github.com/tidwall/go@v0.0.0-20170415222209-6694a6888b7d/src/encoding/asn1/asn1.go (about)

     1  // Copyright 2009 The Go Authors. All rights reserved.
     2  // Use of this source code is governed by a BSD-style
     3  // license that can be found in the LICENSE file.
     4  
     5  // Package asn1 implements parsing of DER-encoded ASN.1 data structures,
     6  // as defined in ITU-T Rec X.690.
     7  //
     8  // See also ``A Layman's Guide to a Subset of ASN.1, BER, and DER,''
     9  // http://luca.ntop.org/Teaching/Appunti/asn1.html.
    10  package asn1
    11  
    12  // ASN.1 is a syntax for specifying abstract objects and BER, DER, PER, XER etc
    13  // are different encoding formats for those objects. Here, we'll be dealing
    14  // with DER, the Distinguished Encoding Rules. DER is used in X.509 because
    15  // it's fast to parse and, unlike BER, has a unique encoding for every object.
    16  // When calculating hashes over objects, it's important that the resulting
    17  // bytes be the same at both ends and DER removes this margin of error.
    18  //
    19  // ASN.1 is very complex and this package doesn't attempt to implement
    20  // everything by any means.
    21  
    22  import (
    23  	"errors"
    24  	"fmt"
    25  	"math"
    26  	"math/big"
    27  	"reflect"
    28  	"strconv"
    29  	"time"
    30  	"unicode/utf8"
    31  )
    32  
    33  // A StructuralError suggests that the ASN.1 data is valid, but the Go type
    34  // which is receiving it doesn't match.
    35  type StructuralError struct {
    36  	Msg string
    37  }
    38  
    39  func (e StructuralError) Error() string { return "asn1: structure error: " + e.Msg }
    40  
    41  // A SyntaxError suggests that the ASN.1 data is invalid.
    42  type SyntaxError struct {
    43  	Msg string
    44  }
    45  
    46  func (e SyntaxError) Error() string { return "asn1: syntax error: " + e.Msg }
    47  
    48  // We start by dealing with each of the primitive types in turn.
    49  
    50  // BOOLEAN
    51  
    52  func parseBool(bytes []byte) (ret bool, err error) {
    53  	if len(bytes) != 1 {
    54  		err = SyntaxError{"invalid boolean"}
    55  		return
    56  	}
    57  
    58  	// DER demands that "If the encoding represents the boolean value TRUE,
    59  	// its single contents octet shall have all eight bits set to one."
    60  	// Thus only 0 and 255 are valid encoded values.
    61  	switch bytes[0] {
    62  	case 0:
    63  		ret = false
    64  	case 0xff:
    65  		ret = true
    66  	default:
    67  		err = SyntaxError{"invalid boolean"}
    68  	}
    69  
    70  	return
    71  }
    72  
    73  // INTEGER
    74  
    75  // checkInteger returns nil if the given bytes are a valid DER-encoded
    76  // INTEGER and an error otherwise.
    77  func checkInteger(bytes []byte) error {
    78  	if len(bytes) == 0 {
    79  		return StructuralError{"empty integer"}
    80  	}
    81  	if len(bytes) == 1 {
    82  		return nil
    83  	}
    84  	if (bytes[0] == 0 && bytes[1]&0x80 == 0) || (bytes[0] == 0xff && bytes[1]&0x80 == 0x80) {
    85  		return StructuralError{"integer not minimally-encoded"}
    86  	}
    87  	return nil
    88  }
    89  
    90  // parseInt64 treats the given bytes as a big-endian, signed integer and
    91  // returns the result.
    92  func parseInt64(bytes []byte) (ret int64, err error) {
    93  	err = checkInteger(bytes)
    94  	if err != nil {
    95  		return
    96  	}
    97  	if len(bytes) > 8 {
    98  		// We'll overflow an int64 in this case.
    99  		err = StructuralError{"integer too large"}
   100  		return
   101  	}
   102  	for bytesRead := 0; bytesRead < len(bytes); bytesRead++ {
   103  		ret <<= 8
   104  		ret |= int64(bytes[bytesRead])
   105  	}
   106  
   107  	// Shift up and down in order to sign extend the result.
   108  	ret <<= 64 - uint8(len(bytes))*8
   109  	ret >>= 64 - uint8(len(bytes))*8
   110  	return
   111  }
   112  
   113  // parseInt treats the given bytes as a big-endian, signed integer and returns
   114  // the result.
   115  func parseInt32(bytes []byte) (int32, error) {
   116  	if err := checkInteger(bytes); err != nil {
   117  		return 0, err
   118  	}
   119  	ret64, err := parseInt64(bytes)
   120  	if err != nil {
   121  		return 0, err
   122  	}
   123  	if ret64 != int64(int32(ret64)) {
   124  		return 0, StructuralError{"integer too large"}
   125  	}
   126  	return int32(ret64), nil
   127  }
   128  
   129  var bigOne = big.NewInt(1)
   130  
   131  // parseBigInt treats the given bytes as a big-endian, signed integer and returns
   132  // the result.
   133  func parseBigInt(bytes []byte) (*big.Int, error) {
   134  	if err := checkInteger(bytes); err != nil {
   135  		return nil, err
   136  	}
   137  	ret := new(big.Int)
   138  	if len(bytes) > 0 && bytes[0]&0x80 == 0x80 {
   139  		// This is a negative number.
   140  		notBytes := make([]byte, len(bytes))
   141  		for i := range notBytes {
   142  			notBytes[i] = ^bytes[i]
   143  		}
   144  		ret.SetBytes(notBytes)
   145  		ret.Add(ret, bigOne)
   146  		ret.Neg(ret)
   147  		return ret, nil
   148  	}
   149  	ret.SetBytes(bytes)
   150  	return ret, nil
   151  }
   152  
   153  // BIT STRING
   154  
   155  // BitString is the structure to use when you want an ASN.1 BIT STRING type. A
   156  // bit string is padded up to the nearest byte in memory and the number of
   157  // valid bits is recorded. Padding bits will be zero.
   158  type BitString struct {
   159  	Bytes     []byte // bits packed into bytes.
   160  	BitLength int    // length in bits.
   161  }
   162  
   163  // At returns the bit at the given index. If the index is out of range it
   164  // returns false.
   165  func (b BitString) At(i int) int {
   166  	if i < 0 || i >= b.BitLength {
   167  		return 0
   168  	}
   169  	x := i / 8
   170  	y := 7 - uint(i%8)
   171  	return int(b.Bytes[x]>>y) & 1
   172  }
   173  
   174  // RightAlign returns a slice where the padding bits are at the beginning. The
   175  // slice may share memory with the BitString.
   176  func (b BitString) RightAlign() []byte {
   177  	shift := uint(8 - (b.BitLength % 8))
   178  	if shift == 8 || len(b.Bytes) == 0 {
   179  		return b.Bytes
   180  	}
   181  
   182  	a := make([]byte, len(b.Bytes))
   183  	a[0] = b.Bytes[0] >> shift
   184  	for i := 1; i < len(b.Bytes); i++ {
   185  		a[i] = b.Bytes[i-1] << (8 - shift)
   186  		a[i] |= b.Bytes[i] >> shift
   187  	}
   188  
   189  	return a
   190  }
   191  
   192  // parseBitString parses an ASN.1 bit string from the given byte slice and returns it.
   193  func parseBitString(bytes []byte) (ret BitString, err error) {
   194  	if len(bytes) == 0 {
   195  		err = SyntaxError{"zero length BIT STRING"}
   196  		return
   197  	}
   198  	paddingBits := int(bytes[0])
   199  	if paddingBits > 7 ||
   200  		len(bytes) == 1 && paddingBits > 0 ||
   201  		bytes[len(bytes)-1]&((1<<bytes[0])-1) != 0 {
   202  		err = SyntaxError{"invalid padding bits in BIT STRING"}
   203  		return
   204  	}
   205  	ret.BitLength = (len(bytes)-1)*8 - paddingBits
   206  	ret.Bytes = bytes[1:]
   207  	return
   208  }
   209  
   210  // OBJECT IDENTIFIER
   211  
   212  // An ObjectIdentifier represents an ASN.1 OBJECT IDENTIFIER.
   213  type ObjectIdentifier []int
   214  
   215  // Equal reports whether oi and other represent the same identifier.
   216  func (oi ObjectIdentifier) Equal(other ObjectIdentifier) bool {
   217  	if len(oi) != len(other) {
   218  		return false
   219  	}
   220  	for i := 0; i < len(oi); i++ {
   221  		if oi[i] != other[i] {
   222  			return false
   223  		}
   224  	}
   225  
   226  	return true
   227  }
   228  
   229  func (oi ObjectIdentifier) String() string {
   230  	var s string
   231  
   232  	for i, v := range oi {
   233  		if i > 0 {
   234  			s += "."
   235  		}
   236  		s += strconv.Itoa(v)
   237  	}
   238  
   239  	return s
   240  }
   241  
   242  // parseObjectIdentifier parses an OBJECT IDENTIFIER from the given bytes and
   243  // returns it. An object identifier is a sequence of variable length integers
   244  // that are assigned in a hierarchy.
   245  func parseObjectIdentifier(bytes []byte) (s []int, err error) {
   246  	if len(bytes) == 0 {
   247  		err = SyntaxError{"zero length OBJECT IDENTIFIER"}
   248  		return
   249  	}
   250  
   251  	// In the worst case, we get two elements from the first byte (which is
   252  	// encoded differently) and then every varint is a single byte long.
   253  	s = make([]int, len(bytes)+1)
   254  
   255  	// The first varint is 40*value1 + value2:
   256  	// According to this packing, value1 can take the values 0, 1 and 2 only.
   257  	// When value1 = 0 or value1 = 1, then value2 is <= 39. When value1 = 2,
   258  	// then there are no restrictions on value2.
   259  	v, offset, err := parseBase128Int(bytes, 0)
   260  	if err != nil {
   261  		return
   262  	}
   263  	if v < 80 {
   264  		s[0] = v / 40
   265  		s[1] = v % 40
   266  	} else {
   267  		s[0] = 2
   268  		s[1] = v - 80
   269  	}
   270  
   271  	i := 2
   272  	for ; offset < len(bytes); i++ {
   273  		v, offset, err = parseBase128Int(bytes, offset)
   274  		if err != nil {
   275  			return
   276  		}
   277  		s[i] = v
   278  	}
   279  	s = s[0:i]
   280  	return
   281  }
   282  
   283  // ENUMERATED
   284  
   285  // An Enumerated is represented as a plain int.
   286  type Enumerated int
   287  
   288  // FLAG
   289  
   290  // A Flag accepts any data and is set to true if present.
   291  type Flag bool
   292  
   293  // parseBase128Int parses a base-128 encoded int from the given offset in the
   294  // given byte slice. It returns the value and the new offset.
   295  func parseBase128Int(bytes []byte, initOffset int) (ret, offset int, err error) {
   296  	offset = initOffset
   297  	var ret64 int64
   298  	for shifted := 0; offset < len(bytes); shifted++ {
   299  		// 5 * 7 bits per byte == 35 bits of data
   300  		// Thus the representation is either non-minimal or too large for an int32
   301  		if shifted == 5 {
   302  			err = StructuralError{"base 128 integer too large"}
   303  			return
   304  		}
   305  		ret64 <<= 7
   306  		b := bytes[offset]
   307  		ret64 |= int64(b & 0x7f)
   308  		offset++
   309  		if b&0x80 == 0 {
   310  			ret = int(ret64)
   311  			// Ensure that the returned value fits in an int on all platforms
   312  			if ret64 > math.MaxInt32 {
   313  				err = StructuralError{"base 128 integer too large"}
   314  			}
   315  			return
   316  		}
   317  	}
   318  	err = SyntaxError{"truncated base 128 integer"}
   319  	return
   320  }
   321  
   322  // UTCTime
   323  
   324  func parseUTCTime(bytes []byte) (ret time.Time, err error) {
   325  	s := string(bytes)
   326  
   327  	formatStr := "0601021504Z0700"
   328  	ret, err = time.Parse(formatStr, s)
   329  	if err != nil {
   330  		formatStr = "060102150405Z0700"
   331  		ret, err = time.Parse(formatStr, s)
   332  	}
   333  	if err != nil {
   334  		return
   335  	}
   336  
   337  	if serialized := ret.Format(formatStr); serialized != s {
   338  		err = fmt.Errorf("asn1: time did not serialize back to the original value and may be invalid: given %q, but serialized as %q", s, serialized)
   339  		return
   340  	}
   341  
   342  	if ret.Year() >= 2050 {
   343  		// UTCTime only encodes times prior to 2050. See https://tools.ietf.org/html/rfc5280#section-4.1.2.5.1
   344  		ret = ret.AddDate(-100, 0, 0)
   345  	}
   346  
   347  	return
   348  }
   349  
   350  // parseGeneralizedTime parses the GeneralizedTime from the given byte slice
   351  // and returns the resulting time.
   352  func parseGeneralizedTime(bytes []byte) (ret time.Time, err error) {
   353  	const formatStr = "20060102150405Z0700"
   354  	s := string(bytes)
   355  
   356  	if ret, err = time.Parse(formatStr, s); err != nil {
   357  		return
   358  	}
   359  
   360  	if serialized := ret.Format(formatStr); serialized != s {
   361  		err = fmt.Errorf("asn1: time did not serialize back to the original value and may be invalid: given %q, but serialized as %q", s, serialized)
   362  	}
   363  
   364  	return
   365  }
   366  
   367  // PrintableString
   368  
   369  // parsePrintableString parses a ASN.1 PrintableString from the given byte
   370  // array and returns it.
   371  func parsePrintableString(bytes []byte) (ret string, err error) {
   372  	for _, b := range bytes {
   373  		if !isPrintable(b) {
   374  			err = SyntaxError{"PrintableString contains invalid character"}
   375  			return
   376  		}
   377  	}
   378  	ret = string(bytes)
   379  	return
   380  }
   381  
   382  // isPrintable reports whether the given b is in the ASN.1 PrintableString set.
   383  func isPrintable(b byte) bool {
   384  	return 'a' <= b && b <= 'z' ||
   385  		'A' <= b && b <= 'Z' ||
   386  		'0' <= b && b <= '9' ||
   387  		'\'' <= b && b <= ')' ||
   388  		'+' <= b && b <= '/' ||
   389  		b == ' ' ||
   390  		b == ':' ||
   391  		b == '=' ||
   392  		b == '?' ||
   393  		// This is technically not allowed in a PrintableString.
   394  		// However, x509 certificates with wildcard strings don't
   395  		// always use the correct string type so we permit it.
   396  		b == '*'
   397  }
   398  
   399  // IA5String
   400  
   401  // parseIA5String parses a ASN.1 IA5String (ASCII string) from the given
   402  // byte slice and returns it.
   403  func parseIA5String(bytes []byte) (ret string, err error) {
   404  	for _, b := range bytes {
   405  		if b >= utf8.RuneSelf {
   406  			err = SyntaxError{"IA5String contains invalid character"}
   407  			return
   408  		}
   409  	}
   410  	ret = string(bytes)
   411  	return
   412  }
   413  
   414  // T61String
   415  
   416  // parseT61String parses a ASN.1 T61String (8-bit clean string) from the given
   417  // byte slice and returns it.
   418  func parseT61String(bytes []byte) (ret string, err error) {
   419  	return string(bytes), nil
   420  }
   421  
   422  // UTF8String
   423  
   424  // parseUTF8String parses a ASN.1 UTF8String (raw UTF-8) from the given byte
   425  // array and returns it.
   426  func parseUTF8String(bytes []byte) (ret string, err error) {
   427  	if !utf8.Valid(bytes) {
   428  		return "", errors.New("asn1: invalid UTF-8 string")
   429  	}
   430  	return string(bytes), nil
   431  }
   432  
   433  // A RawValue represents an undecoded ASN.1 object.
   434  type RawValue struct {
   435  	Class, Tag int
   436  	IsCompound bool
   437  	Bytes      []byte
   438  	FullBytes  []byte // includes the tag and length
   439  }
   440  
   441  // RawContent is used to signal that the undecoded, DER data needs to be
   442  // preserved for a struct. To use it, the first field of the struct must have
   443  // this type. It's an error for any of the other fields to have this type.
   444  type RawContent []byte
   445  
   446  // Tagging
   447  
   448  // parseTagAndLength parses an ASN.1 tag and length pair from the given offset
   449  // into a byte slice. It returns the parsed data and the new offset. SET and
   450  // SET OF (tag 17) are mapped to SEQUENCE and SEQUENCE OF (tag 16) since we
   451  // don't distinguish between ordered and unordered objects in this code.
   452  func parseTagAndLength(bytes []byte, initOffset int) (ret tagAndLength, offset int, err error) {
   453  	offset = initOffset
   454  	// parseTagAndLength should not be called without at least a single
   455  	// byte to read. Thus this check is for robustness:
   456  	if offset >= len(bytes) {
   457  		err = errors.New("asn1: internal error in parseTagAndLength")
   458  		return
   459  	}
   460  	b := bytes[offset]
   461  	offset++
   462  	ret.class = int(b >> 6)
   463  	ret.isCompound = b&0x20 == 0x20
   464  	ret.tag = int(b & 0x1f)
   465  
   466  	// If the bottom five bits are set, then the tag number is actually base 128
   467  	// encoded afterwards
   468  	if ret.tag == 0x1f {
   469  		ret.tag, offset, err = parseBase128Int(bytes, offset)
   470  		if err != nil {
   471  			return
   472  		}
   473  		// Tags should be encoded in minimal form.
   474  		if ret.tag < 0x1f {
   475  			err = SyntaxError{"non-minimal tag"}
   476  			return
   477  		}
   478  	}
   479  	if offset >= len(bytes) {
   480  		err = SyntaxError{"truncated tag or length"}
   481  		return
   482  	}
   483  	b = bytes[offset]
   484  	offset++
   485  	if b&0x80 == 0 {
   486  		// The length is encoded in the bottom 7 bits.
   487  		ret.length = int(b & 0x7f)
   488  	} else {
   489  		// Bottom 7 bits give the number of length bytes to follow.
   490  		numBytes := int(b & 0x7f)
   491  		if numBytes == 0 {
   492  			err = SyntaxError{"indefinite length found (not DER)"}
   493  			return
   494  		}
   495  		ret.length = 0
   496  		for i := 0; i < numBytes; i++ {
   497  			if offset >= len(bytes) {
   498  				err = SyntaxError{"truncated tag or length"}
   499  				return
   500  			}
   501  			b = bytes[offset]
   502  			offset++
   503  			if ret.length >= 1<<23 {
   504  				// We can't shift ret.length up without
   505  				// overflowing.
   506  				err = StructuralError{"length too large"}
   507  				return
   508  			}
   509  			ret.length <<= 8
   510  			ret.length |= int(b)
   511  			if ret.length == 0 {
   512  				// DER requires that lengths be minimal.
   513  				err = StructuralError{"superfluous leading zeros in length"}
   514  				return
   515  			}
   516  		}
   517  		// Short lengths must be encoded in short form.
   518  		if ret.length < 0x80 {
   519  			err = StructuralError{"non-minimal length"}
   520  			return
   521  		}
   522  	}
   523  
   524  	return
   525  }
   526  
   527  // parseSequenceOf is used for SEQUENCE OF and SET OF values. It tries to parse
   528  // a number of ASN.1 values from the given byte slice and returns them as a
   529  // slice of Go values of the given type.
   530  func parseSequenceOf(bytes []byte, sliceType reflect.Type, elemType reflect.Type) (ret reflect.Value, err error) {
   531  	expectedTag, compoundType, ok := getUniversalType(elemType)
   532  	if !ok {
   533  		err = StructuralError{"unknown Go type for slice"}
   534  		return
   535  	}
   536  
   537  	// First we iterate over the input and count the number of elements,
   538  	// checking that the types are correct in each case.
   539  	numElements := 0
   540  	for offset := 0; offset < len(bytes); {
   541  		var t tagAndLength
   542  		t, offset, err = parseTagAndLength(bytes, offset)
   543  		if err != nil {
   544  			return
   545  		}
   546  		switch t.tag {
   547  		case TagIA5String, TagGeneralString, TagT61String, TagUTF8String:
   548  			// We pretend that various other string types are
   549  			// PRINTABLE STRINGs so that a sequence of them can be
   550  			// parsed into a []string.
   551  			t.tag = TagPrintableString
   552  		case TagGeneralizedTime, TagUTCTime:
   553  			// Likewise, both time types are treated the same.
   554  			t.tag = TagUTCTime
   555  		}
   556  
   557  		if t.class != ClassUniversal || t.isCompound != compoundType || t.tag != expectedTag {
   558  			err = StructuralError{"sequence tag mismatch"}
   559  			return
   560  		}
   561  		if invalidLength(offset, t.length, len(bytes)) {
   562  			err = SyntaxError{"truncated sequence"}
   563  			return
   564  		}
   565  		offset += t.length
   566  		numElements++
   567  	}
   568  	ret = reflect.MakeSlice(sliceType, numElements, numElements)
   569  	params := fieldParameters{}
   570  	offset := 0
   571  	for i := 0; i < numElements; i++ {
   572  		offset, err = parseField(ret.Index(i), bytes, offset, params)
   573  		if err != nil {
   574  			return
   575  		}
   576  	}
   577  	return
   578  }
   579  
   580  var (
   581  	bitStringType        = reflect.TypeOf(BitString{})
   582  	objectIdentifierType = reflect.TypeOf(ObjectIdentifier{})
   583  	enumeratedType       = reflect.TypeOf(Enumerated(0))
   584  	flagType             = reflect.TypeOf(Flag(false))
   585  	timeType             = reflect.TypeOf(time.Time{})
   586  	rawValueType         = reflect.TypeOf(RawValue{})
   587  	rawContentsType      = reflect.TypeOf(RawContent(nil))
   588  	bigIntType           = reflect.TypeOf(new(big.Int))
   589  )
   590  
   591  // invalidLength returns true iff offset + length > sliceLength, or if the
   592  // addition would overflow.
   593  func invalidLength(offset, length, sliceLength int) bool {
   594  	return offset+length < offset || offset+length > sliceLength
   595  }
   596  
   597  // parseField is the main parsing function. Given a byte slice and an offset
   598  // into the array, it will try to parse a suitable ASN.1 value out and store it
   599  // in the given Value.
   600  func parseField(v reflect.Value, bytes []byte, initOffset int, params fieldParameters) (offset int, err error) {
   601  	offset = initOffset
   602  	fieldType := v.Type()
   603  
   604  	// If we have run out of data, it may be that there are optional elements at the end.
   605  	if offset == len(bytes) {
   606  		if !setDefaultValue(v, params) {
   607  			err = SyntaxError{"sequence truncated"}
   608  		}
   609  		return
   610  	}
   611  
   612  	// Deal with raw values.
   613  	if fieldType == rawValueType {
   614  		var t tagAndLength
   615  		t, offset, err = parseTagAndLength(bytes, offset)
   616  		if err != nil {
   617  			return
   618  		}
   619  		if invalidLength(offset, t.length, len(bytes)) {
   620  			err = SyntaxError{"data truncated"}
   621  			return
   622  		}
   623  		result := RawValue{t.class, t.tag, t.isCompound, bytes[offset : offset+t.length], bytes[initOffset : offset+t.length]}
   624  		offset += t.length
   625  		v.Set(reflect.ValueOf(result))
   626  		return
   627  	}
   628  
   629  	// Deal with the ANY type.
   630  	if ifaceType := fieldType; ifaceType.Kind() == reflect.Interface && ifaceType.NumMethod() == 0 {
   631  		var t tagAndLength
   632  		t, offset, err = parseTagAndLength(bytes, offset)
   633  		if err != nil {
   634  			return
   635  		}
   636  		if invalidLength(offset, t.length, len(bytes)) {
   637  			err = SyntaxError{"data truncated"}
   638  			return
   639  		}
   640  		var result interface{}
   641  		if !t.isCompound && t.class == ClassUniversal {
   642  			innerBytes := bytes[offset : offset+t.length]
   643  			switch t.tag {
   644  			case TagPrintableString:
   645  				result, err = parsePrintableString(innerBytes)
   646  			case TagIA5String:
   647  				result, err = parseIA5String(innerBytes)
   648  			case TagT61String:
   649  				result, err = parseT61String(innerBytes)
   650  			case TagUTF8String:
   651  				result, err = parseUTF8String(innerBytes)
   652  			case TagInteger:
   653  				result, err = parseInt64(innerBytes)
   654  			case TagBitString:
   655  				result, err = parseBitString(innerBytes)
   656  			case TagOID:
   657  				result, err = parseObjectIdentifier(innerBytes)
   658  			case TagUTCTime:
   659  				result, err = parseUTCTime(innerBytes)
   660  			case TagGeneralizedTime:
   661  				result, err = parseGeneralizedTime(innerBytes)
   662  			case TagOctetString:
   663  				result = innerBytes
   664  			default:
   665  				// If we don't know how to handle the type, we just leave Value as nil.
   666  			}
   667  		}
   668  		offset += t.length
   669  		if err != nil {
   670  			return
   671  		}
   672  		if result != nil {
   673  			v.Set(reflect.ValueOf(result))
   674  		}
   675  		return
   676  	}
   677  	universalTag, compoundType, ok1 := getUniversalType(fieldType)
   678  	if !ok1 {
   679  		err = StructuralError{fmt.Sprintf("unknown Go type: %v", fieldType)}
   680  		return
   681  	}
   682  
   683  	t, offset, err := parseTagAndLength(bytes, offset)
   684  	if err != nil {
   685  		return
   686  	}
   687  	if params.explicit {
   688  		expectedClass := ClassContextSpecific
   689  		if params.application {
   690  			expectedClass = ClassApplication
   691  		}
   692  		if offset == len(bytes) {
   693  			err = StructuralError{"explicit tag has no child"}
   694  			return
   695  		}
   696  		if t.class == expectedClass && t.tag == *params.tag && (t.length == 0 || t.isCompound) {
   697  			if t.length > 0 {
   698  				t, offset, err = parseTagAndLength(bytes, offset)
   699  				if err != nil {
   700  					return
   701  				}
   702  			} else {
   703  				if fieldType != flagType {
   704  					err = StructuralError{"zero length explicit tag was not an asn1.Flag"}
   705  					return
   706  				}
   707  				v.SetBool(true)
   708  				return
   709  			}
   710  		} else {
   711  			// The tags didn't match, it might be an optional element.
   712  			ok := setDefaultValue(v, params)
   713  			if ok {
   714  				offset = initOffset
   715  			} else {
   716  				err = StructuralError{"explicitly tagged member didn't match"}
   717  			}
   718  			return
   719  		}
   720  	}
   721  
   722  	// Special case for strings: all the ASN.1 string types map to the Go
   723  	// type string. getUniversalType returns the tag for PrintableString
   724  	// when it sees a string, so if we see a different string type on the
   725  	// wire, we change the universal type to match.
   726  	if universalTag == TagPrintableString {
   727  		if t.class == ClassUniversal {
   728  			switch t.tag {
   729  			case TagIA5String, TagGeneralString, TagT61String, TagUTF8String:
   730  				universalTag = t.tag
   731  			}
   732  		} else if params.stringType != 0 {
   733  			universalTag = params.stringType
   734  		}
   735  	}
   736  
   737  	// Special case for time: UTCTime and GeneralizedTime both map to the
   738  	// Go type time.Time.
   739  	if universalTag == TagUTCTime && t.tag == TagGeneralizedTime && t.class == ClassUniversal {
   740  		universalTag = TagGeneralizedTime
   741  	}
   742  
   743  	if params.set {
   744  		universalTag = TagSet
   745  	}
   746  
   747  	expectedClass := ClassUniversal
   748  	expectedTag := universalTag
   749  
   750  	if !params.explicit && params.tag != nil {
   751  		expectedClass = ClassContextSpecific
   752  		expectedTag = *params.tag
   753  	}
   754  
   755  	if !params.explicit && params.application && params.tag != nil {
   756  		expectedClass = ClassApplication
   757  		expectedTag = *params.tag
   758  	}
   759  
   760  	// We have unwrapped any explicit tagging at this point.
   761  	if t.class != expectedClass || t.tag != expectedTag || t.isCompound != compoundType {
   762  		// Tags don't match. Again, it could be an optional element.
   763  		ok := setDefaultValue(v, params)
   764  		if ok {
   765  			offset = initOffset
   766  		} else {
   767  			err = StructuralError{fmt.Sprintf("tags don't match (%d vs %+v) %+v %s @%d", expectedTag, t, params, fieldType.Name(), offset)}
   768  		}
   769  		return
   770  	}
   771  	if invalidLength(offset, t.length, len(bytes)) {
   772  		err = SyntaxError{"data truncated"}
   773  		return
   774  	}
   775  	innerBytes := bytes[offset : offset+t.length]
   776  	offset += t.length
   777  
   778  	// We deal with the structures defined in this package first.
   779  	switch fieldType {
   780  	case objectIdentifierType:
   781  		newSlice, err1 := parseObjectIdentifier(innerBytes)
   782  		v.Set(reflect.MakeSlice(v.Type(), len(newSlice), len(newSlice)))
   783  		if err1 == nil {
   784  			reflect.Copy(v, reflect.ValueOf(newSlice))
   785  		}
   786  		err = err1
   787  		return
   788  	case bitStringType:
   789  		bs, err1 := parseBitString(innerBytes)
   790  		if err1 == nil {
   791  			v.Set(reflect.ValueOf(bs))
   792  		}
   793  		err = err1
   794  		return
   795  	case timeType:
   796  		var time time.Time
   797  		var err1 error
   798  		if universalTag == TagUTCTime {
   799  			time, err1 = parseUTCTime(innerBytes)
   800  		} else {
   801  			time, err1 = parseGeneralizedTime(innerBytes)
   802  		}
   803  		if err1 == nil {
   804  			v.Set(reflect.ValueOf(time))
   805  		}
   806  		err = err1
   807  		return
   808  	case enumeratedType:
   809  		parsedInt, err1 := parseInt32(innerBytes)
   810  		if err1 == nil {
   811  			v.SetInt(int64(parsedInt))
   812  		}
   813  		err = err1
   814  		return
   815  	case flagType:
   816  		v.SetBool(true)
   817  		return
   818  	case bigIntType:
   819  		parsedInt, err1 := parseBigInt(innerBytes)
   820  		if err1 == nil {
   821  			v.Set(reflect.ValueOf(parsedInt))
   822  		}
   823  		err = err1
   824  		return
   825  	}
   826  	switch val := v; val.Kind() {
   827  	case reflect.Bool:
   828  		parsedBool, err1 := parseBool(innerBytes)
   829  		if err1 == nil {
   830  			val.SetBool(parsedBool)
   831  		}
   832  		err = err1
   833  		return
   834  	case reflect.Int, reflect.Int32, reflect.Int64:
   835  		if val.Type().Size() == 4 {
   836  			parsedInt, err1 := parseInt32(innerBytes)
   837  			if err1 == nil {
   838  				val.SetInt(int64(parsedInt))
   839  			}
   840  			err = err1
   841  		} else {
   842  			parsedInt, err1 := parseInt64(innerBytes)
   843  			if err1 == nil {
   844  				val.SetInt(parsedInt)
   845  			}
   846  			err = err1
   847  		}
   848  		return
   849  	// TODO(dfc) Add support for the remaining integer types
   850  	case reflect.Struct:
   851  		structType := fieldType
   852  
   853  		for i := 0; i < structType.NumField(); i++ {
   854  			if structType.Field(i).PkgPath != "" {
   855  				err = StructuralError{"struct contains unexported fields"}
   856  				return
   857  			}
   858  		}
   859  
   860  		if structType.NumField() > 0 &&
   861  			structType.Field(0).Type == rawContentsType {
   862  			bytes := bytes[initOffset:offset]
   863  			val.Field(0).Set(reflect.ValueOf(RawContent(bytes)))
   864  		}
   865  
   866  		innerOffset := 0
   867  		for i := 0; i < structType.NumField(); i++ {
   868  			field := structType.Field(i)
   869  			if i == 0 && field.Type == rawContentsType {
   870  				continue
   871  			}
   872  			innerOffset, err = parseField(val.Field(i), innerBytes, innerOffset, parseFieldParameters(field.Tag.Get("asn1")))
   873  			if err != nil {
   874  				return
   875  			}
   876  		}
   877  		// We allow extra bytes at the end of the SEQUENCE because
   878  		// adding elements to the end has been used in X.509 as the
   879  		// version numbers have increased.
   880  		return
   881  	case reflect.Slice:
   882  		sliceType := fieldType
   883  		if sliceType.Elem().Kind() == reflect.Uint8 {
   884  			val.Set(reflect.MakeSlice(sliceType, len(innerBytes), len(innerBytes)))
   885  			reflect.Copy(val, reflect.ValueOf(innerBytes))
   886  			return
   887  		}
   888  		newSlice, err1 := parseSequenceOf(innerBytes, sliceType, sliceType.Elem())
   889  		if err1 == nil {
   890  			val.Set(newSlice)
   891  		}
   892  		err = err1
   893  		return
   894  	case reflect.String:
   895  		var v string
   896  		switch universalTag {
   897  		case TagPrintableString:
   898  			v, err = parsePrintableString(innerBytes)
   899  		case TagIA5String:
   900  			v, err = parseIA5String(innerBytes)
   901  		case TagT61String:
   902  			v, err = parseT61String(innerBytes)
   903  		case TagUTF8String:
   904  			v, err = parseUTF8String(innerBytes)
   905  		case TagGeneralString:
   906  			// GeneralString is specified in ISO-2022/ECMA-35,
   907  			// A brief review suggests that it includes structures
   908  			// that allow the encoding to change midstring and
   909  			// such. We give up and pass it as an 8-bit string.
   910  			v, err = parseT61String(innerBytes)
   911  		default:
   912  			err = SyntaxError{fmt.Sprintf("internal error: unknown string type %d", universalTag)}
   913  		}
   914  		if err == nil {
   915  			val.SetString(v)
   916  		}
   917  		return
   918  	}
   919  	err = StructuralError{"unsupported: " + v.Type().String()}
   920  	return
   921  }
   922  
   923  // canHaveDefaultValue reports whether k is a Kind that we will set a default
   924  // value for. (A signed integer, essentially.)
   925  func canHaveDefaultValue(k reflect.Kind) bool {
   926  	switch k {
   927  	case reflect.Int, reflect.Int8, reflect.Int16, reflect.Int32, reflect.Int64:
   928  		return true
   929  	}
   930  
   931  	return false
   932  }
   933  
   934  // setDefaultValue is used to install a default value, from a tag string, into
   935  // a Value. It is successful if the field was optional, even if a default value
   936  // wasn't provided or it failed to install it into the Value.
   937  func setDefaultValue(v reflect.Value, params fieldParameters) (ok bool) {
   938  	if !params.optional {
   939  		return
   940  	}
   941  	ok = true
   942  	if params.defaultValue == nil {
   943  		return
   944  	}
   945  	if canHaveDefaultValue(v.Kind()) {
   946  		v.SetInt(*params.defaultValue)
   947  	}
   948  	return
   949  }
   950  
   951  // Unmarshal parses the DER-encoded ASN.1 data structure b
   952  // and uses the reflect package to fill in an arbitrary value pointed at by val.
   953  // Because Unmarshal uses the reflect package, the structs
   954  // being written to must use upper case field names.
   955  //
   956  // An ASN.1 INTEGER can be written to an int, int32, int64,
   957  // or *big.Int (from the math/big package).
   958  // If the encoded value does not fit in the Go type,
   959  // Unmarshal returns a parse error.
   960  //
   961  // An ASN.1 BIT STRING can be written to a BitString.
   962  //
   963  // An ASN.1 OCTET STRING can be written to a []byte.
   964  //
   965  // An ASN.1 OBJECT IDENTIFIER can be written to an
   966  // ObjectIdentifier.
   967  //
   968  // An ASN.1 ENUMERATED can be written to an Enumerated.
   969  //
   970  // An ASN.1 UTCTIME or GENERALIZEDTIME can be written to a time.Time.
   971  //
   972  // An ASN.1 PrintableString or IA5String can be written to a string.
   973  //
   974  // Any of the above ASN.1 values can be written to an interface{}.
   975  // The value stored in the interface has the corresponding Go type.
   976  // For integers, that type is int64.
   977  //
   978  // An ASN.1 SEQUENCE OF x or SET OF x can be written
   979  // to a slice if an x can be written to the slice's element type.
   980  //
   981  // An ASN.1 SEQUENCE or SET can be written to a struct
   982  // if each of the elements in the sequence can be
   983  // written to the corresponding element in the struct.
   984  //
   985  // The following tags on struct fields have special meaning to Unmarshal:
   986  //
   987  //	application specifies that a APPLICATION tag is used
   988  //	default:x   sets the default value for optional integer fields (only used if optional is also present)
   989  //	explicit    specifies that an additional, explicit tag wraps the implicit one
   990  //	optional    marks the field as ASN.1 OPTIONAL
   991  //	set         causes a SET, rather than a SEQUENCE type to be expected
   992  //	tag:x       specifies the ASN.1 tag number; implies ASN.1 CONTEXT SPECIFIC
   993  //
   994  // If the type of the first field of a structure is RawContent then the raw
   995  // ASN1 contents of the struct will be stored in it.
   996  //
   997  // If the type name of a slice element ends with "SET" then it's treated as if
   998  // the "set" tag was set on it. This can be used with nested slices where a
   999  // struct tag cannot be given.
  1000  //
  1001  // Other ASN.1 types are not supported; if it encounters them,
  1002  // Unmarshal returns a parse error.
  1003  func Unmarshal(b []byte, val interface{}) (rest []byte, err error) {
  1004  	return UnmarshalWithParams(b, val, "")
  1005  }
  1006  
  1007  // UnmarshalWithParams allows field parameters to be specified for the
  1008  // top-level element. The form of the params is the same as the field tags.
  1009  func UnmarshalWithParams(b []byte, val interface{}, params string) (rest []byte, err error) {
  1010  	v := reflect.ValueOf(val).Elem()
  1011  	offset, err := parseField(v, b, 0, parseFieldParameters(params))
  1012  	if err != nil {
  1013  		return nil, err
  1014  	}
  1015  	return b[offset:], nil
  1016  }