zRIL(_b, op_LGRL, uint32(p.To.Reg), 0, asm)
  3705  		rel := obj.Addrel(c.cursym)
  3706  		rel.Off = int32(c.pc + 2)
  3707  		rel.Siz = 4
  3708  		rel.Sym = p.From.Sym
  3709  		rel.Type = obj.R_GOTPCREL
  3710  		rel.Add = 2 + int64(rel.Siz)
  3711  
  3712  	case 94: // TLS local exec model
  3713  		zRIL(_b, op_LARL, REGTMP, (sizeRIL+sizeRXY+sizeRI)>>1, asm)
  3714  		zRXY(op_LG, uint32(p.To.Reg), REGTMP, 0, 0, asm)
  3715  		zRI(op_BRC, 0xF, (sizeRI+8)>>1, asm)
  3716  		*asm = append(*asm, 0, 0, 0, 0, 0, 0, 0, 0)
  3717  		rel := obj.Addrel(c.cursym)
  3718  		rel.Off = int32(c.pc + sizeRIL + sizeRXY + sizeRI)
  3719  		rel.Siz = 8
  3720  		rel.Sym = p.From.Sym
  3721  		rel.Type = obj.R_TLS_LE
  3722  		rel.Add = 0
  3723  
  3724  	case 95: // TLS initial exec model
  3725  		// Assembly                   | Relocation symbol    | Done Here?
  3726  		// --------------------------------------------------------------
  3727  		// ear  %r11, %a0             |                      |
  3728  		// sllg %r11, %r11, 32        |                      |
  3729  		// ear  %r11, %a1             |                      |
  3730  		// larl %r10, <var>@indntpoff | R_390_TLS_IEENT      | Y
  3731  		// lg   %r10, 0(%r10)         | R_390_TLS_LOAD (tag) | Y
  3732  		// la   %r10, 0(%r10, %r11)   |                      |
  3733  		// --------------------------------------------------------------
  3734  
  3735  		// R_390_TLS_IEENT
  3736  		zRIL(_b, op_LARL, REGTMP, 0, asm)
  3737  		ieent := obj.Addrel(c.cursym)
  3738  		ieent.Off = int32(c.pc + 2)
  3739  		ieent.Siz = 4
  3740  		ieent.Sym = p.From.Sym
  3741  		ieent.Type = obj.R_TLS_IE
  3742  		ieent.Add = 2 + int64(ieent.Siz)
  3743  
  3744  		// R_390_TLS_LOAD
  3745  		zRXY(op_LGF, uint32(p.To.Reg), REGTMP, 0, 0, asm)
  3746  		// TODO(mundaym): add R_390_TLS_LOAD relocation here
  3747  		// not strictly required but might allow the linker to optimize
  3748  
  3749  	case 96: // clear macro
  3750  		length := c.vregoff(&p.From)
  3751  		offset := c.vregoff(&p.To)
  3752  		reg := p.To.Reg
  3753  		if reg == 0 {
  3754  			reg = o.param
  3755  		}
  3756  		if length <= 0 {
  3757  			c.ctxt.Diag("cannot CLEAR %d bytes, must be greater than 0", length)
  3758  		}
  3759  		for length > 0 {
  3760  			if offset < 0 || offset >= DISP12 {
  3761  				if offset >= -DISP20/2 && offset < DISP20/2 {
  3762  					zRXY(op_LAY, REGTMP, uint32(reg), 0, uint32(offset), asm)
  3763  				} else {
  3764  					if reg != REGTMP {
  3765  						zRRE(op_LGR, REGTMP, uint32(reg), asm)
  3766  					}
  3767  					zRIL(_a, op_AGFI, REGTMP, uint32(offset), asm)
  3768  				}
  3769  				reg = REGTMP
  3770  				offset = 0
  3771  			}
  3772  			size := length
  3773  			if size > 256 {
  3774  				size = 256
  3775  			}
  3776  
  3777  			switch size {
  3778  			case 1:
  3779  				zSI(op_MVI, 0, uint32(reg), uint32(offset), asm)
  3780  			case 2:
  3781  				zSIL(op_MVHHI, uint32(reg), uint32(offset), 0, asm)
  3782  			case 4:
  3783  				zSIL(op_MVHI, uint32(reg), uint32(offset), 0, asm)
  3784  			case 8:
  3785  				zSIL(op_MVGHI, uint32(reg), uint32(offset), 0, asm)
  3786  			default:
  3787  				zSS(_a, op_XC, uint32(size-1), 0, uint32(reg), uint32(offset), uint32(reg), uint32(offset), asm)
  3788  			}
  3789  
  3790  			length -= size
  3791  			offset += size
  3792  		}
  3793  
  3794  	case 97: // store multiple
  3795  		rstart := p.From.Reg
  3796  		rend := p.Reg
  3797  		offset := c.regoff(&p.To)
  3798  		reg := p.To.Reg
  3799  		if reg == 0 {
  3800  			reg = o.param
  3801  		}
  3802  		if offset < -DISP20/2 || offset >= DISP20/2 {
  3803  			if reg != REGTMP {
  3804  				zRRE(op_LGR, REGTMP, uint32(reg), asm)
  3805  			}
  3806  			zRIL(_a, op_AGFI, REGTMP, uint32(offset), asm)
  3807  			reg = REGTMP
  3808  			offset = 0
  3809  		}
  3810  		switch p.As {
  3811  		case ASTMY:
  3812  			if offset >= 0 && offset < DISP12 {
  3813  				zRS(op_STM, uint32(rstart), uint32(rend), uint32(reg), uint32(offset), asm)
  3814  			} else {
  3815  				zRSY(op_STMY, uint32(rstart), uint32(rend), uint32(reg), uint32(offset), asm)
  3816  			}
  3817  		case ASTMG:
  3818  			zRSY(op_STMG, uint32(rstart), uint32(rend), uint32(reg), uint32(offset), asm)
  3819  		}
  3820  
  3821  	case 98: // load multiple
  3822  		rstart := p.Reg
  3823  		rend := p.To.Reg
  3824  		offset := c.regoff(&p.From)
  3825  		reg := p.From.Reg
  3826  		if reg == 0 {
  3827  			reg = o.param
  3828  		}
  3829  		if offset < -DISP20/2 || offset >= DISP20/2 {
  3830  			if reg != REGTMP {
  3831  				zRRE(op_LGR, REGTMP, uint32(reg), asm)
  3832  			}
  3833  			zRIL(_a, op_AGFI, REGTMP, uint32(offset), asm)
  3834  			reg = REGTMP
  3835  			offset = 0
  3836  		}
  3837  		switch p.As {
  3838  		case ALMY:
  3839  			if offset >= 0 && offset < DISP12 {
  3840  				zRS(op_LM, uint32(rstart), uint32(rend), uint32(reg), uint32(offset), asm)
  3841  			} else {
  3842  				zRSY(op_LMY, uint32(rstart), uint32(rend), uint32(reg), uint32(offset), asm)
  3843  			}
  3844  		case ALMG:
  3845  			zRSY(op_LMG, uint32(rstart), uint32(rend), uint32(reg), uint32(offset), asm)
  3846  		}
  3847  
  3848  	case 99: // interlocked load and op
  3849  		if p.To.Index != 0 {
  3850  			c.ctxt.Diag("cannot use indexed address")
  3851  		}
  3852  		offset := c.regoff(&p.To)
  3853  		if offset < -DISP20/2 || offset >= DISP20/2 {
  3854  			c.ctxt.Diag("%v does not fit into 20-bit signed integer", offset)
  3855  		}
  3856  		var opcode uint32
  3857  		switch p.As {
  3858  		case ALAA:
  3859  			opcode = op_LAA
  3860  		case ALAAG:
  3861  			opcode = op_LAAG
  3862  		case ALAAL:
  3863  			opcode = op_LAAL
  3864  		case ALAALG:
  3865  			opcode = op_LAALG
  3866  		case ALAN:
  3867  			opcode = op_LAN
  3868  		case ALANG:
  3869  			opcode = op_LANG
  3870  		case ALAX:
  3871  			opcode = op_LAX
  3872  		case ALAXG:
  3873  			opcode = op_LAXG
  3874  		case ALAO:
  3875  			opcode = op_LAO
  3876  		case ALAOG:
  3877  			opcode = op_LAOG
  3878  		}
  3879  		zRSY(opcode, uint32(p.Reg), uint32(p.From.Reg), uint32(p.To.Reg), uint32(offset), asm)
  3880  
  3881  	case 100: // VRX STORE
  3882  		op, m3, _ := vop(p.As)
  3883  		if p.From3 != nil {
  3884  			m3 = uint32(c.vregoff(p.From3))
  3885  		}
  3886  		b2 := p.To.Reg
  3887  		if b2 == 0 {
  3888  			b2 = o.param
  3889  		}
  3890  		d2 := uint32(c.vregoff(&p.To))
  3891  		zVRX(op, uint32(p.From.Reg), uint32(p.To.Index), uint32(b2), d2, m3, asm)
  3892  
  3893  	case 101: // VRX LOAD
  3894  		op, m3, _ := vop(p.As)
  3895  		if p.From3 != nil {
  3896  			m3 = uint32(c.vregoff(p.From3))
  3897  		}
  3898  		b2 := p.From.Reg
  3899  		if b2 == 0 {
  3900  			b2 = o.param
  3901  		}
  3902  		d2 := uint32(c.vregoff(&p.From))
  3903  		zVRX(op, uint32(p.To.Reg), uint32(p.From.Index), uint32(b2), d2, m3, asm)
  3904  
  3905  	case 102: // VRV SCATTER
  3906  		op, m3, _ := vop(p.As)
  3907  		if p.From3 != nil {
  3908  			m3 = uint32(c.vregoff(p.From3))
  3909  		}
  3910  		b2 := p.To.Reg
  3911  		if b2 == 0 {
  3912  			b2 = o.param
  3913  		}
  3914  		d2 := uint32(c.vregoff(&p.To))
  3915  		zVRV(op, uint32(p.From.Reg), uint32(p.To.Index), uint32(b2), d2, m3, asm)
  3916  
  3917  	case 103: // VRV GATHER
  3918  		op, m3, _ := vop(p.As)
  3919  		if p.From3 != nil {
  3920  			m3 = uint32(c.vregoff(p.From3))
  3921  		}
  3922  		b2 := p.From.Reg
  3923  		if b2 == 0 {
  3924  			b2 = o.param
  3925  		}
  3926  		d2 := uint32(c.vregoff(&p.From))
  3927  		zVRV(op, uint32(p.To.Reg), uint32(p.From.Index), uint32(b2), d2, m3, asm)
  3928  
  3929  	case 104: // VRS SHIFT/ROTATE and LOAD GR FROM VR ELEMENT
  3930  		op, m4, _ := vop(p.As)
  3931  		fr := p.Reg
  3932  		if fr == 0 {
  3933  			fr = p.To.Reg
  3934  		}
  3935  		bits := uint32(c.vregoff(&p.From))
  3936  		zVRS(op, uint32(p.To.Reg), uint32(fr), uint32(p.From.Reg), bits, m4, asm)
  3937  
  3938  	case 105: // VRS STORE MULTIPLE
  3939  		op, _, _ := vop(p.As)
  3940  		offset := uint32(c.vregoff(&p.To))
  3941  		reg := p.To.Reg
  3942  		if reg == 0 {
  3943  			reg = o.param
  3944  		}
  3945  		zVRS(op, uint32(p.From.Reg), uint32(p.Reg), uint32(reg), offset, 0, asm)
  3946  
  3947  	case 106: // VRS LOAD MULTIPLE
  3948  		op, _, _ := vop(p.As)
  3949  		offset := uint32(c.vregoff(&p.From))
  3950  		reg := p.From.Reg
  3951  		if reg == 0 {
  3952  			reg = o.param
  3953  		}
  3954  		zVRS(op, uint32(p.Reg), uint32(p.To.Reg), uint32(reg), offset, 0, asm)
  3955  
  3956  	case 107: // VRS STORE WITH LENGTH
  3957  		op, _, _ := vop(p.As)
  3958  		offset := uint32(c.vregoff(&p.To))
  3959  		reg := p.To.Reg
  3960  		if reg == 0 {
  3961  			reg = o.param
  3962  		}
  3963  		zVRS(op, uint32(p.From.Reg), uint32(p.From3.Reg), uint32(reg), offset, 0, asm)
  3964  
  3965  	case 108: // VRS LOAD WITH LENGTH
  3966  		op, _, _ := vop(p.As)
  3967  		offset := uint32(c.vregoff(&p.From))
  3968  		reg := p.From.Reg
  3969  		if reg == 0 {
  3970  			reg = o.param
  3971  		}
  3972  		zVRS(op, uint32(p.To.Reg), uint32(p.From3.Reg), uint32(reg), offset, 0, asm)
  3973  
  3974  	case 109: // VRI-a
  3975  		op, m3, _ := vop(p.As)
  3976  		i2 := uint32(c.vregoff(&p.From))
  3977  		switch p.As {
  3978  		case AVZERO:
  3979  			i2 = 0
  3980  		case AVONE:
  3981  			i2 = 0xffff
  3982  		}
  3983  		if p.From3 != nil {
  3984  			m3 = uint32(c.vregoff(p.From3))
  3985  		}
  3986  		zVRIa(op, uint32(p.To.Reg), i2, m3, asm)
  3987  
  3988  	case 110:
  3989  		op, m4, _ := vop(p.As)
  3990  		i2 := uint32(c.vregoff(p.From3))
  3991  		i3 := uint32(c.vregoff(&p.From))
  3992  		zVRIb(op, uint32(p.To.Reg), i2, i3, m4, asm)
  3993  
  3994  	case 111:
  3995  		op, m4, _ := vop(p.As)
  3996  		i2 := uint32(c.vregoff(&p.From))
  3997  		zVRIc(op, uint32(p.To.Reg), uint32(p.Reg), i2, m4, asm)
  3998  
  3999  	case 112:
  4000  		op, m5, _ := vop(p.As)
  4001  		i4 := uint32(c.vregoff(p.From3))
  4002  		zVRId(op, uint32(p.To.Reg), uint32(p.From.Reg), uint32(p.Reg), i4, m5, asm)
  4003  
  4004  	case 113:
  4005  		op, m4, _ := vop(p.As)
  4006  		m5 := singleElementMask(p.As)
  4007  		i3 := uint32(c.vregoff(&p.From))
  4008  		zVRIe(op, uint32(p.To.Reg), uint32(p.Reg), i3, m5, m4, asm)
  4009  
  4010  	case 114: // VRR-a
  4011  		op, m3, m5 := vop(p.As)
  4012  		m4 := singleElementMask(p.As)
  4013  		zVRRa(op, uint32(p.To.Reg), uint32(p.From.Reg), m5, m4, m3, asm)
  4014  
  4015  	case 115: // VRR-a COMPARE
  4016  		op, m3, m5 := vop(p.As)
  4017  		m4 := singleElementMask(p.As)
  4018  		zVRRa(op, uint32(p.From.Reg), uint32(p.To.Reg), m5, m4, m3, asm)
  4019  
  4020  	case 116: // VRR-a
  4021  
  4022  	case 117: // VRR-b
  4023  		op, m4, m5 := vop(p.As)
  4024  		zVRRb(op, uint32(p.To.Reg), uint32(p.From.Reg), uint32(p.Reg), m5, m4, asm)
  4025  
  4026  	case 118: // VRR-c
  4027  		op, m4, m6 := vop(p.As)
  4028  		m5 := singleElementMask(p.As)
  4029  		v3 := p.Reg
  4030  		if v3 == 0 {
  4031  			v3 = p.To.Reg
  4032  		}
  4033  		zVRRc(op, uint32(p.To.Reg), uint32(p.From.Reg), uint32(v3), m6, m5, m4, asm)
  4034  
  4035  	case 119: // VRR-c SHIFT/ROTATE/DIVIDE/SUB (rhs value on the left, like SLD, DIV etc.)
  4036  		op, m4, m6 := vop(p.As)
  4037  		m5 := singleElementMask(p.As)
  4038  		v2 := p.Reg
  4039  		if v2 == 0 {
  4040  			v2 = p.To.Reg
  4041  		}
  4042  		zVRRc(op, uint32(p.To.Reg), uint32(v2), uint32(p.From.Reg), m6, m5, m4, asm)
  4043  
  4044  	case 120: // VRR-d
  4045  		op, m6, _ := vop(p.As)
  4046  		m5 := singleElementMask(p.As)
  4047  		v1 := uint32(p.To.Reg)
  4048  		v2 := uint32(p.From3.Reg)
  4049  		v3 := uint32(p.From.Reg)
  4050  		v4 := uint32(p.Reg)
  4051  		zVRRd(op, v1, v2, v3, m6, m5, v4, asm)
  4052  
  4053  	case 121: // VRR-e
  4054  		op, m6, _ := vop(p.As)
  4055  		m5 := singleElementMask(p.As)
  4056  		v1 := uint32(p.To.Reg)
  4057  		v2 := uint32(p.From3.Reg)
  4058  		v3 := uint32(p.From.Reg)
  4059  		v4 := uint32(p.Reg)
  4060  		zVRRe(op, v1, v2, v3, m6, m5, v4, asm)
  4061  
  4062  	case 122: // VRR-f LOAD VRS FROM GRS DISJOINT
  4063  		op, _, _ := vop(p.As)
  4064  		zVRRf(op, uint32(p.To.Reg), uint32(p.From.Reg), uint32(p.Reg), asm)
  4065  
  4066  	case 123: // VPDI $m4, V2, V3, V1
  4067  		op, _, _ := vop(p.As)
  4068  		m4 := c.regoff(p.From3)
  4069  		zVRRc(op, uint32(p.To.Reg), uint32(p.From.Reg), uint32(p.Reg), 0, 0, uint32(m4), asm)
  4070  	}
  4071  }
  4072  
  4073  func (c *ctxtz) vregoff(a *obj.Addr) int64 {
  4074  	c.instoffset = 0
  4075  	if a != nil {
  4076  		c.aclass(a)
  4077  	}
  4078  	return c.instoffset
  4079  }
  4080  
  4081  func (c *ctxtz) regoff(a *obj.Addr) int32 {
  4082  	return int32(c.vregoff(a))
  4083  }
  4084  
  4085  // zopload returns the RXY op for the given load
  4086  func (c *ctxtz) zopload(a obj.As) uint32 {
  4087  	switch a {
  4088  	// fixed point load
  4089  	case AMOVD:
  4090  		return op_LG
  4091  	case AMOVW:
  4092  		return op_LGF
  4093  	case AMOVWZ:
  4094  		return op_LLGF
  4095  	case AMOVH:
  4096  		return op_LGH
  4097  	case AMOVHZ:
  4098  		return op_LLGH
  4099  	case AMOVB:
  4100  		return op_LGB
  4101  	case AMOVBZ:
  4102  		return op_LLGC
  4103  
  4104  	// floating point load
  4105  	case AFMOVD:
  4106  		return op_LDY
  4107  	case AFMOVS:
  4108  		return op_LEY
  4109  
  4110  	// byte reversed load
  4111  	case AMOVDBR:
  4112  		return op_LRVG
  4113  	case AMOVWBR:
  4114  		return op_LRV
  4115  	case AMOVHBR:
  4116  		return op_LRVH
  4117  	}
  4118  
  4119  	c.ctxt.Diag("unknown store opcode %v", a)
  4120  	return 0
  4121  }
  4122  
  4123  // zopstore returns the RXY op for the given store
  4124  func (c *ctxtz) zopstore(a obj.As) uint32 {
  4125  	switch a {
  4126  	// fixed point store
  4127  	case AMOVD:
  4128  		return op_STG
  4129  	case AMOVW, AMOVWZ:
  4130  		return op_STY
  4131  	case AMOVH, AMOVHZ:
  4132  		return op_STHY
  4133  	case AMOVB, AMOVBZ:
  4134  		return op_STCY
  4135  
  4136  	// floating point store
  4137  	case AFMOVD:
  4138  		return op_STDY
  4139  	case AFMOVS:
  4140  		return op_STEY
  4141  
  4142  	// byte reversed store
  4143  	case AMOVDBR:
  4144  		return op_STRVG
  4145  	case AMOVWBR:
  4146  		return op_STRV
  4147  	case AMOVHBR:
  4148  		return op_STRVH
  4149  	}
  4150  
  4151  	c.ctxt.Diag("unknown store opcode %v", a)
  4152  	return 0
  4153  }
  4154  
  4155  // zoprre returns the RRE op for the given a
  4156  func (c *ctxtz) zoprre(a obj.As) uint32 {
  4157  	switch a {
  4158  	case ACMP:
  4159  		return op_CGR
  4160  	case ACMPU:
  4161  		return op_CLGR
  4162  	case AFCMPO: //ordered
  4163  		return op_KDBR
  4164  	case AFCMPU: //unordered
  4165  		return op_CDBR
  4166  	case ACEBR:
  4167  		return op_CEBR
  4168  	}
  4169  	c.ctxt.Diag("unknown rre opcode %v", a)
  4170  	return 0
  4171  }
  4172  
  4173  // zoprr returns the RR op for the given a
  4174  func (c *ctxtz) zoprr(a obj.As) uint32 {
  4175  	switch a {
  4176  	case ACMPW:
  4177  		return op_CR
  4178  	case ACMPWU:
  4179  		return op_CLR
  4180  	}
  4181  	c.ctxt.Diag("unknown rr opcode %v", a)
  4182  	return 0
  4183  }
  4184  
  4185  // zopril returns the RIL op for the given a
  4186  func (c *ctxtz) zopril(a obj.As) uint32 {
  4187  	switch a {
  4188  	case ACMP:
  4189  		return op_CGFI
  4190  	case ACMPU:
  4191  		return op_CLGFI
  4192  	case ACMPW:
  4193  		return op_CFI
  4194  	case ACMPWU:
  4195  		return op_CLFI
  4196  	}
  4197  	c.ctxt.Diag("unknown ril opcode %v", a)
  4198  	return 0
  4199  }
  4200  
  4201  // z instructions sizes
  4202  const (
  4203  	sizeE    = 2
  4204  	sizeI    = 2
  4205  	sizeIE   = 4
  4206  	sizeMII  = 6
  4207  	sizeRI   = 4
  4208  	sizeRI1  = 4
  4209  	sizeRI2  = 4
  4210  	sizeRI3  = 4
  4211  	sizeRIE  = 6
  4212  	sizeRIE1 = 6
  4213  	sizeRIE2 = 6
  4214  	sizeRIE3 = 6
  4215  	sizeRIE4 = 6
  4216  	sizeRIE5 = 6
  4217  	sizeRIE6 = 6
  4218  	sizeRIL  = 6
  4219  	sizeRIL1 = 6
  4220  	sizeRIL2 = 6
  4221  	sizeRIL3 = 6
  4222  	sizeRIS  = 6
  4223  	sizeRR   = 2
  4224  	sizeRRD  = 4
  4225  	sizeRRE  = 4
  4226  	sizeRRF  = 4
  4227  	sizeRRF1 = 4
  4228  	sizeRRF2 = 4
  4229  	sizeRRF3 = 4
  4230  	sizeRRF4 = 4
  4231  	sizeRRF5 = 4
  4232  	sizeRRR  = 2
  4233  	sizeRRS  = 6
  4234  	sizeRS   = 4
  4235  	sizeRS1  = 4
  4236  	sizeRS2  = 4
  4237  	sizeRSI  = 4
  4238  	sizeRSL  = 6
  4239  	sizeRSY  = 6
  4240  	sizeRSY1 = 6
  4241  	sizeRSY2 = 6
  4242  	sizeRX   = 4
  4243  	sizeRX1  = 4
  4244  	sizeRX2  = 4
  4245  	sizeRXE  = 6
  4246  	sizeRXF  = 6
  4247  	sizeRXY  = 6
  4248  	sizeRXY1 = 6
  4249  	sizeRXY2 = 6
  4250  	sizeS    = 4
  4251  	sizeSI   = 4
  4252  	sizeSIL  = 6
  4253  	sizeSIY  = 6
  4254  	sizeSMI  = 6
  4255  	sizeSS   = 6
  4256  	sizeSS1  = 6
  4257  	sizeSS2  = 6
  4258  	sizeSS3  = 6
  4259  	sizeSS4  = 6
  4260  	sizeSS5  = 6
  4261  	sizeSS6  = 6
  4262  	sizeSSE  = 6
  4263  	sizeSSF  = 6
  4264  )
  4265  
  4266  // instruction format variations
  4267  type form int
  4268  
  4269  const (
  4270  	_a form = iota
  4271  	_b
  4272  	_c
  4273  	_d
  4274  	_e
  4275  	_f
  4276  )
  4277  
  4278  func zE(op uint32, asm *[]byte) {
  4279  	*asm = append(*asm, uint8(op>>8), uint8(op))
  4280  }
  4281  
  4282  func zI(op, i1 uint32, asm *[]byte) {
  4283  	*asm = append(*asm, uint8(op>>8), uint8(i1))
  4284  }
  4285  
  4286  func zMII(op, m1, ri2, ri3 uint32, asm *[]byte) {
  4287  	*asm = append(*asm,
  4288  		uint8(op>>8),
  4289  		(uint8(m1)<<4)|uint8((ri2>>8)&0x0F),
  4290  		uint8(ri2),
  4291  		uint8(ri3>>16),
  4292  		uint8(ri3>>8),
  4293  		uint8(ri3))
  4294  }
  4295  
  4296  func zRI(op, r1_m1, i2_ri2 uint32, asm *[]byte) {
  4297  	*asm = append(*asm,
  4298  		uint8(op>>8),
  4299  		(uint8(r1_m1)<<4)|(uint8(op)&0x0F),
  4300  		uint8(i2_ri2>>8),
  4301  		uint8(i2_ri2))
  4302  }
  4303  
  4304  // Expected argument values for the instruction formats.
  4305  //
  4306  // Format    a1  a2   a3  a4  a5  a6  a7
  4307  // ------------------------------------
  4308  // a         r1,  0,  i2,  0,  0, m3,  0
  4309  // b         r1, r2, ri4,  0,  0, m3,  0
  4310  // c         r1, m3, ri4,  0,  0,  0, i2
  4311  // d         r1, r3,  i2,  0,  0,  0,  0
  4312  // e         r1, r3, ri2,  0,  0,  0,  0
  4313  // f         r1, r2,   0, i3, i4,  0, i5
  4314  // g         r1, m3,  i2,  0,  0,  0,  0
  4315  func zRIE(f form, op, r1, r2_m3_r3, i2_ri4_ri2, i3, i4, m3, i2_i5 uint32, asm *[]byte) {
  4316  	*asm = append(*asm, uint8(op>>8), uint8(r1)<<4|uint8(r2_m3_r3&0x0F))
  4317  
  4318  	switch f {
  4319  	default:
  4320  		*asm = append(*asm, uint8(i2_ri4_ri2>>8), uint8(i2_ri4_ri2))
  4321  	case _f:
  4322  		*asm = append(*asm, uint8(i3), uint8(i4))
  4323  	}
  4324  
  4325  	switch f {
  4326  	case _a, _b:
  4327  		*asm = append(*asm, uint8(m3)<<4)
  4328  	default:
  4329  		*asm = append(*asm, uint8(i2_i5))
  4330  	}
  4331  
  4332  	*asm = append(*asm, uint8(op))
  4333  }
  4334  
  4335  func zRIL(f form, op, r1_m1, i2_ri2 uint32, asm *[]byte) {
  4336  	if f == _a || f == _b {
  4337  		r1_m1 = r1_m1 - obj.RBaseS390X // this is a register base
  4338  	}
  4339  	*asm = append(*asm,
  4340  		uint8(op>>8),
  4341  		(uint8(r1_m1)<<4)|(uint8(op)&0x0F),
  4342  		uint8(i2_ri2>>24),
  4343  		uint8(i2_ri2>>16),
  4344  		uint8(i2_ri2>>8),
  4345  		uint8(i2_ri2))
  4346  }
  4347  
  4348  func zRIS(op, r1, m3, b4, d4, i2 uint32, asm *[]byte) {
  4349  	*asm = append(*asm,
  4350  		uint8(op>>8),
  4351  		(uint8(r1)<<4)|uint8(m3&0x0F),
  4352  		(uint8(b4)<<4)|(uint8(d4>>8)&0x0F),
  4353  		uint8(d4),
  4354  		uint8(i2),
  4355  		uint8(op))
  4356  }
  4357  
  4358  func zRR(op, r1, r2 uint32, asm *[]byte) {
  4359  	*asm = append(*asm, uint8(op>>8), (uint8(r1)<<4)|uint8(r2&0x0F))
  4360  }
  4361  
  4362  func zRRD(op, r1, r3, r2 uint32, asm *[]byte) {
  4363  	*asm = append(*asm,
  4364  		uint8(op>>8),
  4365  		uint8(op),
  4366  		uint8(r1)<<4,
  4367  		(uint8(r3)<<4)|uint8(r2&0x0F))
  4368  }
  4369  
  4370  func zRRE(op, r1, r2 uint32, asm *[]byte) {
  4371  	*asm = append(*asm,
  4372  		uint8(op>>8),
  4373  		uint8(op),
  4374  		0,
  4375  		(uint8(r1)<<4)|uint8(r2&0x0F))
  4376  }
  4377  
  4378  func zRRF(op, r3_m3, m4, r1, r2 uint32, asm *[]byte) {
  4379  	*asm = append(*asm,
  4380  		uint8(op>>8),
  4381  		uint8(op),
  4382  		(uint8(r3_m3)<<4)|uint8(m4&0x0F),
  4383  		(uint8(r1)<<4)|uint8(r2&0x0F))
  4384  }
  4385  
  4386  func zRRS(op, r1, r2, b4, d4, m3 uint32, asm *[]byte) {
  4387  	*asm = append(*asm,
  4388  		uint8(op>>8),
  4389  		(uint8(r1)<<4)|uint8(r2&0x0F),
  4390  		(uint8(b4)<<4)|uint8((d4>>8)&0x0F),
  4391  		uint8(d4),
  4392  		uint8(m3)<<4,
  4393  		uint8(op))
  4394  }
  4395  
  4396  func zRS(op, r1, r3_m3, b2, d2 uint32, asm *[]byte) {
  4397  	*asm = append(*asm,
  4398  		uint8(op>>8),
  4399  		(uint8(r1)<<4)|uint8(r3_m3&0x0F),
  4400  		(uint8(b2)<<4)|uint8((d2>>8)&0x0F),
  4401  		uint8(d2))
  4402  }
  4403  
  4404  func zRSI(op, r1, r3, ri2 uint32, asm *[]byte) {
  4405  	*asm = append(*asm,
  4406  		uint8(op>>8),
  4407  		(uint8(r1)<<4)|uint8(r3&0x0F),
  4408  		uint8(ri2>>8),
  4409  		uint8(ri2))
  4410  }
  4411  
  4412  func zRSL(op, l1, b2, d2 uint32, asm *[]byte) {
  4413  	*asm = append(*asm,
  4414  		uint8(op>>8),
  4415  		uint8(l1),
  4416  		(uint8(b2)<<4)|uint8((d2>>8)&0x0F),
  4417  		uint8(d2),
  4418  		uint8(op))
  4419  }
  4420  
  4421  func zRSY(op, r1, r3_m3, b2, d2 uint32, asm *[]byte) {
  4422  	dl2 := uint16(d2) & 0x0FFF
  4423  	*asm = append(*asm,
  4424  		uint8(op>>8),
  4425  		(uint8(r1)<<4)|uint8(r3_m3&0x0F),
  4426  		(uint8(b2)<<4)|(uint8(dl2>>8)&0x0F),
  4427  		uint8(dl2),
  4428  		uint8(d2>>12),
  4429  		uint8(op))
  4430  }
  4431  
  4432  func zRX(op, r1_m1, x2, b2, d2 uint32, asm *[]byte) {
  4433  	*asm = append(*asm,
  4434  		uint8(op>>8),
  4435  		(uint8(r1_m1)<<4)|uint8(x2&0x0F),
  4436  		(uint8(b2)<<4)|uint8((d2>>8)&0x0F),
  4437  		uint8(d2))
  4438  }
  4439  
  4440  func zRXE(op, r1, x2, b2, d2, m3 uint32, asm *[]byte) {
  4441  	*asm = append(*asm,
  4442  		uint8(op>>8),
  4443  		(uint8(r1)<<4)|uint8(x2&0x0F),
  4444  		(uint8(b2)<<4)|uint8((d2>>8)&0x0F),
  4445  		uint8(d2),
  4446  		uint8(m3)<<4,
  4447  		uint8(op))
  4448  }
  4449  
  4450  func zRXF(op, r3, x2, b2, d2, m1 uint32, asm *[]byte) {
  4451  	*asm = append(*asm,
  4452  		uint8(op>>8),
  4453  		(uint8(r3)<<4)|uint8(x2&0x0F),
  4454  		(uint8(b2)<<4)|uint8((d2>>8)&0x0F),
  4455  		uint8(d2),
  4456  		uint8(m1)<<4,
  4457  		uint8(op))
  4458  }
  4459  
  4460  func zRXY(op, r1_m1, x2, b2, d2 uint32, asm *[]byte) {
  4461  	dl2 := uint16(d2) & 0x0FFF
  4462  	*asm = append(*asm,
  4463  		uint8(op>>8),
  4464  		(uint8(r1_m1)<<4)|uint8(x2&0x0F),
  4465  		(uint8(b2)<<4)|(uint8(dl2>>8)&0x0F),
  4466  		uint8(dl2),
  4467  		uint8(d2>>12),
  4468  		uint8(op))
  4469  }
  4470  
  4471  func zS(op, b2, d2 uint32, asm *[]byte) {
  4472  	*asm = append(*asm,
  4473  		uint8(op>>8),
  4474  		uint8(op),
  4475  		(uint8(b2)<<4)|uint8((d2>>8)&0x0F),
  4476  		uint8(d2))
  4477  }
  4478  
  4479  func zSI(op, i2, b1, d1 uint32, asm *[]byte) {
  4480  	*asm = append(*asm,
  4481  		uint8(op>>8),
  4482  		uint8(i2),
  4483  		(uint8(b1)<<4)|uint8((d1>>8)&0x0F),
  4484  		uint8(d1))
  4485  }
  4486  
  4487  func zSIL(op, b1, d1, i2 uint32, asm *[]byte) {
  4488  	*asm = append(*asm,
  4489  		uint8(op>>8),
  4490  		uint8(op),
  4491  		(uint8(b1)<<4)|uint8((d1>>8)&0x0F),
  4492  		uint8(d1),
  4493  		uint8(i2>>8),
  4494  		uint8(i2))
  4495  }
  4496  
  4497  func zSIY(op, i2, b1, d1 uint32, asm *[]byte) {
  4498  	dl1 := uint16(d1) & 0x0FFF
  4499  	*asm = append(*asm,
  4500  		uint8(op>>8),
  4501  		uint8(i2),
  4502  		(uint8(b1)<<4)|(uint8(dl1>>8)&0x0F),
  4503  		uint8(dl1),
  4504  		uint8(d1>>12),
  4505  		uint8(op))
  4506  }
  4507  
  4508  func zSMI(op, m1, b3, d3, ri2 uint32, asm *[]byte) {
  4509  	*asm = append(*asm,
  4510  		uint8(op>>8),
  4511  		uint8(m1)<<4,
  4512  		(uint8(b3)<<4)|uint8((d3>>8)&0x0F),
  4513  		uint8(d3),
  4514  		uint8(ri2>>8),
  4515  		uint8(ri2))
  4516  }
  4517  
  4518  // Expected argument values for the instruction formats.
  4519  //
  4520  // Format    a1  a2  a3  a4  a5  a6
  4521  // -------------------------------
  4522  // a         l1,  0, b1, d1, b2, d2
  4523  // b         l1, l2, b1, d1, b2, d2
  4524  // c         l1, i3, b1, d1, b2, d2
  4525  // d         r1, r3, b1, d1, b2, d2
  4526  // e         r1, r3, b2, d2, b4, d4
  4527  // f          0, l2, b1, d1, b2, d2
  4528  func zSS(f form, op, l1_r1, l2_i3_r3, b1_b2, d1_d2, b2_b4, d2_d4 uint32, asm *[]byte) {
  4529  	*asm = append(*asm, uint8(op>>8))
  4530  
  4531  	switch f {
  4532  	case _a:
  4533  		*asm = append(*asm, uint8(l1_r1))
  4534  	case _b, _c, _d, _e:
  4535  		*asm = append(*asm, (uint8(l1_r1)<<4)|uint8(l2_i3_r3&0x0F))
  4536  	case _f:
  4537  		*asm = append(*asm, uint8(l2_i3_r3))
  4538  	}
  4539  
  4540  	*asm = append(*asm,
  4541  		(uint8(b1_b2)<<4)|uint8((d1_d2>>8)&0x0F),
  4542  		uint8(d1_d2),
  4543  		(uint8(b2_b4)<<4)|uint8((d2_d4>>8)&0x0F),
  4544  		uint8(d2_d4))
  4545  }
  4546  
  4547  func zSSE(op, b1, d1, b2, d2 uint32, asm *[]byte) {
  4548  	*asm = append(*asm,
  4549  		uint8(op>>8),
  4550  		uint8(op),
  4551  		(uint8(b1)<<4)|uint8((d1>>8)&0x0F),
  4552  		uint8(d1),
  4553  		(uint8(b2)<<4)|uint8((d2>>8)&0x0F),
  4554  		uint8(d2))
  4555  }
  4556  
  4557  func zSSF(op, r3, b1, d1, b2, d2 uint32, asm *[]byte) {
  4558  	*asm = append(*asm,
  4559  		uint8(op>>8),
  4560  		(uint8(r3)<<4)|(uint8(op)&0x0F),
  4561  		(uint8(b1)<<4)|uint8((d1>>8)&0x0F),
  4562  		uint8(d1),
  4563  		(uint8(b2)<<4)|uint8((d2>>8)&0x0F),
  4564  		uint8(d2))
  4565  }
  4566  
  4567  func rxb(va, vb, vc, vd uint32) uint8 {
  4568  	mask := uint8(0)
  4569  	if va >= REG_V16 && va <= REG_V31 {
  4570  		mask |= 0x8
  4571  	}
  4572  	if vb >= REG_V16 && vb <= REG_V31 {
  4573  		mask |= 0x4
  4574  	}
  4575  	if vc >= REG_V16 && vc <= REG_V31 {
  4576  		mask |= 0x2
  4577  	}
  4578  	if vd >= REG_V16 && vd <= REG_V31 {
  4579  		mask |= 0x1
  4580  	}
  4581  	return mask
  4582  }
  4583  
  4584  func zVRX(op, v1, x2, b2, d2, m3 uint32, asm *[]byte) {
  4585  	*asm = append(*asm,
  4586  		uint8(op>>8),
  4587  		(uint8(v1)<<4)|(uint8(x2)&0xf),
  4588  		(uint8(b2)<<4)|(uint8(d2>>8)&0xf),
  4589  		uint8(d2),
  4590  		(uint8(m3)<<4)|rxb(v1, 0, 0, 0),
  4591  		uint8(op))
  4592  }
  4593  
  4594  func zVRV(op, v1, v2, b2, d2, m3 uint32, asm *[]byte) {
  4595  	*asm = append(*asm,
  4596  		uint8(op>>8),
  4597  		(uint8(v1)<<4)|(uint8(v2)&0xf),
  4598  		(uint8(b2)<<4)|(uint8(d2>>8)&0xf),
  4599  		uint8(d2),
  4600  		(uint8(m3)<<4)|rxb(v1, v2, 0, 0),
  4601  		uint8(op))
  4602  }
  4603  
  4604  func zVRS(op, v1, v3_r3, b2, d2, m4 uint32, asm *[]byte) {
  4605  	*asm = append(*asm,
  4606  		uint8(op>>8),
  4607  		(uint8(v1)<<4)|(uint8(v3_r3)&0xf),
  4608  		(uint8(b2)<<4)|(uint8(d2>>8)&0xf),
  4609  		uint8(d2),
  4610  		(uint8(m4)<<4)|rxb(v1, v3_r3, 0, 0),
  4611  		uint8(op))
  4612  }
  4613  
  4614  func zVRRa(op, v1, v2, m5, m4, m3 uint32, asm *[]byte) {
  4615  	*asm = append(*asm,
  4616  		uint8(op>>8),
  4617  		(uint8(v1)<<4)|(uint8(v2)&0xf),
  4618  		0,
  4619  		(uint8(m5)<<4)|(uint8(m4)&0xf),
  4620  		(uint8(m3)<<4)|rxb(v1, v2, 0, 0),
  4621  		uint8(op))
  4622  }
  4623  
  4624  func zVRRb(op, v1, v2, v3, m5, m4 uint32, asm *[]byte) {
  4625  	*asm = append(*asm,
  4626  		uint8(op>>8),
  4627  		(uint8(v1)<<4)|(uint8(v2)&0xf),
  4628  		uint8(v3)<<4,
  4629  		uint8(m5)<<4,
  4630  		(uint8(m4)<<4)|rxb(v1, v2, v3, 0),
  4631  		uint8(op))
  4632  }
  4633  
  4634  func zVRRc(op, v1, v2, v3, m6, m5, m4 uint32, asm *[]byte) {
  4635  	*asm = append(*asm,
  4636  		uint8(op>>8),
  4637  		(uint8(v1)<<4)|(uint8(v2)&0xf),
  4638  		uint8(v3)<<4,
  4639  		(uint8(m6)<<4)|(uint8(m5)&0xf),
  4640  		(uint8(m4)<<4)|rxb(v1, v2, v3, 0),
  4641  		uint8(op))
  4642  }
  4643  
  4644  func zVRRd(op, v1, v2, v3, m5, m6, v4 uint32, asm *[]byte) {
  4645  	*asm = append(*asm,
  4646  		uint8(op>>8),
  4647  		(uint8(v1)<<4)|(uint8(v2)&0xf),
  4648  		(uint8(v3)<<4)|(uint8(m5)&0xf),
  4649  		uint8(m6)<<4,
  4650  		(uint8(v4)<<4)|rxb(v1, v2, v3, v4),
  4651  		uint8(op))
  4652  }
  4653  
  4654  func zVRRe(op, v1, v2, v3, m6, m5, v4 uint32, asm *[]byte) {
  4655  	*asm = append(*asm,
  4656  		uint8(op>>8),
  4657  		(uint8(v1)<<4)|(uint8(v2)&0xf),
  4658  		(uint8(v3)<<4)|(uint8(m6)&0xf),
  4659  		uint8(m5),
  4660  		(uint8(v4)<<4)|rxb(v1, v2, v3, v4),
  4661  		uint8(op))
  4662  }
  4663  
  4664  func zVRRf(op, v1, r2, r3 uint32, asm *[]byte) {
  4665  	*asm = append(*asm,
  4666  		uint8(op>>8),
  4667  		(uint8(v1)<<4)|(uint8(r2)&0xf),
  4668  		uint8(r3)<<4,
  4669  		0,
  4670  		rxb(v1, 0, 0, 0),
  4671  		uint8(op))
  4672  }
  4673  
  4674  func zVRIa(op, v1, i2, m3 uint32, asm *[]byte) {
  4675  	*asm = append(*asm,
  4676  		uint8(op>>8),
  4677  		uint8(v1)<<4,
  4678  		uint8(i2>>8),
  4679  		uint8(i2),
  4680  		(uint8(m3)<<4)|rxb(v1, 0, 0, 0),
  4681  		uint8(op))
  4682  }
  4683  
  4684  func zVRIb(op, v1, i2, i3, m4 uint32, asm *[]byte) {
  4685  	*asm = append(*asm,
  4686  		uint8(op>>8),
  4687  		uint8(v1)<<4,
  4688  		uint8(i2),
  4689  		uint8(i3),
  4690  		(uint8(m4)<<4)|rxb(v1, 0, 0, 0),
  4691  		uint8(op))
  4692  }
  4693  
  4694  func zVRIc(op, v1, v3, i2, m4 uint32, asm *[]byte) {
  4695  	*asm = append(*asm,
  4696  		uint8(op>>8),
  4697  		(uint8(v1)<<4)|(uint8(v3)&0xf),
  4698  		uint8(i2>>8),
  4699  		uint8(i2),
  4700  		(uint8(m4)<<4)|rxb(v1, v3, 0, 0),
  4701  		uint8(op))
  4702  }
  4703  
  4704  func zVRId(op, v1, v2, v3, i4, m5 uint32, asm *[]byte) {
  4705  	*asm = append(*asm,
  4706  		uint8(op>>8),
  4707  		(uint8(v1)<<4)|(uint8(v2)&0xf),
  4708  		uint8(v3)<<4,
  4709  		uint8(i4),
  4710  		(uint8(m5)<<4)|rxb(v1, v2, v3, 0),
  4711  		uint8(op))
  4712  }
  4713  
  4714  func zVRIe(op, v1, v2, i3, m5, m4 uint32, asm *[]byte) {
  4715  	*asm = append(*asm,
  4716  		uint8(op>>8),
  4717  		(uint8(v1)<<4)|(uint8(v2)&0xf),
  4718  		uint8(i3>>4),
  4719  		(uint8(i3)<<4)|(uint8(m5)&0xf),
  4720  		(uint8(m4)<<4)|rxb(v1, v2, 0, 0),
  4721  		uint8(op))
  4722  }