github.com/tidwall/go@v0.0.0-20170415222209-6694a6888b7d/src/crypto/ecdsa/ecdsa.go (about) 1 // Copyright 2011 The Go Authors. All rights reserved. 2 // Use of this source code is governed by a BSD-style 3 // license that can be found in the LICENSE file. 4 5 // Package ecdsa implements the Elliptic Curve Digital Signature Algorithm, as 6 // defined in FIPS 186-3. 7 // 8 // This implementation derives the nonce from an AES-CTR CSPRNG keyed by 9 // ChopMD(256, SHA2-512(priv.D || entropy || hash)). The CSPRNG key is IRO by 10 // a result of Coron; the AES-CTR stream is IRO under standard assumptions. 11 package ecdsa 12 13 // References: 14 // [NSA]: Suite B implementer's guide to FIPS 186-3, 15 // http://www.nsa.gov/ia/_files/ecdsa.pdf 16 // [SECG]: SECG, SEC1 17 // http://www.secg.org/sec1-v2.pdf 18 19 import ( 20 "crypto" 21 "crypto/aes" 22 "crypto/cipher" 23 "crypto/elliptic" 24 "crypto/sha512" 25 "encoding/asn1" 26 "errors" 27 "io" 28 "math/big" 29 ) 30 31 // A invertible implements fast inverse mod Curve.Params().N 32 type invertible interface { 33 // Inverse returns the inverse of k in GF(P) 34 Inverse(k *big.Int) *big.Int 35 } 36 37 // combinedMult implements fast multiplication S1*g + S2*p (g - generator, p - arbitrary point) 38 type combinedMult interface { 39 CombinedMult(bigX, bigY *big.Int, baseScalar, scalar []byte) (x, y *big.Int) 40 } 41 42 const ( 43 aesIV = "IV for ECDSA CTR" 44 ) 45 46 // PublicKey represents an ECDSA public key. 47 type PublicKey struct { 48 elliptic.Curve 49 X, Y *big.Int 50 } 51 52 // PrivateKey represents a ECDSA private key. 53 type PrivateKey struct { 54 PublicKey 55 D *big.Int 56 } 57 58 type ecdsaSignature struct { 59 R, S *big.Int 60 } 61 62 // Public returns the public key corresponding to priv. 63 func (priv *PrivateKey) Public() crypto.PublicKey { 64 return &priv.PublicKey 65 } 66 67 // Sign signs msg with priv, reading randomness from rand. This method is 68 // intended to support keys where the private part is kept in, for example, a 69 // hardware module. Common uses should use the Sign function in this package 70 // directly. 71 func (priv *PrivateKey) Sign(rand io.Reader, msg []byte, opts crypto.SignerOpts) ([]byte, error) { 72 r, s, err := Sign(rand, priv, msg) 73 if err != nil { 74 return nil, err 75 } 76 77 return asn1.Marshal(ecdsaSignature{r, s}) 78 } 79 80 var one = new(big.Int).SetInt64(1) 81 82 // randFieldElement returns a random element of the field underlying the given 83 // curve using the procedure given in [NSA] A.2.1. 84 func randFieldElement(c elliptic.Curve, rand io.Reader) (k *big.Int, err error) { 85 params := c.Params() 86 b := make([]byte, params.BitSize/8+8) 87 _, err = io.ReadFull(rand, b) 88 if err != nil { 89 return 90 } 91 92 k = new(big.Int).SetBytes(b) 93 n := new(big.Int).Sub(params.N, one) 94 k.Mod(k, n) 95 k.Add(k, one) 96 return 97 } 98 99 // GenerateKey generates a public and private key pair. 100 func GenerateKey(c elliptic.Curve, rand io.Reader) (*PrivateKey, error) { 101 k, err := randFieldElement(c, rand) 102 if err != nil { 103 return nil, err 104 } 105 106 priv := new(PrivateKey) 107 priv.PublicKey.Curve = c 108 priv.D = k 109 priv.PublicKey.X, priv.PublicKey.Y = c.ScalarBaseMult(k.Bytes()) 110 return priv, nil 111 } 112 113 // hashToInt converts a hash value to an integer. There is some disagreement 114 // about how this is done. [NSA] suggests that this is done in the obvious 115 // manner, but [SECG] truncates the hash to the bit-length of the curve order 116 // first. We follow [SECG] because that's what OpenSSL does. Additionally, 117 // OpenSSL right shifts excess bits from the number if the hash is too large 118 // and we mirror that too. 119 func hashToInt(hash []byte, c elliptic.Curve) *big.Int { 120 orderBits := c.Params().N.BitLen() 121 orderBytes := (orderBits + 7) / 8 122 if len(hash) > orderBytes { 123 hash = hash[:orderBytes] 124 } 125 126 ret := new(big.Int).SetBytes(hash) 127 excess := len(hash)*8 - orderBits 128 if excess > 0 { 129 ret.Rsh(ret, uint(excess)) 130 } 131 return ret 132 } 133 134 // fermatInverse calculates the inverse of k in GF(P) using Fermat's method. 135 // This has better constant-time properties than Euclid's method (implemented 136 // in math/big.Int.ModInverse) although math/big itself isn't strictly 137 // constant-time so it's not perfect. 138 func fermatInverse(k, N *big.Int) *big.Int { 139 two := big.NewInt(2) 140 nMinus2 := new(big.Int).Sub(N, two) 141 return new(big.Int).Exp(k, nMinus2, N) 142 } 143 144 var errZeroParam = errors.New("zero parameter") 145 146 // Sign signs a hash (which should be the result of hashing a larger message) 147 // using the private key, priv. If the hash is longer than the bit-length of the 148 // private key's curve order, the hash will be truncated to that length. It 149 // returns the signature as a pair of integers. The security of the private key 150 // depends on the entropy of rand. 151 func Sign(rand io.Reader, priv *PrivateKey, hash []byte) (r, s *big.Int, err error) { 152 // Get min(log2(q) / 2, 256) bits of entropy from rand. 153 entropylen := (priv.Curve.Params().BitSize + 7) / 16 154 if entropylen > 32 { 155 entropylen = 32 156 } 157 entropy := make([]byte, entropylen) 158 _, err = io.ReadFull(rand, entropy) 159 if err != nil { 160 return 161 } 162 163 // Initialize an SHA-512 hash context; digest ... 164 md := sha512.New() 165 md.Write(priv.D.Bytes()) // the private key, 166 md.Write(entropy) // the entropy, 167 md.Write(hash) // and the input hash; 168 key := md.Sum(nil)[:32] // and compute ChopMD-256(SHA-512), 169 // which is an indifferentiable MAC. 170 171 // Create an AES-CTR instance to use as a CSPRNG. 172 block, err := aes.NewCipher(key) 173 if err != nil { 174 return nil, nil, err 175 } 176 177 // Create a CSPRNG that xors a stream of zeros with 178 // the output of the AES-CTR instance. 179 csprng := cipher.StreamReader{ 180 R: zeroReader, 181 S: cipher.NewCTR(block, []byte(aesIV)), 182 } 183 184 // See [NSA] 3.4.1 185 c := priv.PublicKey.Curve 186 N := c.Params().N 187 if N.Sign() == 0 { 188 return nil, nil, errZeroParam 189 } 190 var k, kInv *big.Int 191 for { 192 for { 193 k, err = randFieldElement(c, csprng) 194 if err != nil { 195 r = nil 196 return 197 } 198 199 if in, ok := priv.Curve.(invertible); ok { 200 kInv = in.Inverse(k) 201 } else { 202 kInv = fermatInverse(k, N) // N != 0 203 } 204 205 r, _ = priv.Curve.ScalarBaseMult(k.Bytes()) 206 r.Mod(r, N) 207 if r.Sign() != 0 { 208 break 209 } 210 } 211 212 e := hashToInt(hash, c) 213 s = new(big.Int).Mul(priv.D, r) 214 s.Add(s, e) 215 s.Mul(s, kInv) 216 s.Mod(s, N) // N != 0 217 if s.Sign() != 0 { 218 break 219 } 220 } 221 222 return 223 } 224 225 // Verify verifies the signature in r, s of hash using the public key, pub. Its 226 // return value records whether the signature is valid. 227 func Verify(pub *PublicKey, hash []byte, r, s *big.Int) bool { 228 // See [NSA] 3.4.2 229 c := pub.Curve 230 N := c.Params().N 231 232 if r.Sign() <= 0 || s.Sign() <= 0 { 233 return false 234 } 235 if r.Cmp(N) >= 0 || s.Cmp(N) >= 0 { 236 return false 237 } 238 e := hashToInt(hash, c) 239 240 var w *big.Int 241 if in, ok := c.(invertible); ok { 242 w = in.Inverse(s) 243 } else { 244 w = new(big.Int).ModInverse(s, N) 245 } 246 247 u1 := e.Mul(e, w) 248 u1.Mod(u1, N) 249 u2 := w.Mul(r, w) 250 u2.Mod(u2, N) 251 252 // Check if implements S1*g + S2*p 253 var x, y *big.Int 254 if opt, ok := c.(combinedMult); ok { 255 x, y = opt.CombinedMult(pub.X, pub.Y, u1.Bytes(), u2.Bytes()) 256 } else { 257 x1, y1 := c.ScalarBaseMult(u1.Bytes()) 258 x2, y2 := c.ScalarMult(pub.X, pub.Y, u2.Bytes()) 259 x, y = c.Add(x1, y1, x2, y2) 260 } 261 262 if x.Sign() == 0 && y.Sign() == 0 { 263 return false 264 } 265 x.Mod(x, N) 266 return x.Cmp(r) == 0 267 } 268 269 type zr struct { 270 io.Reader 271 } 272 273 // Read replaces the contents of dst with zeros. 274 func (z *zr) Read(dst []byte) (n int, err error) { 275 for i := range dst { 276 dst[i] = 0 277 } 278 return len(dst), nil 279 } 280 281 var zeroReader = &zr{}