github.com/tirogen/go-ethereum@v1.10.12-0.20221226051715-250cfede41b6/accounts/abi/type.go (about)

     1  // Copyright 2015 The go-ethereum Authors
     2  // This file is part of the go-ethereum library.
     3  //
     4  // The go-ethereum library is free software: you can redistribute it and/or modify
     5  // it under the terms of the GNU Lesser General Public License as published by
     6  // the Free Software Foundation, either version 3 of the License, or
     7  // (at your option) any later version.
     8  //
     9  // The go-ethereum library is distributed in the hope that it will be useful,
    10  // but WITHOUT ANY WARRANTY; without even the implied warranty of
    11  // MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
    12  // GNU Lesser General Public License for more details.
    13  //
    14  // You should have received a copy of the GNU Lesser General Public License
    15  // along with the go-ethereum library. If not, see <http://www.gnu.org/licenses/>.
    16  
    17  package abi
    18  
    19  import (
    20  	"errors"
    21  	"fmt"
    22  	"reflect"
    23  	"regexp"
    24  	"strconv"
    25  	"strings"
    26  	"unicode"
    27  	"unicode/utf8"
    28  
    29  	"github.com/tirogen/go-ethereum/common"
    30  )
    31  
    32  // Type enumerator
    33  const (
    34  	IntTy byte = iota
    35  	UintTy
    36  	BoolTy
    37  	StringTy
    38  	SliceTy
    39  	ArrayTy
    40  	TupleTy
    41  	AddressTy
    42  	FixedBytesTy
    43  	BytesTy
    44  	HashTy
    45  	FixedPointTy
    46  	FunctionTy
    47  )
    48  
    49  // Type is the reflection of the supported argument type.
    50  type Type struct {
    51  	Elem *Type
    52  	Size int
    53  	T    byte // Our own type checking
    54  
    55  	stringKind string // holds the unparsed string for deriving signatures
    56  
    57  	// Tuple relative fields
    58  	TupleRawName  string       // Raw struct name defined in source code, may be empty.
    59  	TupleElems    []*Type      // Type information of all tuple fields
    60  	TupleRawNames []string     // Raw field name of all tuple fields
    61  	TupleType     reflect.Type // Underlying struct of the tuple
    62  }
    63  
    64  var (
    65  	// typeRegex parses the abi sub types
    66  	typeRegex = regexp.MustCompile("([a-zA-Z]+)(([0-9]+)(x([0-9]+))?)?")
    67  )
    68  
    69  // NewType creates a new reflection type of abi type given in t.
    70  func NewType(t string, internalType string, components []ArgumentMarshaling) (typ Type, err error) {
    71  	// check that array brackets are equal if they exist
    72  	if strings.Count(t, "[") != strings.Count(t, "]") {
    73  		return Type{}, fmt.Errorf("invalid arg type in abi")
    74  	}
    75  	typ.stringKind = t
    76  
    77  	// if there are brackets, get ready to go into slice/array mode and
    78  	// recursively create the type
    79  	if strings.Count(t, "[") != 0 {
    80  		// Note internalType can be empty here.
    81  		subInternal := internalType
    82  		if i := strings.LastIndex(internalType, "["); i != -1 {
    83  			subInternal = subInternal[:i]
    84  		}
    85  		// recursively embed the type
    86  		i := strings.LastIndex(t, "[")
    87  		embeddedType, err := NewType(t[:i], subInternal, components)
    88  		if err != nil {
    89  			return Type{}, err
    90  		}
    91  		// grab the last cell and create a type from there
    92  		sliced := t[i:]
    93  		// grab the slice size with regexp
    94  		re := regexp.MustCompile("[0-9]+")
    95  		intz := re.FindAllString(sliced, -1)
    96  
    97  		if len(intz) == 0 {
    98  			// is a slice
    99  			typ.T = SliceTy
   100  			typ.Elem = &embeddedType
   101  			typ.stringKind = embeddedType.stringKind + sliced
   102  		} else if len(intz) == 1 {
   103  			// is an array
   104  			typ.T = ArrayTy
   105  			typ.Elem = &embeddedType
   106  			typ.Size, err = strconv.Atoi(intz[0])
   107  			if err != nil {
   108  				return Type{}, fmt.Errorf("abi: error parsing variable size: %v", err)
   109  			}
   110  			typ.stringKind = embeddedType.stringKind + sliced
   111  		} else {
   112  			return Type{}, fmt.Errorf("invalid formatting of array type")
   113  		}
   114  		return typ, err
   115  	}
   116  	// parse the type and size of the abi-type.
   117  	matches := typeRegex.FindAllStringSubmatch(t, -1)
   118  	if len(matches) == 0 {
   119  		return Type{}, fmt.Errorf("invalid type '%v'", t)
   120  	}
   121  	parsedType := matches[0]
   122  
   123  	// varSize is the size of the variable
   124  	var varSize int
   125  	if len(parsedType[3]) > 0 {
   126  		var err error
   127  		varSize, err = strconv.Atoi(parsedType[2])
   128  		if err != nil {
   129  			return Type{}, fmt.Errorf("abi: error parsing variable size: %v", err)
   130  		}
   131  	} else {
   132  		if parsedType[0] == "uint" || parsedType[0] == "int" {
   133  			// this should fail because it means that there's something wrong with
   134  			// the abi type (the compiler should always format it to the size...always)
   135  			return Type{}, fmt.Errorf("unsupported arg type: %s", t)
   136  		}
   137  	}
   138  	// varType is the parsed abi type
   139  	switch varType := parsedType[1]; varType {
   140  	case "int":
   141  		typ.Size = varSize
   142  		typ.T = IntTy
   143  	case "uint":
   144  		typ.Size = varSize
   145  		typ.T = UintTy
   146  	case "bool":
   147  		typ.T = BoolTy
   148  	case "address":
   149  		typ.Size = 20
   150  		typ.T = AddressTy
   151  	case "string":
   152  		typ.T = StringTy
   153  	case "bytes":
   154  		if varSize == 0 {
   155  			typ.T = BytesTy
   156  		} else {
   157  			if varSize > 32 {
   158  				return Type{}, fmt.Errorf("unsupported arg type: %s", t)
   159  			}
   160  			typ.T = FixedBytesTy
   161  			typ.Size = varSize
   162  		}
   163  	case "tuple":
   164  		var (
   165  			fields     []reflect.StructField
   166  			elems      []*Type
   167  			names      []string
   168  			expression string // canonical parameter expression
   169  			used       = make(map[string]bool)
   170  		)
   171  		expression += "("
   172  		for idx, c := range components {
   173  			cType, err := NewType(c.Type, c.InternalType, c.Components)
   174  			if err != nil {
   175  				return Type{}, err
   176  			}
   177  			name := ToCamelCase(c.Name)
   178  			if name == "" {
   179  				return Type{}, errors.New("abi: purely anonymous or underscored field is not supported")
   180  			}
   181  			fieldName := ResolveNameConflict(name, func(s string) bool { return used[s] })
   182  			if err != nil {
   183  				return Type{}, err
   184  			}
   185  			used[fieldName] = true
   186  			if !isValidFieldName(fieldName) {
   187  				return Type{}, fmt.Errorf("field %d has invalid name", idx)
   188  			}
   189  			fields = append(fields, reflect.StructField{
   190  				Name: fieldName, // reflect.StructOf will panic for any exported field.
   191  				Type: cType.GetType(),
   192  				Tag:  reflect.StructTag("json:\"" + c.Name + "\""),
   193  			})
   194  			elems = append(elems, &cType)
   195  			names = append(names, c.Name)
   196  			expression += cType.stringKind
   197  			if idx != len(components)-1 {
   198  				expression += ","
   199  			}
   200  		}
   201  		expression += ")"
   202  
   203  		typ.TupleType = reflect.StructOf(fields)
   204  		typ.TupleElems = elems
   205  		typ.TupleRawNames = names
   206  		typ.T = TupleTy
   207  		typ.stringKind = expression
   208  
   209  		const structPrefix = "struct "
   210  		// After solidity 0.5.10, a new field of abi "internalType"
   211  		// is introduced. From that we can obtain the struct name
   212  		// user defined in the source code.
   213  		if internalType != "" && strings.HasPrefix(internalType, structPrefix) {
   214  			// Foo.Bar type definition is not allowed in golang,
   215  			// convert the format to FooBar
   216  			typ.TupleRawName = strings.ReplaceAll(internalType[len(structPrefix):], ".", "")
   217  		}
   218  
   219  	case "function":
   220  		typ.T = FunctionTy
   221  		typ.Size = 24
   222  	default:
   223  		return Type{}, fmt.Errorf("unsupported arg type: %s", t)
   224  	}
   225  
   226  	return
   227  }
   228  
   229  // GetType returns the reflection type of the ABI type.
   230  func (t Type) GetType() reflect.Type {
   231  	switch t.T {
   232  	case IntTy:
   233  		return reflectIntType(false, t.Size)
   234  	case UintTy:
   235  		return reflectIntType(true, t.Size)
   236  	case BoolTy:
   237  		return reflect.TypeOf(false)
   238  	case StringTy:
   239  		return reflect.TypeOf("")
   240  	case SliceTy:
   241  		return reflect.SliceOf(t.Elem.GetType())
   242  	case ArrayTy:
   243  		return reflect.ArrayOf(t.Size, t.Elem.GetType())
   244  	case TupleTy:
   245  		return t.TupleType
   246  	case AddressTy:
   247  		return reflect.TypeOf(common.Address{})
   248  	case FixedBytesTy:
   249  		return reflect.ArrayOf(t.Size, reflect.TypeOf(byte(0)))
   250  	case BytesTy:
   251  		return reflect.SliceOf(reflect.TypeOf(byte(0)))
   252  	case HashTy:
   253  		// hashtype currently not used
   254  		return reflect.ArrayOf(32, reflect.TypeOf(byte(0)))
   255  	case FixedPointTy:
   256  		// fixedpoint type currently not used
   257  		return reflect.ArrayOf(32, reflect.TypeOf(byte(0)))
   258  	case FunctionTy:
   259  		return reflect.ArrayOf(24, reflect.TypeOf(byte(0)))
   260  	default:
   261  		panic("Invalid type")
   262  	}
   263  }
   264  
   265  // String implements Stringer.
   266  func (t Type) String() (out string) {
   267  	return t.stringKind
   268  }
   269  
   270  func (t Type) pack(v reflect.Value) ([]byte, error) {
   271  	// dereference pointer first if it's a pointer
   272  	v = indirect(v)
   273  	if err := typeCheck(t, v); err != nil {
   274  		return nil, err
   275  	}
   276  
   277  	switch t.T {
   278  	case SliceTy, ArrayTy:
   279  		var ret []byte
   280  
   281  		if t.requiresLengthPrefix() {
   282  			// append length
   283  			ret = append(ret, packNum(reflect.ValueOf(v.Len()))...)
   284  		}
   285  
   286  		// calculate offset if any
   287  		offset := 0
   288  		offsetReq := isDynamicType(*t.Elem)
   289  		if offsetReq {
   290  			offset = getTypeSize(*t.Elem) * v.Len()
   291  		}
   292  		var tail []byte
   293  		for i := 0; i < v.Len(); i++ {
   294  			val, err := t.Elem.pack(v.Index(i))
   295  			if err != nil {
   296  				return nil, err
   297  			}
   298  			if !offsetReq {
   299  				ret = append(ret, val...)
   300  				continue
   301  			}
   302  			ret = append(ret, packNum(reflect.ValueOf(offset))...)
   303  			offset += len(val)
   304  			tail = append(tail, val...)
   305  		}
   306  		return append(ret, tail...), nil
   307  	case TupleTy:
   308  		// (T1,...,Tk) for k >= 0 and any types T1, …, Tk
   309  		// enc(X) = head(X(1)) ... head(X(k)) tail(X(1)) ... tail(X(k))
   310  		// where X = (X(1), ..., X(k)) and head and tail are defined for Ti being a static
   311  		// type as
   312  		//     head(X(i)) = enc(X(i)) and tail(X(i)) = "" (the empty string)
   313  		// and as
   314  		//     head(X(i)) = enc(len(head(X(1)) ... head(X(k)) tail(X(1)) ... tail(X(i-1))))
   315  		//     tail(X(i)) = enc(X(i))
   316  		// otherwise, i.e. if Ti is a dynamic type.
   317  		fieldmap, err := mapArgNamesToStructFields(t.TupleRawNames, v)
   318  		if err != nil {
   319  			return nil, err
   320  		}
   321  		// Calculate prefix occupied size.
   322  		offset := 0
   323  		for _, elem := range t.TupleElems {
   324  			offset += getTypeSize(*elem)
   325  		}
   326  		var ret, tail []byte
   327  		for i, elem := range t.TupleElems {
   328  			field := v.FieldByName(fieldmap[t.TupleRawNames[i]])
   329  			if !field.IsValid() {
   330  				return nil, fmt.Errorf("field %s for tuple not found in the given struct", t.TupleRawNames[i])
   331  			}
   332  			val, err := elem.pack(field)
   333  			if err != nil {
   334  				return nil, err
   335  			}
   336  			if isDynamicType(*elem) {
   337  				ret = append(ret, packNum(reflect.ValueOf(offset))...)
   338  				tail = append(tail, val...)
   339  				offset += len(val)
   340  			} else {
   341  				ret = append(ret, val...)
   342  			}
   343  		}
   344  		return append(ret, tail...), nil
   345  
   346  	default:
   347  		return packElement(t, v)
   348  	}
   349  }
   350  
   351  // requireLengthPrefix returns whether the type requires any sort of length
   352  // prefixing.
   353  func (t Type) requiresLengthPrefix() bool {
   354  	return t.T == StringTy || t.T == BytesTy || t.T == SliceTy
   355  }
   356  
   357  // isDynamicType returns true if the type is dynamic.
   358  // The following types are called “dynamic”:
   359  // * bytes
   360  // * string
   361  // * T[] for any T
   362  // * T[k] for any dynamic T and any k >= 0
   363  // * (T1,...,Tk) if Ti is dynamic for some 1 <= i <= k
   364  func isDynamicType(t Type) bool {
   365  	if t.T == TupleTy {
   366  		for _, elem := range t.TupleElems {
   367  			if isDynamicType(*elem) {
   368  				return true
   369  			}
   370  		}
   371  		return false
   372  	}
   373  	return t.T == StringTy || t.T == BytesTy || t.T == SliceTy || (t.T == ArrayTy && isDynamicType(*t.Elem))
   374  }
   375  
   376  // getTypeSize returns the size that this type needs to occupy.
   377  // We distinguish static and dynamic types. Static types are encoded in-place
   378  // and dynamic types are encoded at a separately allocated location after the
   379  // current block.
   380  // So for a static variable, the size returned represents the size that the
   381  // variable actually occupies.
   382  // For a dynamic variable, the returned size is fixed 32 bytes, which is used
   383  // to store the location reference for actual value storage.
   384  func getTypeSize(t Type) int {
   385  	if t.T == ArrayTy && !isDynamicType(*t.Elem) {
   386  		// Recursively calculate type size if it is a nested array
   387  		if t.Elem.T == ArrayTy || t.Elem.T == TupleTy {
   388  			return t.Size * getTypeSize(*t.Elem)
   389  		}
   390  		return t.Size * 32
   391  	} else if t.T == TupleTy && !isDynamicType(t) {
   392  		total := 0
   393  		for _, elem := range t.TupleElems {
   394  			total += getTypeSize(*elem)
   395  		}
   396  		return total
   397  	}
   398  	return 32
   399  }
   400  
   401  // isLetter reports whether a given 'rune' is classified as a Letter.
   402  // This method is copied from reflect/type.go
   403  func isLetter(ch rune) bool {
   404  	return 'a' <= ch && ch <= 'z' || 'A' <= ch && ch <= 'Z' || ch == '_' || ch >= utf8.RuneSelf && unicode.IsLetter(ch)
   405  }
   406  
   407  // isValidFieldName checks if a string is a valid (struct) field name or not.
   408  //
   409  // According to the language spec, a field name should be an identifier.
   410  //
   411  // identifier = letter { letter | unicode_digit } .
   412  // letter = unicode_letter | "_" .
   413  // This method is copied from reflect/type.go
   414  func isValidFieldName(fieldName string) bool {
   415  	for i, c := range fieldName {
   416  		if i == 0 && !isLetter(c) {
   417  			return false
   418  		}
   419  
   420  		if !(isLetter(c) || unicode.IsDigit(c)) {
   421  			return false
   422  		}
   423  	}
   424  
   425  	return len(fieldName) > 0
   426  }