github.com/tidwall/go@v0.0.0-20170415222209-6694a6888b7d/src/cmd/link/internal/ld/data.go (about) 1 // Derived from Inferno utils/6l/obj.c and utils/6l/span.c 2 // https://bitbucket.org/inferno-os/inferno-os/src/default/utils/6l/obj.c 3 // https://bitbucket.org/inferno-os/inferno-os/src/default/utils/6l/span.c 4 // 5 // Copyright © 1994-1999 Lucent Technologies Inc. All rights reserved. 6 // Portions Copyright © 1995-1997 C H Forsyth (forsyth@terzarima.net) 7 // Portions Copyright © 1997-1999 Vita Nuova Limited 8 // Portions Copyright © 2000-2007 Vita Nuova Holdings Limited (www.vitanuova.com) 9 // Portions Copyright © 2004,2006 Bruce Ellis 10 // Portions Copyright © 2005-2007 C H Forsyth (forsyth@terzarima.net) 11 // Revisions Copyright © 2000-2007 Lucent Technologies Inc. and others 12 // Portions Copyright © 2009 The Go Authors. All rights reserved. 13 // 14 // Permission is hereby granted, free of charge, to any person obtaining a copy 15 // of this software and associated documentation files (the "Software"), to deal 16 // in the Software without restriction, including without limitation the rights 17 // to use, copy, modify, merge, publish, distribute, sublicense, and/or sell 18 // copies of the Software, and to permit persons to whom the Software is 19 // furnished to do so, subject to the following conditions: 20 // 21 // The above copyright notice and this permission notice shall be included in 22 // all copies or substantial portions of the Software. 23 // 24 // THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR 25 // IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY, 26 // FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL THE 27 // AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER 28 // LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM, 29 // OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN 30 // THE SOFTWARE. 31 32 package ld 33 34 import ( 35 "cmd/internal/gcprog" 36 "cmd/internal/obj" 37 "cmd/internal/sys" 38 "fmt" 39 "log" 40 "os" 41 "sort" 42 "strconv" 43 "strings" 44 "sync" 45 ) 46 47 func Symgrow(s *Symbol, siz int64) { 48 if int64(int(siz)) != siz { 49 log.Fatalf("symgrow size %d too long", siz) 50 } 51 if int64(len(s.P)) >= siz { 52 return 53 } 54 if cap(s.P) < int(siz) { 55 p := make([]byte, 2*(siz+1)) 56 s.P = append(p[:0], s.P...) 57 } 58 s.P = s.P[:siz] 59 } 60 61 func Addrel(s *Symbol) *Reloc { 62 s.R = append(s.R, Reloc{}) 63 return &s.R[len(s.R)-1] 64 } 65 66 func setuintxx(ctxt *Link, s *Symbol, off int64, v uint64, wid int64) int64 { 67 if s.Type == 0 { 68 s.Type = obj.SDATA 69 } 70 s.Attr |= AttrReachable 71 if s.Size < off+wid { 72 s.Size = off + wid 73 Symgrow(s, s.Size) 74 } 75 76 switch wid { 77 case 1: 78 s.P[off] = uint8(v) 79 case 2: 80 ctxt.Arch.ByteOrder.PutUint16(s.P[off:], uint16(v)) 81 case 4: 82 ctxt.Arch.ByteOrder.PutUint32(s.P[off:], uint32(v)) 83 case 8: 84 ctxt.Arch.ByteOrder.PutUint64(s.P[off:], v) 85 } 86 87 return off + wid 88 } 89 90 func Addbytes(s *Symbol, bytes []byte) int64 { 91 if s.Type == 0 { 92 s.Type = obj.SDATA 93 } 94 s.Attr |= AttrReachable 95 s.P = append(s.P, bytes...) 96 s.Size = int64(len(s.P)) 97 98 return s.Size 99 } 100 101 func adduintxx(ctxt *Link, s *Symbol, v uint64, wid int) int64 { 102 off := s.Size 103 setuintxx(ctxt, s, off, v, int64(wid)) 104 return off 105 } 106 107 func Adduint8(ctxt *Link, s *Symbol, v uint8) int64 { 108 off := s.Size 109 if s.Type == 0 { 110 s.Type = obj.SDATA 111 } 112 s.Attr |= AttrReachable 113 s.Size++ 114 s.P = append(s.P, v) 115 116 return off 117 } 118 119 func Adduint16(ctxt *Link, s *Symbol, v uint16) int64 { 120 return adduintxx(ctxt, s, uint64(v), 2) 121 } 122 123 func Adduint32(ctxt *Link, s *Symbol, v uint32) int64 { 124 return adduintxx(ctxt, s, uint64(v), 4) 125 } 126 127 func Adduint64(ctxt *Link, s *Symbol, v uint64) int64 { 128 return adduintxx(ctxt, s, v, 8) 129 } 130 131 func adduint(ctxt *Link, s *Symbol, v uint64) int64 { 132 return adduintxx(ctxt, s, v, SysArch.IntSize) 133 } 134 135 func setuint8(ctxt *Link, s *Symbol, r int64, v uint8) int64 { 136 return setuintxx(ctxt, s, r, uint64(v), 1) 137 } 138 139 func setuint32(ctxt *Link, s *Symbol, r int64, v uint32) int64 { 140 return setuintxx(ctxt, s, r, uint64(v), 4) 141 } 142 143 func Addaddrplus(ctxt *Link, s *Symbol, t *Symbol, add int64) int64 { 144 if s.Type == 0 { 145 s.Type = obj.SDATA 146 } 147 s.Attr |= AttrReachable 148 i := s.Size 149 s.Size += int64(ctxt.Arch.PtrSize) 150 Symgrow(s, s.Size) 151 r := Addrel(s) 152 r.Sym = t 153 r.Off = int32(i) 154 r.Siz = uint8(ctxt.Arch.PtrSize) 155 r.Type = obj.R_ADDR 156 r.Add = add 157 return i + int64(r.Siz) 158 } 159 160 func Addpcrelplus(ctxt *Link, s *Symbol, t *Symbol, add int64) int64 { 161 if s.Type == 0 { 162 s.Type = obj.SDATA 163 } 164 s.Attr |= AttrReachable 165 i := s.Size 166 s.Size += 4 167 Symgrow(s, s.Size) 168 r := Addrel(s) 169 r.Sym = t 170 r.Off = int32(i) 171 r.Add = add 172 r.Type = obj.R_PCREL 173 r.Siz = 4 174 if SysArch.Family == sys.S390X { 175 r.Variant = RV_390_DBL 176 } 177 return i + int64(r.Siz) 178 } 179 180 func Addaddr(ctxt *Link, s *Symbol, t *Symbol) int64 { 181 return Addaddrplus(ctxt, s, t, 0) 182 } 183 184 func setaddrplus(ctxt *Link, s *Symbol, off int64, t *Symbol, add int64) int64 { 185 if s.Type == 0 { 186 s.Type = obj.SDATA 187 } 188 s.Attr |= AttrReachable 189 if off+int64(ctxt.Arch.PtrSize) > s.Size { 190 s.Size = off + int64(ctxt.Arch.PtrSize) 191 Symgrow(s, s.Size) 192 } 193 194 r := Addrel(s) 195 r.Sym = t 196 r.Off = int32(off) 197 r.Siz = uint8(ctxt.Arch.PtrSize) 198 r.Type = obj.R_ADDR 199 r.Add = add 200 return off + int64(r.Siz) 201 } 202 203 func setaddr(ctxt *Link, s *Symbol, off int64, t *Symbol) int64 { 204 return setaddrplus(ctxt, s, off, t, 0) 205 } 206 207 func addsize(ctxt *Link, s *Symbol, t *Symbol) int64 { 208 if s.Type == 0 { 209 s.Type = obj.SDATA 210 } 211 s.Attr |= AttrReachable 212 i := s.Size 213 s.Size += int64(ctxt.Arch.PtrSize) 214 Symgrow(s, s.Size) 215 r := Addrel(s) 216 r.Sym = t 217 r.Off = int32(i) 218 r.Siz = uint8(ctxt.Arch.PtrSize) 219 r.Type = obj.R_SIZE 220 return i + int64(r.Siz) 221 } 222 223 func addaddrplus4(ctxt *Link, s *Symbol, t *Symbol, add int64) int64 { 224 if s.Type == 0 { 225 s.Type = obj.SDATA 226 } 227 s.Attr |= AttrReachable 228 i := s.Size 229 s.Size += 4 230 Symgrow(s, s.Size) 231 r := Addrel(s) 232 r.Sym = t 233 r.Off = int32(i) 234 r.Siz = 4 235 r.Type = obj.R_ADDR 236 r.Add = add 237 return i + int64(r.Siz) 238 } 239 240 /* 241 * divide-and-conquer list-link (by Sub) sort of Symbol* by Value. 242 * Used for sub-symbols when loading host objects (see e.g. ldelf.go). 243 */ 244 245 func listsort(l *Symbol) *Symbol { 246 if l == nil || l.Sub == nil { 247 return l 248 } 249 250 l1 := l 251 l2 := l 252 for { 253 l2 = l2.Sub 254 if l2 == nil { 255 break 256 } 257 l2 = l2.Sub 258 if l2 == nil { 259 break 260 } 261 l1 = l1.Sub 262 } 263 264 l2 = l1.Sub 265 l1.Sub = nil 266 l1 = listsort(l) 267 l2 = listsort(l2) 268 269 /* set up lead element */ 270 if l1.Value < l2.Value { 271 l = l1 272 l1 = l1.Sub 273 } else { 274 l = l2 275 l2 = l2.Sub 276 } 277 278 le := l 279 280 for { 281 if l1 == nil { 282 for l2 != nil { 283 le.Sub = l2 284 le = l2 285 l2 = l2.Sub 286 } 287 288 le.Sub = nil 289 break 290 } 291 292 if l2 == nil { 293 for l1 != nil { 294 le.Sub = l1 295 le = l1 296 l1 = l1.Sub 297 } 298 299 break 300 } 301 302 if l1.Value < l2.Value { 303 le.Sub = l1 304 le = l1 305 l1 = l1.Sub 306 } else { 307 le.Sub = l2 308 le = l2 309 l2 = l2.Sub 310 } 311 } 312 313 le.Sub = nil 314 return l 315 } 316 317 // isRuntimeDepPkg returns whether pkg is the runtime package or its dependency 318 func isRuntimeDepPkg(pkg string) bool { 319 switch pkg { 320 case "runtime", 321 "sync/atomic": // runtime may call to sync/atomic, due to go:linkname 322 return true 323 } 324 return strings.HasPrefix(pkg, "runtime/internal/") && !strings.HasSuffix(pkg, "_test") 325 } 326 327 // detect too-far jumps in function s, and add trampolines if necessary 328 // ARM supports trampoline insertion for internal and external linking 329 // PPC64 & PPC64LE support trampoline insertion for internal linking only 330 func trampoline(ctxt *Link, s *Symbol) { 331 if Thearch.Trampoline == nil { 332 return // no need or no support of trampolines on this arch 333 } 334 335 if Linkmode == LinkExternal && SysArch.Family == sys.PPC64 { 336 return 337 } 338 339 for ri := range s.R { 340 r := &s.R[ri] 341 if !r.Type.IsDirectJump() { 342 continue 343 } 344 if Symaddr(r.Sym) == 0 && r.Sym.Type != obj.SDYNIMPORT { 345 if r.Sym.File != s.File { 346 if !isRuntimeDepPkg(s.File) || !isRuntimeDepPkg(r.Sym.File) { 347 Errorf(s, "unresolved inter-package jump to %s(%s)", r.Sym, r.Sym.File) 348 } 349 // runtime and its dependent packages may call to each other. 350 // they are fine, as they will be laid down together. 351 } 352 continue 353 } 354 355 Thearch.Trampoline(ctxt, r, s) 356 } 357 358 } 359 360 // resolve relocations in s. 361 func relocsym(ctxt *Link, s *Symbol) { 362 var r *Reloc 363 var rs *Symbol 364 var i16 int16 365 var off int32 366 var siz int32 367 var fl int32 368 var o int64 369 370 for ri := int32(0); ri < int32(len(s.R)); ri++ { 371 r = &s.R[ri] 372 373 r.Done = 1 374 off = r.Off 375 siz = int32(r.Siz) 376 if off < 0 || off+siz > int32(len(s.P)) { 377 rname := "" 378 if r.Sym != nil { 379 rname = r.Sym.Name 380 } 381 Errorf(s, "invalid relocation %s: %d+%d not in [%d,%d)", rname, off, siz, 0, len(s.P)) 382 continue 383 } 384 385 if r.Sym != nil && (r.Sym.Type&(obj.SMASK|obj.SHIDDEN) == 0 || r.Sym.Type&obj.SMASK == obj.SXREF) { 386 // When putting the runtime but not main into a shared library 387 // these symbols are undefined and that's OK. 388 if Buildmode == BuildmodeShared { 389 if r.Sym.Name == "main.main" || r.Sym.Name == "main.init" { 390 r.Sym.Type = obj.SDYNIMPORT 391 } else if strings.HasPrefix(r.Sym.Name, "go.info.") { 392 // Skip go.info symbols. They are only needed to communicate 393 // DWARF info between the compiler and linker. 394 continue 395 } 396 } else { 397 Errorf(s, "relocation target %s not defined", r.Sym.Name) 398 continue 399 } 400 } 401 402 if r.Type >= 256 { 403 continue 404 } 405 if r.Siz == 0 { // informational relocation - no work to do 406 continue 407 } 408 409 // We need to be able to reference dynimport symbols when linking against 410 // shared libraries, and Solaris needs it always 411 if Headtype != obj.Hsolaris && r.Sym != nil && r.Sym.Type == obj.SDYNIMPORT && !ctxt.DynlinkingGo() { 412 if !(SysArch.Family == sys.PPC64 && Linkmode == LinkExternal && r.Sym.Name == ".TOC.") { 413 Errorf(s, "unhandled relocation for %s (type %d rtype %d)", r.Sym.Name, r.Sym.Type, r.Type) 414 } 415 } 416 if r.Sym != nil && r.Sym.Type != obj.STLSBSS && r.Type != obj.R_WEAKADDROFF && !r.Sym.Attr.Reachable() { 417 Errorf(s, "unreachable sym in relocation: %s", r.Sym.Name) 418 } 419 420 // TODO(mundaym): remove this special case - see issue 14218. 421 if SysArch.Family == sys.S390X { 422 switch r.Type { 423 case obj.R_PCRELDBL: 424 r.Type = obj.R_PCREL 425 r.Variant = RV_390_DBL 426 case obj.R_CALL: 427 r.Variant = RV_390_DBL 428 } 429 } 430 431 switch r.Type { 432 default: 433 switch siz { 434 default: 435 Errorf(s, "bad reloc size %#x for %s", uint32(siz), r.Sym.Name) 436 case 1: 437 o = int64(s.P[off]) 438 case 2: 439 o = int64(ctxt.Arch.ByteOrder.Uint16(s.P[off:])) 440 case 4: 441 o = int64(ctxt.Arch.ByteOrder.Uint32(s.P[off:])) 442 case 8: 443 o = int64(ctxt.Arch.ByteOrder.Uint64(s.P[off:])) 444 } 445 if Thearch.Archreloc(ctxt, r, s, &o) < 0 { 446 Errorf(s, "unknown reloc to %v: %v", r.Sym.Name, r.Type) 447 } 448 449 case obj.R_TLS_LE: 450 isAndroidX86 := obj.GOOS == "android" && (SysArch.InFamily(sys.AMD64, sys.I386)) 451 452 if Linkmode == LinkExternal && Iself && !isAndroidX86 { 453 r.Done = 0 454 if r.Sym == nil { 455 r.Sym = ctxt.Tlsg 456 } 457 r.Xsym = r.Sym 458 r.Xadd = r.Add 459 o = 0 460 if SysArch.Family != sys.AMD64 { 461 o = r.Add 462 } 463 break 464 } 465 466 if Iself && SysArch.Family == sys.ARM { 467 // On ELF ARM, the thread pointer is 8 bytes before 468 // the start of the thread-local data block, so add 8 469 // to the actual TLS offset (r->sym->value). 470 // This 8 seems to be a fundamental constant of 471 // ELF on ARM (or maybe Glibc on ARM); it is not 472 // related to the fact that our own TLS storage happens 473 // to take up 8 bytes. 474 o = 8 + r.Sym.Value 475 } else if Iself || Headtype == obj.Hplan9 || Headtype == obj.Hdarwin || isAndroidX86 { 476 o = int64(ctxt.Tlsoffset) + r.Add 477 } else if Headtype == obj.Hwindows { 478 o = r.Add 479 } else { 480 log.Fatalf("unexpected R_TLS_LE relocation for %v", Headtype) 481 } 482 483 case obj.R_TLS_IE: 484 isAndroidX86 := obj.GOOS == "android" && (SysArch.InFamily(sys.AMD64, sys.I386)) 485 486 if Linkmode == LinkExternal && Iself && !isAndroidX86 { 487 r.Done = 0 488 if r.Sym == nil { 489 r.Sym = ctxt.Tlsg 490 } 491 r.Xsym = r.Sym 492 r.Xadd = r.Add 493 o = 0 494 if SysArch.Family != sys.AMD64 { 495 o = r.Add 496 } 497 break 498 } 499 if Buildmode == BuildmodePIE && Iself { 500 // We are linking the final executable, so we 501 // can optimize any TLS IE relocation to LE. 502 if Thearch.TLSIEtoLE == nil { 503 log.Fatalf("internal linking of TLS IE not supported on %v", SysArch.Family) 504 } 505 Thearch.TLSIEtoLE(s, int(off), int(r.Siz)) 506 o = int64(ctxt.Tlsoffset) 507 // TODO: o += r.Add when SysArch.Family != sys.AMD64? 508 // Why do we treat r.Add differently on AMD64? 509 // Is the external linker using Xadd at all? 510 } else { 511 log.Fatalf("cannot handle R_TLS_IE (sym %s) when linking internally", s.Name) 512 } 513 514 case obj.R_ADDR: 515 if Linkmode == LinkExternal && r.Sym.Type != obj.SCONST { 516 r.Done = 0 517 518 // set up addend for eventual relocation via outer symbol. 519 rs = r.Sym 520 521 r.Xadd = r.Add 522 for rs.Outer != nil { 523 r.Xadd += Symaddr(rs) - Symaddr(rs.Outer) 524 rs = rs.Outer 525 } 526 527 if rs.Type != obj.SHOSTOBJ && rs.Type != obj.SDYNIMPORT && rs.Sect == nil { 528 Errorf(s, "missing section for relocation target %s", rs.Name) 529 } 530 r.Xsym = rs 531 532 o = r.Xadd 533 if Iself { 534 if SysArch.Family == sys.AMD64 { 535 o = 0 536 } 537 } else if Headtype == obj.Hdarwin { 538 // ld64 for arm64 has a bug where if the address pointed to by o exists in the 539 // symbol table (dynid >= 0), or is inside a symbol that exists in the symbol 540 // table, then it will add o twice into the relocated value. 541 // The workaround is that on arm64 don't ever add symaddr to o and always use 542 // extern relocation by requiring rs->dynid >= 0. 543 if rs.Type != obj.SHOSTOBJ { 544 if SysArch.Family == sys.ARM64 && rs.Dynid < 0 { 545 Errorf(s, "R_ADDR reloc to %s+%d is not supported on darwin/arm64", rs.Name, o) 546 } 547 if SysArch.Family != sys.ARM64 { 548 o += Symaddr(rs) 549 } 550 } 551 } else if Headtype == obj.Hwindows { 552 // nothing to do 553 } else { 554 Errorf(s, "unhandled pcrel relocation to %s on %v", rs.Name, Headtype) 555 } 556 557 break 558 } 559 560 o = Symaddr(r.Sym) + r.Add 561 562 // On amd64, 4-byte offsets will be sign-extended, so it is impossible to 563 // access more than 2GB of static data; fail at link time is better than 564 // fail at runtime. See https://golang.org/issue/7980. 565 // Instead of special casing only amd64, we treat this as an error on all 566 // 64-bit architectures so as to be future-proof. 567 if int32(o) < 0 && SysArch.PtrSize > 4 && siz == 4 { 568 Errorf(s, "non-pc-relative relocation address for %s is too big: %#x (%#x + %#x)", r.Sym.Name, uint64(o), Symaddr(r.Sym), r.Add) 569 errorexit() 570 } 571 572 case obj.R_DWARFREF: 573 if r.Sym.Sect == nil { 574 Errorf(s, "missing DWARF section for relocation target %s", r.Sym.Name) 575 } 576 if Linkmode == LinkExternal { 577 r.Done = 0 578 // PE code emits IMAGE_REL_I386_SECREL and IMAGE_REL_AMD64_SECREL 579 // for R_DWARFREF relocations, while R_ADDR is replaced with 580 // IMAGE_REL_I386_DIR32, IMAGE_REL_AMD64_ADDR64 and IMAGE_REL_AMD64_ADDR32. 581 // Do not replace R_DWARFREF with R_ADDR for windows - 582 // let PE code emit correct relocations. 583 if Headtype != obj.Hwindows { 584 r.Type = obj.R_ADDR 585 } 586 587 r.Xsym = ctxt.Syms.ROLookup(r.Sym.Sect.Name, 0) 588 r.Xadd = r.Add + Symaddr(r.Sym) - int64(r.Sym.Sect.Vaddr) 589 o = r.Xadd 590 rs = r.Xsym 591 if Iself && SysArch.Family == sys.AMD64 { 592 o = 0 593 } 594 break 595 } 596 o = Symaddr(r.Sym) + r.Add - int64(r.Sym.Sect.Vaddr) 597 598 case obj.R_WEAKADDROFF: 599 if !r.Sym.Attr.Reachable() { 600 continue 601 } 602 fallthrough 603 case obj.R_ADDROFF: 604 // The method offset tables using this relocation expect the offset to be relative 605 // to the start of the first text section, even if there are multiple. 606 607 if r.Sym.Sect.Name == ".text" { 608 o = Symaddr(r.Sym) - int64(Segtext.Sect.Vaddr) + r.Add 609 } else { 610 o = Symaddr(r.Sym) - int64(r.Sym.Sect.Vaddr) + r.Add 611 } 612 613 // r->sym can be null when CALL $(constant) is transformed from absolute PC to relative PC call. 614 case obj.R_GOTPCREL: 615 if ctxt.DynlinkingGo() && Headtype == obj.Hdarwin && r.Sym != nil && r.Sym.Type != obj.SCONST { 616 r.Done = 0 617 r.Xadd = r.Add 618 r.Xadd -= int64(r.Siz) // relative to address after the relocated chunk 619 r.Xsym = r.Sym 620 621 o = r.Xadd 622 o += int64(r.Siz) 623 break 624 } 625 fallthrough 626 case obj.R_CALL, obj.R_PCREL: 627 if Linkmode == LinkExternal && r.Sym != nil && r.Sym.Type != obj.SCONST && (r.Sym.Sect != s.Sect || r.Type == obj.R_GOTPCREL) { 628 r.Done = 0 629 630 // set up addend for eventual relocation via outer symbol. 631 rs = r.Sym 632 633 r.Xadd = r.Add 634 for rs.Outer != nil { 635 r.Xadd += Symaddr(rs) - Symaddr(rs.Outer) 636 rs = rs.Outer 637 } 638 639 r.Xadd -= int64(r.Siz) // relative to address after the relocated chunk 640 if rs.Type != obj.SHOSTOBJ && rs.Type != obj.SDYNIMPORT && rs.Sect == nil { 641 Errorf(s, "missing section for relocation target %s", rs.Name) 642 } 643 r.Xsym = rs 644 645 o = r.Xadd 646 if Iself { 647 if SysArch.Family == sys.AMD64 { 648 o = 0 649 } 650 } else if Headtype == obj.Hdarwin { 651 if r.Type == obj.R_CALL { 652 if rs.Type != obj.SHOSTOBJ { 653 o += int64(uint64(Symaddr(rs)) - rs.Sect.Vaddr) 654 } 655 o -= int64(r.Off) // relative to section offset, not symbol 656 } else if SysArch.Family == sys.ARM { 657 // see ../arm/asm.go:/machoreloc1 658 o += Symaddr(rs) - int64(s.Value) - int64(r.Off) 659 } else { 660 o += int64(r.Siz) 661 } 662 } else if Headtype == obj.Hwindows && SysArch.Family == sys.AMD64 { // only amd64 needs PCREL 663 // PE/COFF's PC32 relocation uses the address after the relocated 664 // bytes as the base. Compensate by skewing the addend. 665 o += int64(r.Siz) 666 } else { 667 Errorf(s, "unhandled pcrel relocation to %s on %v", rs.Name, Headtype) 668 } 669 670 break 671 } 672 673 o = 0 674 if r.Sym != nil { 675 o += Symaddr(r.Sym) 676 } 677 678 o += r.Add - (s.Value + int64(r.Off) + int64(r.Siz)) 679 680 case obj.R_SIZE: 681 o = r.Sym.Size + r.Add 682 } 683 684 if r.Variant != RV_NONE { 685 o = Thearch.Archrelocvariant(ctxt, r, s, o) 686 } 687 688 if false { 689 nam := "<nil>" 690 if r.Sym != nil { 691 nam = r.Sym.Name 692 } 693 fmt.Printf("relocate %s %#x (%#x+%#x, size %d) => %s %#x +%#x [type %d/%d, %x]\n", s.Name, s.Value+int64(off), s.Value, r.Off, r.Siz, nam, Symaddr(r.Sym), r.Add, r.Type, r.Variant, o) 694 } 695 switch siz { 696 default: 697 Errorf(s, "bad reloc size %#x for %s", uint32(siz), r.Sym.Name) 698 fallthrough 699 700 // TODO(rsc): Remove. 701 case 1: 702 s.P[off] = byte(int8(o)) 703 704 case 2: 705 if o != int64(int16(o)) { 706 Errorf(s, "relocation address for %s is too big: %#x", r.Sym.Name, o) 707 } 708 i16 = int16(o) 709 ctxt.Arch.ByteOrder.PutUint16(s.P[off:], uint16(i16)) 710 711 case 4: 712 if r.Type == obj.R_PCREL || r.Type == obj.R_CALL { 713 if o != int64(int32(o)) { 714 Errorf(s, "pc-relative relocation address for %s is too big: %#x", r.Sym.Name, o) 715 } 716 } else { 717 if o != int64(int32(o)) && o != int64(uint32(o)) { 718 Errorf(s, "non-pc-relative relocation address for %s is too big: %#x", r.Sym.Name, uint64(o)) 719 } 720 } 721 722 fl = int32(o) 723 ctxt.Arch.ByteOrder.PutUint32(s.P[off:], uint32(fl)) 724 725 case 8: 726 ctxt.Arch.ByteOrder.PutUint64(s.P[off:], uint64(o)) 727 } 728 } 729 } 730 731 func (ctxt *Link) reloc() { 732 if ctxt.Debugvlog != 0 { 733 ctxt.Logf("%5.2f reloc\n", obj.Cputime()) 734 } 735 736 for _, s := range ctxt.Textp { 737 relocsym(ctxt, s) 738 } 739 for _, sym := range datap { 740 relocsym(ctxt, sym) 741 } 742 for _, s := range dwarfp { 743 relocsym(ctxt, s) 744 } 745 } 746 747 func dynrelocsym(ctxt *Link, s *Symbol) { 748 if Headtype == obj.Hwindows && Linkmode != LinkExternal { 749 rel := ctxt.Syms.Lookup(".rel", 0) 750 if s == rel { 751 return 752 } 753 for ri := 0; ri < len(s.R); ri++ { 754 r := &s.R[ri] 755 targ := r.Sym 756 if targ == nil { 757 continue 758 } 759 if !targ.Attr.Reachable() { 760 if r.Type == obj.R_WEAKADDROFF { 761 continue 762 } 763 Errorf(s, "dynamic relocation to unreachable symbol %s", targ.Name) 764 } 765 if r.Sym.Plt == -2 && r.Sym.Got != -2 { // make dynimport JMP table for PE object files. 766 targ.Plt = int32(rel.Size) 767 r.Sym = rel 768 r.Add = int64(targ.Plt) 769 770 // jmp *addr 771 if SysArch.Family == sys.I386 { 772 Adduint8(ctxt, rel, 0xff) 773 Adduint8(ctxt, rel, 0x25) 774 Addaddr(ctxt, rel, targ) 775 Adduint8(ctxt, rel, 0x90) 776 Adduint8(ctxt, rel, 0x90) 777 } else { 778 Adduint8(ctxt, rel, 0xff) 779 Adduint8(ctxt, rel, 0x24) 780 Adduint8(ctxt, rel, 0x25) 781 addaddrplus4(ctxt, rel, targ, 0) 782 Adduint8(ctxt, rel, 0x90) 783 } 784 } else if r.Sym.Plt >= 0 { 785 r.Sym = rel 786 r.Add = int64(targ.Plt) 787 } 788 } 789 790 return 791 } 792 793 for ri := 0; ri < len(s.R); ri++ { 794 r := &s.R[ri] 795 if Buildmode == BuildmodePIE && Linkmode == LinkInternal { 796 // It's expected that some relocations will be done 797 // later by relocsym (R_TLS_LE, R_ADDROFF), so 798 // don't worry if Adddynrel returns false. 799 Thearch.Adddynrel(ctxt, s, r) 800 continue 801 } 802 if r.Sym != nil && r.Sym.Type == obj.SDYNIMPORT || r.Type >= 256 { 803 if r.Sym != nil && !r.Sym.Attr.Reachable() { 804 Errorf(s, "dynamic relocation to unreachable symbol %s", r.Sym.Name) 805 } 806 if !Thearch.Adddynrel(ctxt, s, r) { 807 Errorf(s, "unsupported dynamic relocation for symbol %s (type=%d stype=%d)", r.Sym.Name, r.Type, r.Sym.Type) 808 } 809 } 810 } 811 } 812 813 func dynreloc(ctxt *Link, data *[obj.SXREF][]*Symbol) { 814 // -d suppresses dynamic loader format, so we may as well not 815 // compute these sections or mark their symbols as reachable. 816 if *FlagD && Headtype != obj.Hwindows { 817 return 818 } 819 if ctxt.Debugvlog != 0 { 820 ctxt.Logf("%5.2f reloc\n", obj.Cputime()) 821 } 822 823 for _, s := range ctxt.Textp { 824 dynrelocsym(ctxt, s) 825 } 826 for _, syms := range data { 827 for _, sym := range syms { 828 dynrelocsym(ctxt, sym) 829 } 830 } 831 if Iself { 832 elfdynhash(ctxt) 833 } 834 } 835 836 func Codeblk(ctxt *Link, addr int64, size int64) { 837 CodeblkPad(ctxt, addr, size, zeros[:]) 838 } 839 func CodeblkPad(ctxt *Link, addr int64, size int64, pad []byte) { 840 if *flagA { 841 ctxt.Logf("codeblk [%#x,%#x) at offset %#x\n", addr, addr+size, coutbuf.Offset()) 842 } 843 844 blk(ctxt, ctxt.Textp, addr, size, pad) 845 846 /* again for printing */ 847 if !*flagA { 848 return 849 } 850 851 syms := ctxt.Textp 852 for i, sym := range syms { 853 if !sym.Attr.Reachable() { 854 continue 855 } 856 if sym.Value >= addr { 857 syms = syms[i:] 858 break 859 } 860 } 861 862 eaddr := addr + size 863 var q []byte 864 for _, sym := range syms { 865 if !sym.Attr.Reachable() { 866 continue 867 } 868 if sym.Value >= eaddr { 869 break 870 } 871 872 if addr < sym.Value { 873 ctxt.Logf("%-20s %.8x|", "_", uint64(addr)) 874 for ; addr < sym.Value; addr++ { 875 ctxt.Logf(" %.2x", 0) 876 } 877 ctxt.Logf("\n") 878 } 879 880 ctxt.Logf("%.6x\t%-20s\n", uint64(addr), sym.Name) 881 q = sym.P 882 883 for len(q) >= 16 { 884 ctxt.Logf("%.6x\t% x\n", uint64(addr), q[:16]) 885 addr += 16 886 q = q[16:] 887 } 888 889 if len(q) > 0 { 890 ctxt.Logf("%.6x\t% x\n", uint64(addr), q) 891 addr += int64(len(q)) 892 } 893 } 894 895 if addr < eaddr { 896 ctxt.Logf("%-20s %.8x|", "_", uint64(addr)) 897 for ; addr < eaddr; addr++ { 898 ctxt.Logf(" %.2x", 0) 899 } 900 } 901 } 902 903 func blk(ctxt *Link, syms []*Symbol, addr, size int64, pad []byte) { 904 for i, s := range syms { 905 if s.Type&obj.SSUB == 0 && s.Value >= addr { 906 syms = syms[i:] 907 break 908 } 909 } 910 911 eaddr := addr + size 912 for _, s := range syms { 913 if s.Type&obj.SSUB != 0 { 914 continue 915 } 916 if s.Value >= eaddr { 917 break 918 } 919 if s.Value < addr { 920 Errorf(s, "phase error: addr=%#x but sym=%#x type=%d", addr, s.Value, s.Type) 921 errorexit() 922 } 923 if addr < s.Value { 924 strnputPad("", int(s.Value-addr), pad) 925 addr = s.Value 926 } 927 Cwrite(s.P) 928 addr += int64(len(s.P)) 929 if addr < s.Value+s.Size { 930 strnputPad("", int(s.Value+s.Size-addr), pad) 931 addr = s.Value + s.Size 932 } 933 if addr != s.Value+s.Size { 934 Errorf(s, "phase error: addr=%#x value+size=%#x", addr, s.Value+s.Size) 935 errorexit() 936 } 937 if s.Value+s.Size >= eaddr { 938 break 939 } 940 } 941 942 if addr < eaddr { 943 strnputPad("", int(eaddr-addr), pad) 944 } 945 Cflush() 946 } 947 948 func Datblk(ctxt *Link, addr int64, size int64) { 949 if *flagA { 950 ctxt.Logf("datblk [%#x,%#x) at offset %#x\n", addr, addr+size, coutbuf.Offset()) 951 } 952 953 blk(ctxt, datap, addr, size, zeros[:]) 954 955 /* again for printing */ 956 if !*flagA { 957 return 958 } 959 960 syms := datap 961 for i, sym := range syms { 962 if sym.Value >= addr { 963 syms = syms[i:] 964 break 965 } 966 } 967 968 eaddr := addr + size 969 for _, sym := range syms { 970 if sym.Value >= eaddr { 971 break 972 } 973 if addr < sym.Value { 974 ctxt.Logf("\t%.8x| 00 ...\n", uint64(addr)) 975 addr = sym.Value 976 } 977 978 ctxt.Logf("%s\n\t%.8x|", sym.Name, uint64(addr)) 979 for i, b := range sym.P { 980 if i > 0 && i%16 == 0 { 981 ctxt.Logf("\n\t%.8x|", uint64(addr)+uint64(i)) 982 } 983 ctxt.Logf(" %.2x", b) 984 } 985 986 addr += int64(len(sym.P)) 987 for ; addr < sym.Value+sym.Size; addr++ { 988 ctxt.Logf(" %.2x", 0) 989 } 990 ctxt.Logf("\n") 991 992 if Linkmode != LinkExternal { 993 continue 994 } 995 for _, r := range sym.R { 996 rsname := "" 997 if r.Sym != nil { 998 rsname = r.Sym.Name 999 } 1000 typ := "?" 1001 switch r.Type { 1002 case obj.R_ADDR: 1003 typ = "addr" 1004 case obj.R_PCREL: 1005 typ = "pcrel" 1006 case obj.R_CALL: 1007 typ = "call" 1008 } 1009 ctxt.Logf("\treloc %.8x/%d %s %s+%#x [%#x]\n", uint(sym.Value+int64(r.Off)), r.Siz, typ, rsname, r.Add, r.Sym.Value+r.Add) 1010 } 1011 } 1012 1013 if addr < eaddr { 1014 ctxt.Logf("\t%.8x| 00 ...\n", uint(addr)) 1015 } 1016 ctxt.Logf("\t%.8x|\n", uint(eaddr)) 1017 } 1018 1019 func Dwarfblk(ctxt *Link, addr int64, size int64) { 1020 if *flagA { 1021 ctxt.Logf("dwarfblk [%#x,%#x) at offset %#x\n", addr, addr+size, coutbuf.Offset()) 1022 } 1023 1024 blk(ctxt, dwarfp, addr, size, zeros[:]) 1025 } 1026 1027 var zeros [512]byte 1028 1029 // strnput writes the first n bytes of s. 1030 // If n is larger than len(s), 1031 // it is padded with NUL bytes. 1032 func strnput(s string, n int) { 1033 strnputPad(s, n, zeros[:]) 1034 } 1035 1036 // strnput writes the first n bytes of s. 1037 // If n is larger than len(s), 1038 // it is padded with the bytes in pad (repeated as needed). 1039 func strnputPad(s string, n int, pad []byte) { 1040 if len(s) >= n { 1041 Cwritestring(s[:n]) 1042 } else { 1043 Cwritestring(s) 1044 n -= len(s) 1045 for n > len(pad) { 1046 Cwrite(pad) 1047 n -= len(pad) 1048 1049 } 1050 Cwrite(pad[:n]) 1051 } 1052 } 1053 1054 var strdata []*Symbol 1055 1056 func addstrdata1(ctxt *Link, arg string) { 1057 eq := strings.Index(arg, "=") 1058 dot := strings.LastIndex(arg[:eq+1], ".") 1059 if eq < 0 || dot < 0 { 1060 Exitf("-X flag requires argument of the form importpath.name=value") 1061 } 1062 addstrdata(ctxt, pathtoprefix(arg[:dot])+arg[dot:eq], arg[eq+1:]) 1063 } 1064 1065 func addstrdata(ctxt *Link, name string, value string) { 1066 p := fmt.Sprintf("%s.str", name) 1067 sp := ctxt.Syms.Lookup(p, 0) 1068 1069 Addstring(sp, value) 1070 sp.Type = obj.SRODATA 1071 1072 s := ctxt.Syms.Lookup(name, 0) 1073 s.Size = 0 1074 s.Attr |= AttrDuplicateOK 1075 reachable := s.Attr.Reachable() 1076 Addaddr(ctxt, s, sp) 1077 adduintxx(ctxt, s, uint64(len(value)), SysArch.PtrSize) 1078 1079 // addstring, addaddr, etc., mark the symbols as reachable. 1080 // In this case that is not necessarily true, so stick to what 1081 // we know before entering this function. 1082 s.Attr.Set(AttrReachable, reachable) 1083 1084 strdata = append(strdata, s) 1085 1086 sp.Attr.Set(AttrReachable, reachable) 1087 } 1088 1089 func (ctxt *Link) checkstrdata() { 1090 for _, s := range strdata { 1091 if s.Type == obj.STEXT { 1092 Errorf(s, "cannot use -X with text symbol") 1093 } else if s.Gotype != nil && s.Gotype.Name != "type.string" { 1094 Errorf(s, "cannot use -X with non-string symbol") 1095 } 1096 } 1097 } 1098 1099 func Addstring(s *Symbol, str string) int64 { 1100 if s.Type == 0 { 1101 s.Type = obj.SNOPTRDATA 1102 } 1103 s.Attr |= AttrReachable 1104 r := s.Size 1105 if s.Name == ".shstrtab" { 1106 elfsetstring(s, str, int(r)) 1107 } 1108 s.P = append(s.P, str...) 1109 s.P = append(s.P, 0) 1110 s.Size = int64(len(s.P)) 1111 return r 1112 } 1113 1114 // addgostring adds str, as a Go string value, to s. symname is the name of the 1115 // symbol used to define the string data and must be unique per linked object. 1116 func addgostring(ctxt *Link, s *Symbol, symname, str string) { 1117 sym := ctxt.Syms.Lookup(symname, 0) 1118 if sym.Type != obj.Sxxx { 1119 Errorf(s, "duplicate symname in addgostring: %s", symname) 1120 } 1121 sym.Attr |= AttrReachable 1122 sym.Attr |= AttrLocal 1123 sym.Type = obj.SRODATA 1124 sym.Size = int64(len(str)) 1125 sym.P = []byte(str) 1126 Addaddr(ctxt, s, sym) 1127 adduint(ctxt, s, uint64(len(str))) 1128 } 1129 1130 func addinitarrdata(ctxt *Link, s *Symbol) { 1131 p := s.Name + ".ptr" 1132 sp := ctxt.Syms.Lookup(p, 0) 1133 sp.Type = obj.SINITARR 1134 sp.Size = 0 1135 sp.Attr |= AttrDuplicateOK 1136 Addaddr(ctxt, sp, s) 1137 } 1138 1139 func dosymtype(ctxt *Link) { 1140 for _, s := range ctxt.Syms.Allsym { 1141 if len(s.P) > 0 { 1142 if s.Type == obj.SBSS { 1143 s.Type = obj.SDATA 1144 } 1145 if s.Type == obj.SNOPTRBSS { 1146 s.Type = obj.SNOPTRDATA 1147 } 1148 } 1149 // Create a new entry in the .init_array section that points to the 1150 // library initializer function. 1151 switch Buildmode { 1152 case BuildmodeCArchive, BuildmodeCShared: 1153 if s.Name == *flagEntrySymbol { 1154 addinitarrdata(ctxt, s) 1155 } 1156 } 1157 } 1158 } 1159 1160 // symalign returns the required alignment for the given symbol s. 1161 func symalign(s *Symbol) int32 { 1162 min := int32(Thearch.Minalign) 1163 if s.Align >= min { 1164 return s.Align 1165 } else if s.Align != 0 { 1166 return min 1167 } 1168 if strings.HasPrefix(s.Name, "go.string.") || strings.HasPrefix(s.Name, "type..namedata.") { 1169 // String data is just bytes. 1170 // If we align it, we waste a lot of space to padding. 1171 return min 1172 } 1173 align := int32(Thearch.Maxalign) 1174 for int64(align) > s.Size && align > min { 1175 align >>= 1 1176 } 1177 return align 1178 } 1179 1180 func aligndatsize(datsize int64, s *Symbol) int64 { 1181 return Rnd(datsize, int64(symalign(s))) 1182 } 1183 1184 const debugGCProg = false 1185 1186 type GCProg struct { 1187 ctxt *Link 1188 sym *Symbol 1189 w gcprog.Writer 1190 } 1191 1192 func (p *GCProg) Init(ctxt *Link, name string) { 1193 p.ctxt = ctxt 1194 p.sym = ctxt.Syms.Lookup(name, 0) 1195 p.w.Init(p.writeByte(ctxt)) 1196 if debugGCProg { 1197 fmt.Fprintf(os.Stderr, "ld: start GCProg %s\n", name) 1198 p.w.Debug(os.Stderr) 1199 } 1200 } 1201 1202 func (p *GCProg) writeByte(ctxt *Link) func(x byte) { 1203 return func(x byte) { 1204 Adduint8(ctxt, p.sym, x) 1205 } 1206 } 1207 1208 func (p *GCProg) End(size int64) { 1209 p.w.ZeroUntil(size / int64(SysArch.PtrSize)) 1210 p.w.End() 1211 if debugGCProg { 1212 fmt.Fprintf(os.Stderr, "ld: end GCProg\n") 1213 } 1214 } 1215 1216 func (p *GCProg) AddSym(s *Symbol) { 1217 typ := s.Gotype 1218 // Things without pointers should be in SNOPTRDATA or SNOPTRBSS; 1219 // everything we see should have pointers and should therefore have a type. 1220 if typ == nil { 1221 switch s.Name { 1222 case "runtime.data", "runtime.edata", "runtime.bss", "runtime.ebss": 1223 // Ignore special symbols that are sometimes laid out 1224 // as real symbols. See comment about dyld on darwin in 1225 // the address function. 1226 return 1227 } 1228 Errorf(s, "missing Go type information for global symbol: size %d", s.Size) 1229 return 1230 } 1231 1232 ptrsize := int64(SysArch.PtrSize) 1233 nptr := decodetypePtrdata(p.ctxt.Arch, typ) / ptrsize 1234 1235 if debugGCProg { 1236 fmt.Fprintf(os.Stderr, "gcprog sym: %s at %d (ptr=%d+%d)\n", s.Name, s.Value, s.Value/ptrsize, nptr) 1237 } 1238 1239 if decodetypeUsegcprog(typ) == 0 { 1240 // Copy pointers from mask into program. 1241 mask := decodetypeGcmask(p.ctxt, typ) 1242 for i := int64(0); i < nptr; i++ { 1243 if (mask[i/8]>>uint(i%8))&1 != 0 { 1244 p.w.Ptr(s.Value/ptrsize + i) 1245 } 1246 } 1247 return 1248 } 1249 1250 // Copy program. 1251 prog := decodetypeGcprog(p.ctxt, typ) 1252 p.w.ZeroUntil(s.Value / ptrsize) 1253 p.w.Append(prog[4:], nptr) 1254 } 1255 1256 // dataSortKey is used to sort a slice of data symbol *Symbol pointers. 1257 // The sort keys are kept inline to improve cache behavior while sorting. 1258 type dataSortKey struct { 1259 size int64 1260 name string 1261 sym *Symbol 1262 } 1263 1264 type bySizeAndName []dataSortKey 1265 1266 func (d bySizeAndName) Len() int { return len(d) } 1267 func (d bySizeAndName) Swap(i, j int) { d[i], d[j] = d[j], d[i] } 1268 func (d bySizeAndName) Less(i, j int) bool { 1269 s1, s2 := d[i], d[j] 1270 if s1.size != s2.size { 1271 return s1.size < s2.size 1272 } 1273 return s1.name < s2.name 1274 } 1275 1276 const cutoff int64 = 2e9 // 2 GB (or so; looks better in errors than 2^31) 1277 1278 func checkdatsize(ctxt *Link, datsize int64, symn obj.SymKind) { 1279 if datsize > cutoff { 1280 Errorf(nil, "too much data in section %v (over %d bytes)", symn, cutoff) 1281 } 1282 } 1283 1284 // datap is a collection of reachable data symbols in address order. 1285 // Generated by dodata. 1286 var datap []*Symbol 1287 1288 func (ctxt *Link) dodata() { 1289 if ctxt.Debugvlog != 0 { 1290 ctxt.Logf("%5.2f dodata\n", obj.Cputime()) 1291 } 1292 1293 if ctxt.DynlinkingGo() && Headtype == obj.Hdarwin { 1294 // The values in moduledata are filled out by relocations 1295 // pointing to the addresses of these special symbols. 1296 // Typically these symbols have no size and are not laid 1297 // out with their matching section. 1298 // 1299 // However on darwin, dyld will find the special symbol 1300 // in the first loaded module, even though it is local. 1301 // 1302 // (An hypothesis, formed without looking in the dyld sources: 1303 // these special symbols have no size, so their address 1304 // matches a real symbol. The dynamic linker assumes we 1305 // want the normal symbol with the same address and finds 1306 // it in the other module.) 1307 // 1308 // To work around this we lay out the symbls whose 1309 // addresses are vital for multi-module programs to work 1310 // as normal symbols, and give them a little size. 1311 bss := ctxt.Syms.Lookup("runtime.bss", 0) 1312 bss.Size = 8 1313 bss.Attr.Set(AttrSpecial, false) 1314 1315 ctxt.Syms.Lookup("runtime.ebss", 0).Attr.Set(AttrSpecial, false) 1316 1317 data := ctxt.Syms.Lookup("runtime.data", 0) 1318 data.Size = 8 1319 data.Attr.Set(AttrSpecial, false) 1320 1321 ctxt.Syms.Lookup("runtime.edata", 0).Attr.Set(AttrSpecial, false) 1322 1323 types := ctxt.Syms.Lookup("runtime.types", 0) 1324 types.Type = obj.STYPE 1325 types.Size = 8 1326 types.Attr.Set(AttrSpecial, false) 1327 1328 etypes := ctxt.Syms.Lookup("runtime.etypes", 0) 1329 etypes.Type = obj.SFUNCTAB 1330 etypes.Attr.Set(AttrSpecial, false) 1331 } 1332 1333 // Collect data symbols by type into data. 1334 var data [obj.SXREF][]*Symbol 1335 for _, s := range ctxt.Syms.Allsym { 1336 if !s.Attr.Reachable() || s.Attr.Special() { 1337 continue 1338 } 1339 if s.Type <= obj.STEXT || s.Type >= obj.SXREF { 1340 continue 1341 } 1342 data[s.Type] = append(data[s.Type], s) 1343 } 1344 1345 // Now that we have the data symbols, but before we start 1346 // to assign addresses, record all the necessary 1347 // dynamic relocations. These will grow the relocation 1348 // symbol, which is itself data. 1349 // 1350 // On darwin, we need the symbol table numbers for dynreloc. 1351 if Headtype == obj.Hdarwin { 1352 machosymorder(ctxt) 1353 } 1354 dynreloc(ctxt, &data) 1355 1356 if UseRelro() { 1357 // "read only" data with relocations needs to go in its own section 1358 // when building a shared library. We do this by boosting objects of 1359 // type SXXX with relocations to type SXXXRELRO. 1360 for _, symnro := range obj.ReadOnly { 1361 symnrelro := obj.RelROMap[symnro] 1362 1363 ro := []*Symbol{} 1364 relro := data[symnrelro] 1365 1366 for _, s := range data[symnro] { 1367 isRelro := len(s.R) > 0 1368 switch s.Type { 1369 case obj.STYPE, obj.STYPERELRO, obj.SGOFUNCRELRO: 1370 // Symbols are not sorted yet, so it is possible 1371 // that an Outer symbol has been changed to a 1372 // relro Type before it reaches here. 1373 isRelro = true 1374 } 1375 if isRelro { 1376 s.Type = symnrelro 1377 if s.Outer != nil { 1378 s.Outer.Type = s.Type 1379 } 1380 relro = append(relro, s) 1381 } else { 1382 ro = append(ro, s) 1383 } 1384 } 1385 1386 // Check that we haven't made two symbols with the same .Outer into 1387 // different types (because references two symbols with non-nil Outer 1388 // become references to the outer symbol + offset it's vital that the 1389 // symbol and the outer end up in the same section). 1390 for _, s := range relro { 1391 if s.Outer != nil && s.Outer.Type != s.Type { 1392 Errorf(s, "inconsistent types for symbol and its Outer %s (%v != %v)", 1393 s.Outer.Name, s.Type, s.Outer.Type) 1394 } 1395 } 1396 1397 data[symnro] = ro 1398 data[symnrelro] = relro 1399 } 1400 } 1401 1402 // Sort symbols. 1403 var dataMaxAlign [obj.SXREF]int32 1404 var wg sync.WaitGroup 1405 for symn := range data { 1406 symn := obj.SymKind(symn) 1407 wg.Add(1) 1408 go func() { 1409 data[symn], dataMaxAlign[symn] = dodataSect(ctxt, symn, data[symn]) 1410 wg.Done() 1411 }() 1412 } 1413 wg.Wait() 1414 1415 // Allocate sections. 1416 // Data is processed before segtext, because we need 1417 // to see all symbols in the .data and .bss sections in order 1418 // to generate garbage collection information. 1419 datsize := int64(0) 1420 1421 // Writable data sections that do not need any specialized handling. 1422 writable := []obj.SymKind{ 1423 obj.SELFSECT, 1424 obj.SMACHO, 1425 obj.SMACHOGOT, 1426 obj.SWINDOWS, 1427 } 1428 for _, symn := range writable { 1429 for _, s := range data[symn] { 1430 sect := addsection(&Segdata, s.Name, 06) 1431 sect.Align = symalign(s) 1432 datsize = Rnd(datsize, int64(sect.Align)) 1433 sect.Vaddr = uint64(datsize) 1434 s.Sect = sect 1435 s.Type = obj.SDATA 1436 s.Value = int64(uint64(datsize) - sect.Vaddr) 1437 datsize += s.Size 1438 sect.Length = uint64(datsize) - sect.Vaddr 1439 } 1440 checkdatsize(ctxt, datsize, symn) 1441 } 1442 1443 // .got (and .toc on ppc64) 1444 if len(data[obj.SELFGOT]) > 0 { 1445 sect := addsection(&Segdata, ".got", 06) 1446 sect.Align = dataMaxAlign[obj.SELFGOT] 1447 datsize = Rnd(datsize, int64(sect.Align)) 1448 sect.Vaddr = uint64(datsize) 1449 var toc *Symbol 1450 for _, s := range data[obj.SELFGOT] { 1451 datsize = aligndatsize(datsize, s) 1452 s.Sect = sect 1453 s.Type = obj.SDATA 1454 s.Value = int64(uint64(datsize) - sect.Vaddr) 1455 1456 // Resolve .TOC. symbol for this object file (ppc64) 1457 toc = ctxt.Syms.ROLookup(".TOC.", int(s.Version)) 1458 if toc != nil { 1459 toc.Sect = sect 1460 toc.Outer = s 1461 toc.Sub = s.Sub 1462 s.Sub = toc 1463 1464 toc.Value = 0x8000 1465 } 1466 1467 datsize += s.Size 1468 } 1469 checkdatsize(ctxt, datsize, obj.SELFGOT) 1470 sect.Length = uint64(datsize) - sect.Vaddr 1471 } 1472 1473 /* pointer-free data */ 1474 sect := addsection(&Segdata, ".noptrdata", 06) 1475 sect.Align = dataMaxAlign[obj.SNOPTRDATA] 1476 datsize = Rnd(datsize, int64(sect.Align)) 1477 sect.Vaddr = uint64(datsize) 1478 ctxt.Syms.Lookup("runtime.noptrdata", 0).Sect = sect 1479 ctxt.Syms.Lookup("runtime.enoptrdata", 0).Sect = sect 1480 for _, s := range data[obj.SNOPTRDATA] { 1481 datsize = aligndatsize(datsize, s) 1482 s.Sect = sect 1483 s.Type = obj.SDATA 1484 s.Value = int64(uint64(datsize) - sect.Vaddr) 1485 datsize += s.Size 1486 } 1487 checkdatsize(ctxt, datsize, obj.SNOPTRDATA) 1488 sect.Length = uint64(datsize) - sect.Vaddr 1489 1490 hasinitarr := *FlagLinkshared 1491 1492 /* shared library initializer */ 1493 switch Buildmode { 1494 case BuildmodeCArchive, BuildmodeCShared, BuildmodeShared, BuildmodePlugin: 1495 hasinitarr = true 1496 } 1497 if hasinitarr { 1498 sect := addsection(&Segdata, ".init_array", 06) 1499 sect.Align = dataMaxAlign[obj.SINITARR] 1500 datsize = Rnd(datsize, int64(sect.Align)) 1501 sect.Vaddr = uint64(datsize) 1502 for _, s := range data[obj.SINITARR] { 1503 datsize = aligndatsize(datsize, s) 1504 s.Sect = sect 1505 s.Value = int64(uint64(datsize) - sect.Vaddr) 1506 datsize += s.Size 1507 } 1508 sect.Length = uint64(datsize) - sect.Vaddr 1509 checkdatsize(ctxt, datsize, obj.SINITARR) 1510 } 1511 1512 /* data */ 1513 sect = addsection(&Segdata, ".data", 06) 1514 sect.Align = dataMaxAlign[obj.SDATA] 1515 datsize = Rnd(datsize, int64(sect.Align)) 1516 sect.Vaddr = uint64(datsize) 1517 ctxt.Syms.Lookup("runtime.data", 0).Sect = sect 1518 ctxt.Syms.Lookup("runtime.edata", 0).Sect = sect 1519 var gc GCProg 1520 gc.Init(ctxt, "runtime.gcdata") 1521 for _, s := range data[obj.SDATA] { 1522 s.Sect = sect 1523 s.Type = obj.SDATA 1524 datsize = aligndatsize(datsize, s) 1525 s.Value = int64(uint64(datsize) - sect.Vaddr) 1526 gc.AddSym(s) 1527 datsize += s.Size 1528 } 1529 checkdatsize(ctxt, datsize, obj.SDATA) 1530 sect.Length = uint64(datsize) - sect.Vaddr 1531 gc.End(int64(sect.Length)) 1532 1533 /* bss */ 1534 sect = addsection(&Segdata, ".bss", 06) 1535 sect.Align = dataMaxAlign[obj.SBSS] 1536 datsize = Rnd(datsize, int64(sect.Align)) 1537 sect.Vaddr = uint64(datsize) 1538 ctxt.Syms.Lookup("runtime.bss", 0).Sect = sect 1539 ctxt.Syms.Lookup("runtime.ebss", 0).Sect = sect 1540 gc = GCProg{} 1541 gc.Init(ctxt, "runtime.gcbss") 1542 for _, s := range data[obj.SBSS] { 1543 s.Sect = sect 1544 datsize = aligndatsize(datsize, s) 1545 s.Value = int64(uint64(datsize) - sect.Vaddr) 1546 gc.AddSym(s) 1547 datsize += s.Size 1548 } 1549 checkdatsize(ctxt, datsize, obj.SBSS) 1550 sect.Length = uint64(datsize) - sect.Vaddr 1551 gc.End(int64(sect.Length)) 1552 1553 /* pointer-free bss */ 1554 sect = addsection(&Segdata, ".noptrbss", 06) 1555 sect.Align = dataMaxAlign[obj.SNOPTRBSS] 1556 datsize = Rnd(datsize, int64(sect.Align)) 1557 sect.Vaddr = uint64(datsize) 1558 ctxt.Syms.Lookup("runtime.noptrbss", 0).Sect = sect 1559 ctxt.Syms.Lookup("runtime.enoptrbss", 0).Sect = sect 1560 for _, s := range data[obj.SNOPTRBSS] { 1561 datsize = aligndatsize(datsize, s) 1562 s.Sect = sect 1563 s.Value = int64(uint64(datsize) - sect.Vaddr) 1564 datsize += s.Size 1565 } 1566 1567 sect.Length = uint64(datsize) - sect.Vaddr 1568 ctxt.Syms.Lookup("runtime.end", 0).Sect = sect 1569 checkdatsize(ctxt, datsize, obj.SNOPTRBSS) 1570 1571 if len(data[obj.STLSBSS]) > 0 { 1572 var sect *Section 1573 if Iself && (Linkmode == LinkExternal || !*FlagD) { 1574 sect = addsection(&Segdata, ".tbss", 06) 1575 sect.Align = int32(SysArch.PtrSize) 1576 sect.Vaddr = 0 1577 } 1578 datsize = 0 1579 1580 for _, s := range data[obj.STLSBSS] { 1581 datsize = aligndatsize(datsize, s) 1582 s.Sect = sect 1583 s.Value = datsize 1584 datsize += s.Size 1585 } 1586 checkdatsize(ctxt, datsize, obj.STLSBSS) 1587 1588 if sect != nil { 1589 sect.Length = uint64(datsize) 1590 } 1591 } 1592 1593 /* 1594 * We finished data, begin read-only data. 1595 * Not all systems support a separate read-only non-executable data section. 1596 * ELF systems do. 1597 * OS X and Plan 9 do not. 1598 * Windows PE may, but if so we have not implemented it. 1599 * And if we're using external linking mode, the point is moot, 1600 * since it's not our decision; that code expects the sections in 1601 * segtext. 1602 */ 1603 var segro *Segment 1604 if Iself && Linkmode == LinkInternal { 1605 segro = &Segrodata 1606 } else { 1607 segro = &Segtext 1608 } 1609 1610 datsize = 0 1611 1612 /* read-only executable ELF, Mach-O sections */ 1613 if len(data[obj.STEXT]) != 0 { 1614 Errorf(nil, "dodata found an STEXT symbol: %s", data[obj.STEXT][0].Name) 1615 } 1616 for _, s := range data[obj.SELFRXSECT] { 1617 sect := addsection(&Segtext, s.Name, 04) 1618 sect.Align = symalign(s) 1619 datsize = Rnd(datsize, int64(sect.Align)) 1620 sect.Vaddr = uint64(datsize) 1621 s.Sect = sect 1622 s.Type = obj.SRODATA 1623 s.Value = int64(uint64(datsize) - sect.Vaddr) 1624 datsize += s.Size 1625 sect.Length = uint64(datsize) - sect.Vaddr 1626 checkdatsize(ctxt, datsize, obj.SELFRXSECT) 1627 } 1628 1629 /* read-only data */ 1630 sect = addsection(segro, ".rodata", 04) 1631 1632 sect.Vaddr = 0 1633 ctxt.Syms.Lookup("runtime.rodata", 0).Sect = sect 1634 ctxt.Syms.Lookup("runtime.erodata", 0).Sect = sect 1635 if !UseRelro() { 1636 ctxt.Syms.Lookup("runtime.types", 0).Sect = sect 1637 ctxt.Syms.Lookup("runtime.etypes", 0).Sect = sect 1638 } 1639 for _, symn := range obj.ReadOnly { 1640 align := dataMaxAlign[symn] 1641 if sect.Align < align { 1642 sect.Align = align 1643 } 1644 } 1645 datsize = Rnd(datsize, int64(sect.Align)) 1646 for _, symn := range obj.ReadOnly { 1647 for _, s := range data[symn] { 1648 datsize = aligndatsize(datsize, s) 1649 s.Sect = sect 1650 s.Type = obj.SRODATA 1651 s.Value = int64(uint64(datsize) - sect.Vaddr) 1652 datsize += s.Size 1653 } 1654 checkdatsize(ctxt, datsize, symn) 1655 } 1656 sect.Length = uint64(datsize) - sect.Vaddr 1657 1658 /* read-only ELF, Mach-O sections */ 1659 for _, s := range data[obj.SELFROSECT] { 1660 sect = addsection(segro, s.Name, 04) 1661 sect.Align = symalign(s) 1662 datsize = Rnd(datsize, int64(sect.Align)) 1663 sect.Vaddr = uint64(datsize) 1664 s.Sect = sect 1665 s.Type = obj.SRODATA 1666 s.Value = int64(uint64(datsize) - sect.Vaddr) 1667 datsize += s.Size 1668 sect.Length = uint64(datsize) - sect.Vaddr 1669 } 1670 checkdatsize(ctxt, datsize, obj.SELFROSECT) 1671 1672 for _, s := range data[obj.SMACHOPLT] { 1673 sect = addsection(segro, s.Name, 04) 1674 sect.Align = symalign(s) 1675 datsize = Rnd(datsize, int64(sect.Align)) 1676 sect.Vaddr = uint64(datsize) 1677 s.Sect = sect 1678 s.Type = obj.SRODATA 1679 s.Value = int64(uint64(datsize) - sect.Vaddr) 1680 datsize += s.Size 1681 sect.Length = uint64(datsize) - sect.Vaddr 1682 } 1683 checkdatsize(ctxt, datsize, obj.SMACHOPLT) 1684 1685 // There is some data that are conceptually read-only but are written to by 1686 // relocations. On GNU systems, we can arrange for the dynamic linker to 1687 // mprotect sections after relocations are applied by giving them write 1688 // permissions in the object file and calling them ".data.rel.ro.FOO". We 1689 // divide the .rodata section between actual .rodata and .data.rel.ro.rodata, 1690 // but for the other sections that this applies to, we just write a read-only 1691 // .FOO section or a read-write .data.rel.ro.FOO section depending on the 1692 // situation. 1693 // TODO(mwhudson): It would make sense to do this more widely, but it makes 1694 // the system linker segfault on darwin. 1695 addrelrosection := func(suffix string) *Section { 1696 return addsection(segro, suffix, 04) 1697 } 1698 1699 if UseRelro() { 1700 addrelrosection = func(suffix string) *Section { 1701 seg := &Segrelrodata 1702 if Linkmode == LinkExternal { 1703 // Using a separate segment with an external 1704 // linker results in some programs moving 1705 // their data sections unexpectedly, which 1706 // corrupts the moduledata. So we use the 1707 // rodata segment and let the external linker 1708 // sort out a rel.ro segment. 1709 seg = &Segrodata 1710 } 1711 return addsection(seg, ".data.rel.ro"+suffix, 06) 1712 } 1713 /* data only written by relocations */ 1714 sect = addrelrosection("") 1715 1716 sect.Vaddr = 0 1717 ctxt.Syms.Lookup("runtime.types", 0).Sect = sect 1718 ctxt.Syms.Lookup("runtime.etypes", 0).Sect = sect 1719 for _, symnro := range obj.ReadOnly { 1720 symn := obj.RelROMap[symnro] 1721 align := dataMaxAlign[symn] 1722 if sect.Align < align { 1723 sect.Align = align 1724 } 1725 } 1726 datsize = Rnd(datsize, int64(sect.Align)) 1727 for _, symnro := range obj.ReadOnly { 1728 symn := obj.RelROMap[symnro] 1729 for _, s := range data[symn] { 1730 datsize = aligndatsize(datsize, s) 1731 if s.Outer != nil && s.Outer.Sect != nil && s.Outer.Sect != sect { 1732 Errorf(s, "s.Outer (%s) in different section from s, %s != %s", s.Outer.Name, s.Outer.Sect.Name, sect.Name) 1733 } 1734 s.Sect = sect 1735 s.Type = obj.SRODATA 1736 s.Value = int64(uint64(datsize) - sect.Vaddr) 1737 datsize += s.Size 1738 } 1739 checkdatsize(ctxt, datsize, symn) 1740 } 1741 1742 sect.Length = uint64(datsize) - sect.Vaddr 1743 } 1744 1745 /* typelink */ 1746 sect = addrelrosection(".typelink") 1747 sect.Align = dataMaxAlign[obj.STYPELINK] 1748 datsize = Rnd(datsize, int64(sect.Align)) 1749 sect.Vaddr = uint64(datsize) 1750 typelink := ctxt.Syms.Lookup("runtime.typelink", 0) 1751 typelink.Sect = sect 1752 typelink.Type = obj.RODATA 1753 datsize += typelink.Size 1754 checkdatsize(ctxt, datsize, obj.STYPELINK) 1755 sect.Length = uint64(datsize) - sect.Vaddr 1756 1757 /* itablink */ 1758 sect = addrelrosection(".itablink") 1759 sect.Align = dataMaxAlign[obj.SITABLINK] 1760 datsize = Rnd(datsize, int64(sect.Align)) 1761 sect.Vaddr = uint64(datsize) 1762 ctxt.Syms.Lookup("runtime.itablink", 0).Sect = sect 1763 ctxt.Syms.Lookup("runtime.eitablink", 0).Sect = sect 1764 for _, s := range data[obj.SITABLINK] { 1765 datsize = aligndatsize(datsize, s) 1766 s.Sect = sect 1767 s.Type = obj.SRODATA 1768 s.Value = int64(uint64(datsize) - sect.Vaddr) 1769 datsize += s.Size 1770 } 1771 checkdatsize(ctxt, datsize, obj.SITABLINK) 1772 sect.Length = uint64(datsize) - sect.Vaddr 1773 1774 /* gosymtab */ 1775 sect = addrelrosection(".gosymtab") 1776 sect.Align = dataMaxAlign[obj.SSYMTAB] 1777 datsize = Rnd(datsize, int64(sect.Align)) 1778 sect.Vaddr = uint64(datsize) 1779 ctxt.Syms.Lookup("runtime.symtab", 0).Sect = sect 1780 ctxt.Syms.Lookup("runtime.esymtab", 0).Sect = sect 1781 for _, s := range data[obj.SSYMTAB] { 1782 datsize = aligndatsize(datsize, s) 1783 s.Sect = sect 1784 s.Type = obj.SRODATA 1785 s.Value = int64(uint64(datsize) - sect.Vaddr) 1786 datsize += s.Size 1787 } 1788 checkdatsize(ctxt, datsize, obj.SSYMTAB) 1789 sect.Length = uint64(datsize) - sect.Vaddr 1790 1791 /* gopclntab */ 1792 sect = addrelrosection(".gopclntab") 1793 sect.Align = dataMaxAlign[obj.SPCLNTAB] 1794 datsize = Rnd(datsize, int64(sect.Align)) 1795 sect.Vaddr = uint64(datsize) 1796 ctxt.Syms.Lookup("runtime.pclntab", 0).Sect = sect 1797 ctxt.Syms.Lookup("runtime.epclntab", 0).Sect = sect 1798 for _, s := range data[obj.SPCLNTAB] { 1799 datsize = aligndatsize(datsize, s) 1800 s.Sect = sect 1801 s.Type = obj.SRODATA 1802 s.Value = int64(uint64(datsize) - sect.Vaddr) 1803 datsize += s.Size 1804 } 1805 checkdatsize(ctxt, datsize, obj.SRODATA) 1806 sect.Length = uint64(datsize) - sect.Vaddr 1807 1808 // 6g uses 4-byte relocation offsets, so the entire segment must fit in 32 bits. 1809 if datsize != int64(uint32(datsize)) { 1810 Errorf(nil, "read-only data segment too large: %d", datsize) 1811 } 1812 1813 for symn := obj.SELFRXSECT; symn < obj.SXREF; symn++ { 1814 datap = append(datap, data[symn]...) 1815 } 1816 1817 dwarfgeneratedebugsyms(ctxt) 1818 1819 var s *Symbol 1820 var i int 1821 for i, s = range dwarfp { 1822 if s.Type != obj.SDWARFSECT { 1823 break 1824 } 1825 sect = addsection(&Segdwarf, s.Name, 04) 1826 sect.Align = 1 1827 datsize = Rnd(datsize, int64(sect.Align)) 1828 sect.Vaddr = uint64(datsize) 1829 s.Sect = sect 1830 s.Type = obj.SRODATA 1831 s.Value = int64(uint64(datsize) - sect.Vaddr) 1832 datsize += s.Size 1833 sect.Length = uint64(datsize) - sect.Vaddr 1834 } 1835 checkdatsize(ctxt, datsize, obj.SDWARFSECT) 1836 1837 if i < len(dwarfp) { 1838 sect = addsection(&Segdwarf, ".debug_info", 04) 1839 sect.Align = 1 1840 datsize = Rnd(datsize, int64(sect.Align)) 1841 sect.Vaddr = uint64(datsize) 1842 for _, s := range dwarfp[i:] { 1843 if s.Type != obj.SDWARFINFO { 1844 break 1845 } 1846 s.Sect = sect 1847 s.Type = obj.SRODATA 1848 s.Value = int64(uint64(datsize) - sect.Vaddr) 1849 s.Attr |= AttrLocal 1850 datsize += s.Size 1851 } 1852 sect.Length = uint64(datsize) - sect.Vaddr 1853 checkdatsize(ctxt, datsize, obj.SDWARFINFO) 1854 } 1855 1856 /* number the sections */ 1857 n := int32(1) 1858 1859 for sect := Segtext.Sect; sect != nil; sect = sect.Next { 1860 sect.Extnum = int16(n) 1861 n++ 1862 } 1863 for sect := Segrodata.Sect; sect != nil; sect = sect.Next { 1864 sect.Extnum = int16(n) 1865 n++ 1866 } 1867 for sect := Segrelrodata.Sect; sect != nil; sect = sect.Next { 1868 sect.Extnum = int16(n) 1869 n++ 1870 } 1871 for sect := Segdata.Sect; sect != nil; sect = sect.Next { 1872 sect.Extnum = int16(n) 1873 n++ 1874 } 1875 for sect := Segdwarf.Sect; sect != nil; sect = sect.Next { 1876 sect.Extnum = int16(n) 1877 n++ 1878 } 1879 } 1880 1881 func dodataSect(ctxt *Link, symn obj.SymKind, syms []*Symbol) (result []*Symbol, maxAlign int32) { 1882 if Headtype == obj.Hdarwin { 1883 // Some symbols may no longer belong in syms 1884 // due to movement in machosymorder. 1885 newSyms := make([]*Symbol, 0, len(syms)) 1886 for _, s := range syms { 1887 if s.Type == symn { 1888 newSyms = append(newSyms, s) 1889 } 1890 } 1891 syms = newSyms 1892 } 1893 1894 var head, tail *Symbol 1895 symsSort := make([]dataSortKey, 0, len(syms)) 1896 for _, s := range syms { 1897 if s.Attr.OnList() { 1898 log.Fatalf("symbol %s listed multiple times", s.Name) 1899 } 1900 s.Attr |= AttrOnList 1901 switch { 1902 case s.Size < int64(len(s.P)): 1903 Errorf(s, "initialize bounds (%d < %d)", s.Size, len(s.P)) 1904 case s.Size < 0: 1905 Errorf(s, "negative size (%d bytes)", s.Size) 1906 case s.Size > cutoff: 1907 Errorf(s, "symbol too large (%d bytes)", s.Size) 1908 } 1909 1910 // If the usually-special section-marker symbols are being laid 1911 // out as regular symbols, put them either at the beginning or 1912 // end of their section. 1913 if ctxt.DynlinkingGo() && Headtype == obj.Hdarwin { 1914 switch s.Name { 1915 case "runtime.text", "runtime.bss", "runtime.data", "runtime.types": 1916 head = s 1917 continue 1918 case "runtime.etext", "runtime.ebss", "runtime.edata", "runtime.etypes": 1919 tail = s 1920 continue 1921 } 1922 } 1923 1924 key := dataSortKey{ 1925 size: s.Size, 1926 name: s.Name, 1927 sym: s, 1928 } 1929 1930 switch s.Type { 1931 case obj.SELFGOT: 1932 // For ppc64, we want to interleave the .got and .toc sections 1933 // from input files. Both are type SELFGOT, so in that case 1934 // we skip size comparison and fall through to the name 1935 // comparison (conveniently, .got sorts before .toc). 1936 key.size = 0 1937 } 1938 1939 symsSort = append(symsSort, key) 1940 } 1941 1942 sort.Sort(bySizeAndName(symsSort)) 1943 1944 off := 0 1945 if head != nil { 1946 syms[0] = head 1947 off++ 1948 } 1949 for i, symSort := range symsSort { 1950 syms[i+off] = symSort.sym 1951 align := symalign(symSort.sym) 1952 if maxAlign < align { 1953 maxAlign = align 1954 } 1955 } 1956 if tail != nil { 1957 syms[len(syms)-1] = tail 1958 } 1959 1960 if Iself && symn == obj.SELFROSECT { 1961 // Make .rela and .rela.plt contiguous, the ELF ABI requires this 1962 // and Solaris actually cares. 1963 reli, plti := -1, -1 1964 for i, s := range syms { 1965 switch s.Name { 1966 case ".rel.plt", ".rela.plt": 1967 plti = i 1968 case ".rel", ".rela": 1969 reli = i 1970 } 1971 } 1972 if reli >= 0 && plti >= 0 && plti != reli+1 { 1973 var first, second int 1974 if plti > reli { 1975 first, second = reli, plti 1976 } else { 1977 first, second = plti, reli 1978 } 1979 rel, plt := syms[reli], syms[plti] 1980 copy(syms[first+2:], syms[first+1:second]) 1981 syms[first+0] = rel 1982 syms[first+1] = plt 1983 1984 // Make sure alignment doesn't introduce a gap. 1985 // Setting the alignment explicitly prevents 1986 // symalign from basing it on the size and 1987 // getting it wrong. 1988 rel.Align = int32(SysArch.RegSize) 1989 plt.Align = int32(SysArch.RegSize) 1990 } 1991 } 1992 1993 return syms, maxAlign 1994 } 1995 1996 // Add buildid to beginning of text segment, on non-ELF systems. 1997 // Non-ELF binary formats are not always flexible enough to 1998 // give us a place to put the Go build ID. On those systems, we put it 1999 // at the very beginning of the text segment. 2000 // This ``header'' is read by cmd/go. 2001 func (ctxt *Link) textbuildid() { 2002 if Iself || Buildmode == BuildmodePlugin || *flagBuildid == "" { 2003 return 2004 } 2005 2006 sym := ctxt.Syms.Lookup("go.buildid", 0) 2007 sym.Attr |= AttrReachable 2008 // The \xff is invalid UTF-8, meant to make it less likely 2009 // to find one of these accidentally. 2010 data := "\xff Go build ID: " + strconv.Quote(*flagBuildid) + "\n \xff" 2011 sym.Type = obj.STEXT 2012 sym.P = []byte(data) 2013 sym.Size = int64(len(sym.P)) 2014 2015 ctxt.Textp = append(ctxt.Textp, nil) 2016 copy(ctxt.Textp[1:], ctxt.Textp) 2017 ctxt.Textp[0] = sym 2018 } 2019 2020 // assign addresses to text 2021 func (ctxt *Link) textaddress() { 2022 addsection(&Segtext, ".text", 05) 2023 2024 // Assign PCs in text segment. 2025 // Could parallelize, by assigning to text 2026 // and then letting threads copy down, but probably not worth it. 2027 sect := Segtext.Sect 2028 2029 sect.Align = int32(Funcalign) 2030 2031 text := ctxt.Syms.Lookup("runtime.text", 0) 2032 text.Sect = sect 2033 2034 if ctxt.DynlinkingGo() && Headtype == obj.Hdarwin { 2035 etext := ctxt.Syms.Lookup("runtime.etext", 0) 2036 etext.Sect = sect 2037 2038 ctxt.Textp = append(ctxt.Textp, etext, nil) 2039 copy(ctxt.Textp[1:], ctxt.Textp) 2040 ctxt.Textp[0] = text 2041 } 2042 2043 va := uint64(*FlagTextAddr) 2044 n := 1 2045 sect.Vaddr = va 2046 ntramps := 0 2047 for _, sym := range ctxt.Textp { 2048 sect, n, va = assignAddress(ctxt, sect, n, sym, va) 2049 2050 trampoline(ctxt, sym) // resolve jumps, may add trampolines if jump too far 2051 2052 // lay down trampolines after each function 2053 for ; ntramps < len(ctxt.tramps); ntramps++ { 2054 tramp := ctxt.tramps[ntramps] 2055 sect, n, va = assignAddress(ctxt, sect, n, tramp, va) 2056 } 2057 } 2058 2059 sect.Length = va - sect.Vaddr 2060 ctxt.Syms.Lookup("runtime.etext", 0).Sect = sect 2061 2062 // merge tramps into Textp, keeping Textp in address order 2063 if ntramps != 0 { 2064 newtextp := make([]*Symbol, 0, len(ctxt.Textp)+ntramps) 2065 i := 0 2066 for _, sym := range ctxt.Textp { 2067 for ; i < ntramps && ctxt.tramps[i].Value < sym.Value; i++ { 2068 newtextp = append(newtextp, ctxt.tramps[i]) 2069 } 2070 newtextp = append(newtextp, sym) 2071 } 2072 newtextp = append(newtextp, ctxt.tramps[i:ntramps]...) 2073 2074 ctxt.Textp = newtextp 2075 } 2076 } 2077 2078 // assigns address for a text symbol, returns (possibly new) section, its number, and the address 2079 // Note: once we have trampoline insertion support for external linking, this function 2080 // will not need to create new text sections, and so no need to return sect and n. 2081 func assignAddress(ctxt *Link, sect *Section, n int, sym *Symbol, va uint64) (*Section, int, uint64) { 2082 sym.Sect = sect 2083 if sym.Type&obj.SSUB != 0 { 2084 return sect, n, va 2085 } 2086 if sym.Align != 0 { 2087 va = uint64(Rnd(int64(va), int64(sym.Align))) 2088 } else { 2089 va = uint64(Rnd(int64(va), int64(Funcalign))) 2090 } 2091 sym.Value = 0 2092 for sub := sym; sub != nil; sub = sub.Sub { 2093 sub.Value += int64(va) 2094 } 2095 2096 funcsize := uint64(MINFUNC) // spacing required for findfunctab 2097 if sym.Size > MINFUNC { 2098 funcsize = uint64(sym.Size) 2099 } 2100 2101 // On ppc64x a text section should not be larger than 2^26 bytes due to the size of 2102 // call target offset field in the bl instruction. Splitting into smaller text 2103 // sections smaller than this limit allows the GNU linker to modify the long calls 2104 // appropriately. The limit allows for the space needed for tables inserted by the linker. 2105 2106 // If this function doesn't fit in the current text section, then create a new one. 2107 2108 // Only break at outermost syms. 2109 2110 if SysArch.InFamily(sys.PPC64) && sym.Outer == nil && Iself && Linkmode == LinkExternal && va-sect.Vaddr+funcsize > 0x1c00000 { 2111 2112 // Set the length for the previous text section 2113 sect.Length = va - sect.Vaddr 2114 2115 // Create new section, set the starting Vaddr 2116 sect = addsection(&Segtext, ".text", 05) 2117 sect.Vaddr = va 2118 sym.Sect = sect 2119 2120 // Create a symbol for the start of the secondary text sections 2121 ctxt.Syms.Lookup(fmt.Sprintf("runtime.text.%d", n), 0).Sect = sect 2122 n++ 2123 } 2124 va += funcsize 2125 2126 return sect, n, va 2127 } 2128 2129 // assign addresses 2130 func (ctxt *Link) address() { 2131 va := uint64(*FlagTextAddr) 2132 Segtext.Rwx = 05 2133 Segtext.Vaddr = va 2134 Segtext.Fileoff = uint64(HEADR) 2135 for s := Segtext.Sect; s != nil; s = s.Next { 2136 va = uint64(Rnd(int64(va), int64(s.Align))) 2137 s.Vaddr = va 2138 va += s.Length 2139 } 2140 2141 Segtext.Length = va - uint64(*FlagTextAddr) 2142 Segtext.Filelen = Segtext.Length 2143 if Headtype == obj.Hnacl { 2144 va += 32 // room for the "halt sled" 2145 } 2146 2147 if Segrodata.Sect != nil { 2148 // align to page boundary so as not to mix 2149 // rodata and executable text. 2150 // 2151 // Note: gold or GNU ld will reduce the size of the executable 2152 // file by arranging for the relro segment to end at a page 2153 // boundary, and overlap the end of the text segment with the 2154 // start of the relro segment in the file. The PT_LOAD segments 2155 // will be such that the last page of the text segment will be 2156 // mapped twice, once r-x and once starting out rw- and, after 2157 // relocation processing, changed to r--. 2158 // 2159 // Ideally the last page of the text segment would not be 2160 // writable even for this short period. 2161 va = uint64(Rnd(int64(va), int64(*FlagRound))) 2162 2163 Segrodata.Rwx = 04 2164 Segrodata.Vaddr = va 2165 Segrodata.Fileoff = va - Segtext.Vaddr + Segtext.Fileoff 2166 Segrodata.Filelen = 0 2167 for s := Segrodata.Sect; s != nil; s = s.Next { 2168 va = uint64(Rnd(int64(va), int64(s.Align))) 2169 s.Vaddr = va 2170 va += s.Length 2171 } 2172 2173 Segrodata.Length = va - Segrodata.Vaddr 2174 Segrodata.Filelen = Segrodata.Length 2175 } 2176 if Segrelrodata.Sect != nil { 2177 // align to page boundary so as not to mix 2178 // rodata, rel-ro data, and executable text. 2179 va = uint64(Rnd(int64(va), int64(*FlagRound))) 2180 2181 Segrelrodata.Rwx = 06 2182 Segrelrodata.Vaddr = va 2183 Segrelrodata.Fileoff = va - Segrodata.Vaddr + Segrodata.Fileoff 2184 Segrelrodata.Filelen = 0 2185 for s := Segrelrodata.Sect; s != nil; s = s.Next { 2186 va = uint64(Rnd(int64(va), int64(s.Align))) 2187 s.Vaddr = va 2188 va += s.Length 2189 } 2190 2191 Segrelrodata.Length = va - Segrelrodata.Vaddr 2192 Segrelrodata.Filelen = Segrelrodata.Length 2193 } 2194 2195 va = uint64(Rnd(int64(va), int64(*FlagRound))) 2196 Segdata.Rwx = 06 2197 Segdata.Vaddr = va 2198 Segdata.Fileoff = va - Segtext.Vaddr + Segtext.Fileoff 2199 Segdata.Filelen = 0 2200 if Headtype == obj.Hwindows { 2201 Segdata.Fileoff = Segtext.Fileoff + uint64(Rnd(int64(Segtext.Length), PEFILEALIGN)) 2202 } 2203 if Headtype == obj.Hplan9 { 2204 Segdata.Fileoff = Segtext.Fileoff + Segtext.Filelen 2205 } 2206 var data *Section 2207 var noptr *Section 2208 var bss *Section 2209 var noptrbss *Section 2210 var vlen int64 2211 for s := Segdata.Sect; s != nil; s = s.Next { 2212 if Iself && s.Name == ".tbss" { 2213 continue 2214 } 2215 vlen = int64(s.Length) 2216 if s.Next != nil && !(Iself && s.Next.Name == ".tbss") { 2217 vlen = int64(s.Next.Vaddr - s.Vaddr) 2218 } 2219 s.Vaddr = va 2220 va += uint64(vlen) 2221 Segdata.Length = va - Segdata.Vaddr 2222 if s.Name == ".data" { 2223 data = s 2224 } 2225 if s.Name == ".noptrdata" { 2226 noptr = s 2227 } 2228 if s.Name == ".bss" { 2229 bss = s 2230 } 2231 if s.Name == ".noptrbss" { 2232 noptrbss = s 2233 } 2234 } 2235 2236 Segdata.Filelen = bss.Vaddr - Segdata.Vaddr 2237 2238 va = uint64(Rnd(int64(va), int64(*FlagRound))) 2239 Segdwarf.Rwx = 06 2240 Segdwarf.Vaddr = va 2241 Segdwarf.Fileoff = Segdata.Fileoff + uint64(Rnd(int64(Segdata.Filelen), int64(*FlagRound))) 2242 Segdwarf.Filelen = 0 2243 if Headtype == obj.Hwindows { 2244 Segdwarf.Fileoff = Segdata.Fileoff + uint64(Rnd(int64(Segdata.Filelen), int64(PEFILEALIGN))) 2245 } 2246 for s := Segdwarf.Sect; s != nil; s = s.Next { 2247 vlen = int64(s.Length) 2248 if s.Next != nil { 2249 vlen = int64(s.Next.Vaddr - s.Vaddr) 2250 } 2251 s.Vaddr = va 2252 va += uint64(vlen) 2253 if Headtype == obj.Hwindows { 2254 va = uint64(Rnd(int64(va), PEFILEALIGN)) 2255 } 2256 Segdwarf.Length = va - Segdwarf.Vaddr 2257 } 2258 2259 Segdwarf.Filelen = va - Segdwarf.Vaddr 2260 2261 var ( 2262 text = Segtext.Sect 2263 rodata = ctxt.Syms.Lookup("runtime.rodata", 0).Sect 2264 itablink = ctxt.Syms.Lookup("runtime.itablink", 0).Sect 2265 symtab = ctxt.Syms.Lookup("runtime.symtab", 0).Sect 2266 pclntab = ctxt.Syms.Lookup("runtime.pclntab", 0).Sect 2267 types = ctxt.Syms.Lookup("runtime.types", 0).Sect 2268 ) 2269 lasttext := text 2270 // Could be multiple .text sections 2271 for sect := text.Next; sect != nil && sect.Name == ".text"; sect = sect.Next { 2272 lasttext = sect 2273 } 2274 2275 for _, s := range datap { 2276 if s.Sect != nil { 2277 s.Value += int64(s.Sect.Vaddr) 2278 } 2279 for sub := s.Sub; sub != nil; sub = sub.Sub { 2280 sub.Value += s.Value 2281 } 2282 } 2283 2284 for _, sym := range dwarfp { 2285 if sym.Sect != nil { 2286 sym.Value += int64(sym.Sect.Vaddr) 2287 } 2288 for sub := sym.Sub; sub != nil; sub = sub.Sub { 2289 sub.Value += sym.Value 2290 } 2291 } 2292 2293 if Buildmode == BuildmodeShared { 2294 s := ctxt.Syms.Lookup("go.link.abihashbytes", 0) 2295 sectSym := ctxt.Syms.Lookup(".note.go.abihash", 0) 2296 s.Sect = sectSym.Sect 2297 s.Value = int64(sectSym.Sect.Vaddr + 16) 2298 } 2299 2300 ctxt.xdefine("runtime.text", obj.STEXT, int64(text.Vaddr)) 2301 ctxt.xdefine("runtime.etext", obj.STEXT, int64(lasttext.Vaddr+lasttext.Length)) 2302 2303 // If there are multiple text sections, create runtime.text.n for 2304 // their section Vaddr, using n for index 2305 n := 1 2306 for sect := Segtext.Sect.Next; sect != nil && sect.Name == ".text"; sect = sect.Next { 2307 symname := fmt.Sprintf("runtime.text.%d", n) 2308 ctxt.xdefine(symname, obj.STEXT, int64(sect.Vaddr)) 2309 n++ 2310 } 2311 2312 ctxt.xdefine("runtime.rodata", obj.SRODATA, int64(rodata.Vaddr)) 2313 ctxt.xdefine("runtime.erodata", obj.SRODATA, int64(rodata.Vaddr+rodata.Length)) 2314 ctxt.xdefine("runtime.types", obj.SRODATA, int64(types.Vaddr)) 2315 ctxt.xdefine("runtime.etypes", obj.SRODATA, int64(types.Vaddr+types.Length)) 2316 ctxt.xdefine("runtime.itablink", obj.SRODATA, int64(itablink.Vaddr)) 2317 ctxt.xdefine("runtime.eitablink", obj.SRODATA, int64(itablink.Vaddr+itablink.Length)) 2318 2319 sym := ctxt.Syms.Lookup("runtime.gcdata", 0) 2320 sym.Attr |= AttrLocal 2321 ctxt.xdefine("runtime.egcdata", obj.SRODATA, Symaddr(sym)+sym.Size) 2322 ctxt.Syms.Lookup("runtime.egcdata", 0).Sect = sym.Sect 2323 2324 sym = ctxt.Syms.Lookup("runtime.gcbss", 0) 2325 sym.Attr |= AttrLocal 2326 ctxt.xdefine("runtime.egcbss", obj.SRODATA, Symaddr(sym)+sym.Size) 2327 ctxt.Syms.Lookup("runtime.egcbss", 0).Sect = sym.Sect 2328 2329 ctxt.xdefine("runtime.symtab", obj.SRODATA, int64(symtab.Vaddr)) 2330 ctxt.xdefine("runtime.esymtab", obj.SRODATA, int64(symtab.Vaddr+symtab.Length)) 2331 ctxt.xdefine("runtime.pclntab", obj.SRODATA, int64(pclntab.Vaddr)) 2332 ctxt.xdefine("runtime.epclntab", obj.SRODATA, int64(pclntab.Vaddr+pclntab.Length)) 2333 ctxt.xdefine("runtime.noptrdata", obj.SNOPTRDATA, int64(noptr.Vaddr)) 2334 ctxt.xdefine("runtime.enoptrdata", obj.SNOPTRDATA, int64(noptr.Vaddr+noptr.Length)) 2335 ctxt.xdefine("runtime.bss", obj.SBSS, int64(bss.Vaddr)) 2336 ctxt.xdefine("runtime.ebss", obj.SBSS, int64(bss.Vaddr+bss.Length)) 2337 ctxt.xdefine("runtime.data", obj.SDATA, int64(data.Vaddr)) 2338 ctxt.xdefine("runtime.edata", obj.SDATA, int64(data.Vaddr+data.Length)) 2339 ctxt.xdefine("runtime.noptrbss", obj.SNOPTRBSS, int64(noptrbss.Vaddr)) 2340 ctxt.xdefine("runtime.enoptrbss", obj.SNOPTRBSS, int64(noptrbss.Vaddr+noptrbss.Length)) 2341 ctxt.xdefine("runtime.end", obj.SBSS, int64(Segdata.Vaddr+Segdata.Length)) 2342 } 2343 2344 // add a trampoline with symbol s (to be laid down after the current function) 2345 func (ctxt *Link) AddTramp(s *Symbol) { 2346 s.Type = obj.STEXT 2347 s.Attr |= AttrReachable 2348 s.Attr |= AttrOnList 2349 ctxt.tramps = append(ctxt.tramps, s) 2350 if *FlagDebugTramp > 0 && ctxt.Debugvlog > 0 { 2351 ctxt.Logf("trampoline %s inserted\n", s) 2352 } 2353 }