github.com/tirogen/go-ethereum@v1.10.12-0.20221226051715-250cfede41b6/accounts/abi/argument.go (about) 1 // Copyright 2015 The go-ethereum Authors 2 // This file is part of the go-ethereum library. 3 // 4 // The go-ethereum library is free software: you can redistribute it and/or modify 5 // it under the terms of the GNU Lesser General Public License as published by 6 // the Free Software Foundation, either version 3 of the License, or 7 // (at your option) any later version. 8 // 9 // The go-ethereum library is distributed in the hope that it will be useful, 10 // but WITHOUT ANY WARRANTY; without even the implied warranty of 11 // MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the 12 // GNU Lesser General Public License for more details. 13 // 14 // You should have received a copy of the GNU Lesser General Public License 15 // along with the go-ethereum library. If not, see <http://www.gnu.org/licenses/>. 16 17 package abi 18 19 import ( 20 "encoding/json" 21 "errors" 22 "fmt" 23 "reflect" 24 "strings" 25 ) 26 27 // Argument holds the name of the argument and the corresponding type. 28 // Types are used when packing and testing arguments. 29 type Argument struct { 30 Name string 31 Type Type 32 Indexed bool // indexed is only used by events 33 } 34 35 type Arguments []Argument 36 37 type ArgumentMarshaling struct { 38 Name string 39 Type string 40 InternalType string 41 Components []ArgumentMarshaling 42 Indexed bool 43 } 44 45 // UnmarshalJSON implements json.Unmarshaler interface. 46 func (argument *Argument) UnmarshalJSON(data []byte) error { 47 var arg ArgumentMarshaling 48 err := json.Unmarshal(data, &arg) 49 if err != nil { 50 return fmt.Errorf("argument json err: %v", err) 51 } 52 53 argument.Type, err = NewType(arg.Type, arg.InternalType, arg.Components) 54 if err != nil { 55 return err 56 } 57 argument.Name = arg.Name 58 argument.Indexed = arg.Indexed 59 60 return nil 61 } 62 63 // NonIndexed returns the arguments with indexed arguments filtered out. 64 func (arguments Arguments) NonIndexed() Arguments { 65 var ret []Argument 66 for _, arg := range arguments { 67 if !arg.Indexed { 68 ret = append(ret, arg) 69 } 70 } 71 return ret 72 } 73 74 // isTuple returns true for non-atomic constructs, like (uint,uint) or uint[]. 75 func (arguments Arguments) isTuple() bool { 76 return len(arguments) > 1 77 } 78 79 // Unpack performs the operation hexdata -> Go format. 80 func (arguments Arguments) Unpack(data []byte) ([]interface{}, error) { 81 if len(data) == 0 { 82 if len(arguments.NonIndexed()) != 0 { 83 return nil, errors.New("abi: attempting to unmarshall an empty string while arguments are expected") 84 } 85 return make([]interface{}, 0), nil 86 } 87 return arguments.UnpackValues(data) 88 } 89 90 // UnpackIntoMap performs the operation hexdata -> mapping of argument name to argument value. 91 func (arguments Arguments) UnpackIntoMap(v map[string]interface{}, data []byte) error { 92 // Make sure map is not nil 93 if v == nil { 94 return errors.New("abi: cannot unpack into a nil map") 95 } 96 if len(data) == 0 { 97 if len(arguments.NonIndexed()) != 0 { 98 return errors.New("abi: attempting to unmarshall an empty string while arguments are expected") 99 } 100 return nil // Nothing to unmarshal, return 101 } 102 marshalledValues, err := arguments.UnpackValues(data) 103 if err != nil { 104 return err 105 } 106 for i, arg := range arguments.NonIndexed() { 107 v[arg.Name] = marshalledValues[i] 108 } 109 return nil 110 } 111 112 // Copy performs the operation go format -> provided struct. 113 func (arguments Arguments) Copy(v interface{}, values []interface{}) error { 114 // make sure the passed value is arguments pointer 115 if reflect.Ptr != reflect.ValueOf(v).Kind() { 116 return fmt.Errorf("abi: Unpack(non-pointer %T)", v) 117 } 118 if len(values) == 0 { 119 if len(arguments.NonIndexed()) != 0 { 120 return errors.New("abi: attempting to copy no values while arguments are expected") 121 } 122 return nil // Nothing to copy, return 123 } 124 if arguments.isTuple() { 125 return arguments.copyTuple(v, values) 126 } 127 return arguments.copyAtomic(v, values[0]) 128 } 129 130 // unpackAtomic unpacks ( hexdata -> go ) a single value 131 func (arguments Arguments) copyAtomic(v interface{}, marshalledValues interface{}) error { 132 dst := reflect.ValueOf(v).Elem() 133 src := reflect.ValueOf(marshalledValues) 134 135 if dst.Kind() == reflect.Struct { 136 return set(dst.Field(0), src) 137 } 138 return set(dst, src) 139 } 140 141 // copyTuple copies a batch of values from marshalledValues to v. 142 func (arguments Arguments) copyTuple(v interface{}, marshalledValues []interface{}) error { 143 value := reflect.ValueOf(v).Elem() 144 nonIndexedArgs := arguments.NonIndexed() 145 146 switch value.Kind() { 147 case reflect.Struct: 148 argNames := make([]string, len(nonIndexedArgs)) 149 for i, arg := range nonIndexedArgs { 150 argNames[i] = arg.Name 151 } 152 var err error 153 abi2struct, err := mapArgNamesToStructFields(argNames, value) 154 if err != nil { 155 return err 156 } 157 for i, arg := range nonIndexedArgs { 158 field := value.FieldByName(abi2struct[arg.Name]) 159 if !field.IsValid() { 160 return fmt.Errorf("abi: field %s can't be found in the given value", arg.Name) 161 } 162 if err := set(field, reflect.ValueOf(marshalledValues[i])); err != nil { 163 return err 164 } 165 } 166 case reflect.Slice, reflect.Array: 167 if value.Len() < len(marshalledValues) { 168 return fmt.Errorf("abi: insufficient number of arguments for unpack, want %d, got %d", len(arguments), value.Len()) 169 } 170 for i := range nonIndexedArgs { 171 if err := set(value.Index(i), reflect.ValueOf(marshalledValues[i])); err != nil { 172 return err 173 } 174 } 175 default: 176 return fmt.Errorf("abi:[2] cannot unmarshal tuple in to %v", value.Type()) 177 } 178 return nil 179 } 180 181 // UnpackValues can be used to unpack ABI-encoded hexdata according to the ABI-specification, 182 // without supplying a struct to unpack into. Instead, this method returns a list containing the 183 // values. An atomic argument will be a list with one element. 184 func (arguments Arguments) UnpackValues(data []byte) ([]interface{}, error) { 185 nonIndexedArgs := arguments.NonIndexed() 186 retval := make([]interface{}, 0, len(nonIndexedArgs)) 187 virtualArgs := 0 188 for index, arg := range nonIndexedArgs { 189 marshalledValue, err := toGoType((index+virtualArgs)*32, arg.Type, data) 190 if err != nil { 191 return nil, err 192 } 193 if arg.Type.T == ArrayTy && !isDynamicType(arg.Type) { 194 // If we have a static array, like [3]uint256, these are coded as 195 // just like uint256,uint256,uint256. 196 // This means that we need to add two 'virtual' arguments when 197 // we count the index from now on. 198 // 199 // Array values nested multiple levels deep are also encoded inline: 200 // [2][3]uint256: uint256,uint256,uint256,uint256,uint256,uint256 201 // 202 // Calculate the full array size to get the correct offset for the next argument. 203 // Decrement it by 1, as the normal index increment is still applied. 204 virtualArgs += getTypeSize(arg.Type)/32 - 1 205 } else if arg.Type.T == TupleTy && !isDynamicType(arg.Type) { 206 // If we have a static tuple, like (uint256, bool, uint256), these are 207 // coded as just like uint256,bool,uint256 208 virtualArgs += getTypeSize(arg.Type)/32 - 1 209 } 210 retval = append(retval, marshalledValue) 211 } 212 return retval, nil 213 } 214 215 // PackValues performs the operation Go format -> Hexdata. 216 // It is the semantic opposite of UnpackValues. 217 func (arguments Arguments) PackValues(args []interface{}) ([]byte, error) { 218 return arguments.Pack(args...) 219 } 220 221 // Pack performs the operation Go format -> Hexdata. 222 func (arguments Arguments) Pack(args ...interface{}) ([]byte, error) { 223 // Make sure arguments match up and pack them 224 abiArgs := arguments 225 if len(args) != len(abiArgs) { 226 return nil, fmt.Errorf("argument count mismatch: got %d for %d", len(args), len(abiArgs)) 227 } 228 // variable input is the output appended at the end of packed 229 // output. This is used for strings and bytes types input. 230 var variableInput []byte 231 232 // input offset is the bytes offset for packed output 233 inputOffset := 0 234 for _, abiArg := range abiArgs { 235 inputOffset += getTypeSize(abiArg.Type) 236 } 237 var ret []byte 238 for i, a := range args { 239 input := abiArgs[i] 240 // pack the input 241 packed, err := input.Type.pack(reflect.ValueOf(a)) 242 if err != nil { 243 return nil, err 244 } 245 // check for dynamic types 246 if isDynamicType(input.Type) { 247 // set the offset 248 ret = append(ret, packNum(reflect.ValueOf(inputOffset))...) 249 // calculate next offset 250 inputOffset += len(packed) 251 // append to variable input 252 variableInput = append(variableInput, packed...) 253 } else { 254 // append the packed value to the input 255 ret = append(ret, packed...) 256 } 257 } 258 // append the variable input at the end of the packed input 259 ret = append(ret, variableInput...) 260 261 return ret, nil 262 } 263 264 // ToCamelCase converts an under-score string to a camel-case string 265 func ToCamelCase(input string) string { 266 parts := strings.Split(input, "_") 267 for i, s := range parts { 268 if len(s) > 0 { 269 parts[i] = strings.ToUpper(s[:1]) + s[1:] 270 } 271 } 272 return strings.Join(parts, "") 273 }