github.com/titbtcqash/go-ethereum@v1.9.7/common/prque/lazyqueue.go (about)

     1  // Copyright 2019 The go-ethereum Authors
     2  // This file is part of the go-ethereum library.
     3  //
     4  // The go-ethereum library is free software: you can redistribute it and/or modify
     5  // it under the terms of the GNU Lesser General Public License as published by
     6  // the Free Software Foundation, either version 3 of the License, or
     7  // (at your option) any later version.
     8  //
     9  // The go-ethereum library is distributed in the hope that it will be useful,
    10  // but WITHOUT ANY WARRANTY; without even the implied warranty of
    11  // MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
    12  // GNU Lesser General Public License for more details.
    13  //
    14  // You should have received a copy of the GNU Lesser General Public License
    15  // along with the go-ethereum library. If not, see <http://www.gnu.org/licenses/>.
    16  
    17  package prque
    18  
    19  import (
    20  	"container/heap"
    21  	"time"
    22  
    23  	"github.com/ethereum/go-ethereum/common/mclock"
    24  )
    25  
    26  // LazyQueue is a priority queue data structure where priorities can change over
    27  // time and are only evaluated on demand.
    28  // Two callbacks are required:
    29  // - priority evaluates the actual priority of an item
    30  // - maxPriority gives an upper estimate for the priority in any moment between
    31  //   now and the given absolute time
    32  // If the upper estimate is exceeded then Update should be called for that item.
    33  // A global Refresh function should also be called periodically.
    34  type LazyQueue struct {
    35  	clock mclock.Clock
    36  	// Items are stored in one of two internal queues ordered by estimated max
    37  	// priority until the next and the next-after-next refresh. Update and Refresh
    38  	// always places items in queue[1].
    39  	queue       [2]*sstack
    40  	popQueue    *sstack
    41  	period      time.Duration
    42  	maxUntil    mclock.AbsTime
    43  	indexOffset int
    44  	setIndex    SetIndexCallback
    45  	priority    PriorityCallback
    46  	maxPriority MaxPriorityCallback
    47  }
    48  
    49  type (
    50  	PriorityCallback    func(data interface{}, now mclock.AbsTime) int64   // actual priority callback
    51  	MaxPriorityCallback func(data interface{}, until mclock.AbsTime) int64 // estimated maximum priority callback
    52  )
    53  
    54  // NewLazyQueue creates a new lazy queue
    55  func NewLazyQueue(setIndex SetIndexCallback, priority PriorityCallback, maxPriority MaxPriorityCallback, clock mclock.Clock, refreshPeriod time.Duration) *LazyQueue {
    56  	q := &LazyQueue{
    57  		popQueue:    newSstack(nil),
    58  		setIndex:    setIndex,
    59  		priority:    priority,
    60  		maxPriority: maxPriority,
    61  		clock:       clock,
    62  		period:      refreshPeriod}
    63  	q.Reset()
    64  	q.Refresh()
    65  	return q
    66  }
    67  
    68  // Reset clears the contents of the queue
    69  func (q *LazyQueue) Reset() {
    70  	q.queue[0] = newSstack(q.setIndex0)
    71  	q.queue[1] = newSstack(q.setIndex1)
    72  }
    73  
    74  // Refresh should be called at least with the frequency specified by the refreshPeriod parameter
    75  func (q *LazyQueue) Refresh() {
    76  	q.maxUntil = q.clock.Now() + mclock.AbsTime(q.period)
    77  	for q.queue[0].Len() != 0 {
    78  		q.Push(heap.Pop(q.queue[0]).(*item).value)
    79  	}
    80  	q.queue[0], q.queue[1] = q.queue[1], q.queue[0]
    81  	q.indexOffset = 1 - q.indexOffset
    82  	q.maxUntil += mclock.AbsTime(q.period)
    83  }
    84  
    85  // Push adds an item to the queue
    86  func (q *LazyQueue) Push(data interface{}) {
    87  	heap.Push(q.queue[1], &item{data, q.maxPriority(data, q.maxUntil)})
    88  }
    89  
    90  // Update updates the upper priority estimate for the item with the given queue index
    91  func (q *LazyQueue) Update(index int) {
    92  	q.Push(q.Remove(index))
    93  }
    94  
    95  // Pop removes and returns the item with the greatest actual priority
    96  func (q *LazyQueue) Pop() (interface{}, int64) {
    97  	var (
    98  		resData interface{}
    99  		resPri  int64
   100  	)
   101  	q.MultiPop(func(data interface{}, priority int64) bool {
   102  		resData = data
   103  		resPri = priority
   104  		return false
   105  	})
   106  	return resData, resPri
   107  }
   108  
   109  // peekIndex returns the index of the internal queue where the item with the
   110  // highest estimated priority is or -1 if both are empty
   111  func (q *LazyQueue) peekIndex() int {
   112  	if q.queue[0].Len() != 0 {
   113  		if q.queue[1].Len() != 0 && q.queue[1].blocks[0][0].priority > q.queue[0].blocks[0][0].priority {
   114  			return 1
   115  		}
   116  		return 0
   117  	}
   118  	if q.queue[1].Len() != 0 {
   119  		return 1
   120  	}
   121  	return -1
   122  }
   123  
   124  // MultiPop pops multiple items from the queue and is more efficient than calling
   125  // Pop multiple times. Popped items are passed to the callback. MultiPop returns
   126  // when the callback returns false or there are no more items to pop.
   127  func (q *LazyQueue) MultiPop(callback func(data interface{}, priority int64) bool) {
   128  	now := q.clock.Now()
   129  	nextIndex := q.peekIndex()
   130  	for nextIndex != -1 {
   131  		data := heap.Pop(q.queue[nextIndex]).(*item).value
   132  		heap.Push(q.popQueue, &item{data, q.priority(data, now)})
   133  		nextIndex = q.peekIndex()
   134  		for q.popQueue.Len() != 0 && (nextIndex == -1 || q.queue[nextIndex].blocks[0][0].priority < q.popQueue.blocks[0][0].priority) {
   135  			i := heap.Pop(q.popQueue).(*item)
   136  			if !callback(i.value, i.priority) {
   137  				for q.popQueue.Len() != 0 {
   138  					q.Push(heap.Pop(q.popQueue).(*item).value)
   139  				}
   140  				return
   141  			}
   142  		}
   143  	}
   144  }
   145  
   146  // PopItem pops the item from the queue only, dropping the associated priority value.
   147  func (q *LazyQueue) PopItem() interface{} {
   148  	i, _ := q.Pop()
   149  	return i
   150  }
   151  
   152  // Remove removes removes the item with the given index.
   153  func (q *LazyQueue) Remove(index int) interface{} {
   154  	if index < 0 {
   155  		return nil
   156  	}
   157  	return heap.Remove(q.queue[index&1^q.indexOffset], index>>1).(*item).value
   158  }
   159  
   160  // Empty checks whether the priority queue is empty.
   161  func (q *LazyQueue) Empty() bool {
   162  	return q.queue[0].Len() == 0 && q.queue[1].Len() == 0
   163  }
   164  
   165  // Size returns the number of items in the priority queue.
   166  func (q *LazyQueue) Size() int {
   167  	return q.queue[0].Len() + q.queue[1].Len()
   168  }
   169  
   170  // setIndex0 translates internal queue item index to the virtual index space of LazyQueue
   171  func (q *LazyQueue) setIndex0(data interface{}, index int) {
   172  	if index == -1 {
   173  		q.setIndex(data, -1)
   174  	} else {
   175  		q.setIndex(data, index+index)
   176  	}
   177  }
   178  
   179  // setIndex1 translates internal queue item index to the virtual index space of LazyQueue
   180  func (q *LazyQueue) setIndex1(data interface{}, index int) {
   181  	q.setIndex(data, index+index+1)
   182  }