github.com/titbtcqash/go-ethereum@v1.9.7/crypto/ecies/ecies_test.go (about) 1 // Copyright (c) 2013 Kyle Isom <kyle@tyrfingr.is> 2 // Copyright (c) 2012 The Go Authors. All rights reserved. 3 // 4 // Redistribution and use in source and binary forms, with or without 5 // modification, are permitted provided that the following conditions are 6 // met: 7 // 8 // * Redistributions of source code must retain the above copyright 9 // notice, this list of conditions and the following disclaimer. 10 // * Redistributions in binary form must reproduce the above 11 // copyright notice, this list of conditions and the following disclaimer 12 // in the documentation and/or other materials provided with the 13 // distribution. 14 // * Neither the name of Google Inc. nor the names of its 15 // contributors may be used to endorse or promote products derived from 16 // this software without specific prior written permission. 17 // 18 // THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS 19 // "AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT 20 // LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR 21 // A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT 22 // OWNER OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, 23 // SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT 24 // LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, 25 // DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY 26 // THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT 27 // (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE 28 // OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE. 29 30 package ecies 31 32 import ( 33 "bytes" 34 "crypto/elliptic" 35 "crypto/rand" 36 "crypto/sha256" 37 "encoding/hex" 38 "fmt" 39 "math/big" 40 "testing" 41 42 "github.com/ethereum/go-ethereum/crypto" 43 ) 44 45 // Ensure the KDF generates appropriately sized keys. 46 func TestKDF(t *testing.T) { 47 msg := []byte("Hello, world") 48 h := sha256.New() 49 50 k, err := concatKDF(h, msg, nil, 64) 51 if err != nil { 52 t.Fatal(err) 53 } 54 if len(k) != 64 { 55 t.Fatalf("KDF: generated key is the wrong size (%d instead of 64\n", len(k)) 56 } 57 } 58 59 var ErrBadSharedKeys = fmt.Errorf("ecies: shared keys don't match") 60 61 // cmpParams compares a set of ECIES parameters. We assume, as per the 62 // docs, that AES is the only supported symmetric encryption algorithm. 63 func cmpParams(p1, p2 *ECIESParams) bool { 64 return p1.hashAlgo == p2.hashAlgo && 65 p1.KeyLen == p2.KeyLen && 66 p1.BlockSize == p2.BlockSize 67 } 68 69 // cmpPublic returns true if the two public keys represent the same pojnt. 70 func cmpPublic(pub1, pub2 PublicKey) bool { 71 if pub1.X == nil || pub1.Y == nil { 72 fmt.Println(ErrInvalidPublicKey.Error()) 73 return false 74 } 75 if pub2.X == nil || pub2.Y == nil { 76 fmt.Println(ErrInvalidPublicKey.Error()) 77 return false 78 } 79 pub1Out := elliptic.Marshal(pub1.Curve, pub1.X, pub1.Y) 80 pub2Out := elliptic.Marshal(pub2.Curve, pub2.X, pub2.Y) 81 82 return bytes.Equal(pub1Out, pub2Out) 83 } 84 85 // Validate the ECDH component. 86 func TestSharedKey(t *testing.T) { 87 prv1, err := GenerateKey(rand.Reader, DefaultCurve, nil) 88 if err != nil { 89 t.Fatal(err) 90 } 91 skLen := MaxSharedKeyLength(&prv1.PublicKey) / 2 92 93 prv2, err := GenerateKey(rand.Reader, DefaultCurve, nil) 94 if err != nil { 95 t.Fatal(err) 96 } 97 98 sk1, err := prv1.GenerateShared(&prv2.PublicKey, skLen, skLen) 99 if err != nil { 100 t.Fatal(err) 101 } 102 103 sk2, err := prv2.GenerateShared(&prv1.PublicKey, skLen, skLen) 104 if err != nil { 105 t.Fatal(err) 106 } 107 108 if !bytes.Equal(sk1, sk2) { 109 t.Fatal(ErrBadSharedKeys) 110 } 111 } 112 113 func TestSharedKeyPadding(t *testing.T) { 114 // sanity checks 115 prv0 := hexKey("1adf5c18167d96a1f9a0b1ef63be8aa27eaf6032c233b2b38f7850cf5b859fd9") 116 prv1 := hexKey("0097a076fc7fcd9208240668e31c9abee952cbb6e375d1b8febc7499d6e16f1a") 117 x0, _ := new(big.Int).SetString("1a8ed022ff7aec59dc1b440446bdda5ff6bcb3509a8b109077282b361efffbd8", 16) 118 x1, _ := new(big.Int).SetString("6ab3ac374251f638d0abb3ef596d1dc67955b507c104e5f2009724812dc027b8", 16) 119 y0, _ := new(big.Int).SetString("e040bd480b1deccc3bc40bd5b1fdcb7bfd352500b477cb9471366dbd4493f923", 16) 120 y1, _ := new(big.Int).SetString("8ad915f2b503a8be6facab6588731fefeb584fd2dfa9a77a5e0bba1ec439e4fa", 16) 121 122 if prv0.PublicKey.X.Cmp(x0) != 0 { 123 t.Errorf("mismatched prv0.X:\nhave: %x\nwant: %x\n", prv0.PublicKey.X.Bytes(), x0.Bytes()) 124 } 125 if prv0.PublicKey.Y.Cmp(y0) != 0 { 126 t.Errorf("mismatched prv0.Y:\nhave: %x\nwant: %x\n", prv0.PublicKey.Y.Bytes(), y0.Bytes()) 127 } 128 if prv1.PublicKey.X.Cmp(x1) != 0 { 129 t.Errorf("mismatched prv1.X:\nhave: %x\nwant: %x\n", prv1.PublicKey.X.Bytes(), x1.Bytes()) 130 } 131 if prv1.PublicKey.Y.Cmp(y1) != 0 { 132 t.Errorf("mismatched prv1.Y:\nhave: %x\nwant: %x\n", prv1.PublicKey.Y.Bytes(), y1.Bytes()) 133 } 134 135 // test shared secret generation 136 sk1, err := prv0.GenerateShared(&prv1.PublicKey, 16, 16) 137 if err != nil { 138 t.Log(err.Error()) 139 } 140 141 sk2, err := prv1.GenerateShared(&prv0.PublicKey, 16, 16) 142 if err != nil { 143 t.Fatal(err.Error()) 144 } 145 146 if !bytes.Equal(sk1, sk2) { 147 t.Fatal(ErrBadSharedKeys.Error()) 148 } 149 } 150 151 // Verify that the key generation code fails when too much key data is 152 // requested. 153 func TestTooBigSharedKey(t *testing.T) { 154 prv1, err := GenerateKey(rand.Reader, DefaultCurve, nil) 155 if err != nil { 156 t.Fatal(err) 157 } 158 159 prv2, err := GenerateKey(rand.Reader, DefaultCurve, nil) 160 if err != nil { 161 t.Fatal(err) 162 } 163 164 _, err = prv1.GenerateShared(&prv2.PublicKey, 32, 32) 165 if err != ErrSharedKeyTooBig { 166 t.Fatal("ecdh: shared key should be too large for curve") 167 } 168 169 _, err = prv2.GenerateShared(&prv1.PublicKey, 32, 32) 170 if err != ErrSharedKeyTooBig { 171 t.Fatal("ecdh: shared key should be too large for curve") 172 } 173 } 174 175 // Benchmark the generation of P256 keys. 176 func BenchmarkGenerateKeyP256(b *testing.B) { 177 for i := 0; i < b.N; i++ { 178 if _, err := GenerateKey(rand.Reader, elliptic.P256(), nil); err != nil { 179 b.Fatal(err) 180 } 181 } 182 } 183 184 // Benchmark the generation of P256 shared keys. 185 func BenchmarkGenSharedKeyP256(b *testing.B) { 186 prv, err := GenerateKey(rand.Reader, elliptic.P256(), nil) 187 if err != nil { 188 b.Fatal(err) 189 } 190 b.ResetTimer() 191 for i := 0; i < b.N; i++ { 192 _, err := prv.GenerateShared(&prv.PublicKey, 16, 16) 193 if err != nil { 194 b.Fatal(err) 195 } 196 } 197 } 198 199 // Benchmark the generation of S256 shared keys. 200 func BenchmarkGenSharedKeyS256(b *testing.B) { 201 prv, err := GenerateKey(rand.Reader, crypto.S256(), nil) 202 if err != nil { 203 b.Fatal(err) 204 } 205 b.ResetTimer() 206 for i := 0; i < b.N; i++ { 207 _, err := prv.GenerateShared(&prv.PublicKey, 16, 16) 208 if err != nil { 209 b.Fatal(err) 210 } 211 } 212 } 213 214 // Verify that an encrypted message can be successfully decrypted. 215 func TestEncryptDecrypt(t *testing.T) { 216 prv1, err := GenerateKey(rand.Reader, DefaultCurve, nil) 217 if err != nil { 218 t.Fatal(err) 219 } 220 221 prv2, err := GenerateKey(rand.Reader, DefaultCurve, nil) 222 if err != nil { 223 t.Fatal(err) 224 } 225 226 message := []byte("Hello, world.") 227 ct, err := Encrypt(rand.Reader, &prv2.PublicKey, message, nil, nil) 228 if err != nil { 229 t.Fatal(err) 230 } 231 232 pt, err := prv2.Decrypt(ct, nil, nil) 233 if err != nil { 234 t.Fatal(err) 235 } 236 237 if !bytes.Equal(pt, message) { 238 t.Fatal("ecies: plaintext doesn't match message") 239 } 240 241 _, err = prv1.Decrypt(ct, nil, nil) 242 if err == nil { 243 t.Fatal("ecies: encryption should not have succeeded") 244 } 245 } 246 247 func TestDecryptShared2(t *testing.T) { 248 prv, err := GenerateKey(rand.Reader, DefaultCurve, nil) 249 if err != nil { 250 t.Fatal(err) 251 } 252 message := []byte("Hello, world.") 253 shared2 := []byte("shared data 2") 254 ct, err := Encrypt(rand.Reader, &prv.PublicKey, message, nil, shared2) 255 if err != nil { 256 t.Fatal(err) 257 } 258 259 // Check that decrypting with correct shared data works. 260 pt, err := prv.Decrypt(ct, nil, shared2) 261 if err != nil { 262 t.Fatal(err) 263 } 264 if !bytes.Equal(pt, message) { 265 t.Fatal("ecies: plaintext doesn't match message") 266 } 267 268 // Decrypting without shared data or incorrect shared data fails. 269 if _, err = prv.Decrypt(ct, nil, nil); err == nil { 270 t.Fatal("ecies: decrypting without shared data didn't fail") 271 } 272 if _, err = prv.Decrypt(ct, nil, []byte("garbage")); err == nil { 273 t.Fatal("ecies: decrypting with incorrect shared data didn't fail") 274 } 275 } 276 277 type testCase struct { 278 Curve elliptic.Curve 279 Name string 280 Expected *ECIESParams 281 } 282 283 var testCases = []testCase{ 284 { 285 Curve: elliptic.P256(), 286 Name: "P256", 287 Expected: ECIES_AES128_SHA256, 288 }, 289 { 290 Curve: elliptic.P384(), 291 Name: "P384", 292 Expected: ECIES_AES256_SHA384, 293 }, 294 { 295 Curve: elliptic.P521(), 296 Name: "P521", 297 Expected: ECIES_AES256_SHA512, 298 }, 299 } 300 301 // Test parameter selection for each curve, and that P224 fails automatic 302 // parameter selection (see README for a discussion of P224). Ensures that 303 // selecting a set of parameters automatically for the given curve works. 304 func TestParamSelection(t *testing.T) { 305 for _, c := range testCases { 306 testParamSelection(t, c) 307 } 308 } 309 310 func testParamSelection(t *testing.T, c testCase) { 311 params := ParamsFromCurve(c.Curve) 312 if params == nil && c.Expected != nil { 313 t.Fatalf("%s (%s)\n", ErrInvalidParams.Error(), c.Name) 314 } else if params != nil && !cmpParams(params, c.Expected) { 315 t.Fatalf("ecies: parameters should be invalid (%s)\n", c.Name) 316 } 317 318 prv1, err := GenerateKey(rand.Reader, DefaultCurve, nil) 319 if err != nil { 320 t.Fatalf("%s (%s)\n", err.Error(), c.Name) 321 } 322 323 prv2, err := GenerateKey(rand.Reader, DefaultCurve, nil) 324 if err != nil { 325 t.Fatalf("%s (%s)\n", err.Error(), c.Name) 326 } 327 328 message := []byte("Hello, world.") 329 ct, err := Encrypt(rand.Reader, &prv2.PublicKey, message, nil, nil) 330 if err != nil { 331 t.Fatalf("%s (%s)\n", err.Error(), c.Name) 332 } 333 334 pt, err := prv2.Decrypt(ct, nil, nil) 335 if err != nil { 336 t.Fatalf("%s (%s)\n", err.Error(), c.Name) 337 } 338 339 if !bytes.Equal(pt, message) { 340 t.Fatalf("ecies: plaintext doesn't match message (%s)\n", c.Name) 341 } 342 343 _, err = prv1.Decrypt(ct, nil, nil) 344 if err == nil { 345 t.Fatalf("ecies: encryption should not have succeeded (%s)\n", c.Name) 346 } 347 348 } 349 350 // Ensure that the basic public key validation in the decryption operation 351 // works. 352 func TestBasicKeyValidation(t *testing.T) { 353 badBytes := []byte{0, 1, 5, 6, 7, 8, 9} 354 355 prv, err := GenerateKey(rand.Reader, DefaultCurve, nil) 356 if err != nil { 357 t.Fatal(err) 358 } 359 360 message := []byte("Hello, world.") 361 ct, err := Encrypt(rand.Reader, &prv.PublicKey, message, nil, nil) 362 if err != nil { 363 t.Fatal(err) 364 } 365 366 for _, b := range badBytes { 367 ct[0] = b 368 _, err := prv.Decrypt(ct, nil, nil) 369 if err != ErrInvalidPublicKey { 370 t.Fatal("ecies: validated an invalid key") 371 } 372 } 373 } 374 375 func TestBox(t *testing.T) { 376 prv1 := hexKey("4b50fa71f5c3eeb8fdc452224b2395af2fcc3d125e06c32c82e048c0559db03f") 377 prv2 := hexKey("d0b043b4c5d657670778242d82d68a29d25d7d711127d17b8e299f156dad361a") 378 pub2 := &prv2.PublicKey 379 380 message := []byte("Hello, world.") 381 ct, err := Encrypt(rand.Reader, pub2, message, nil, nil) 382 if err != nil { 383 t.Fatal(err) 384 } 385 386 pt, err := prv2.Decrypt(ct, nil, nil) 387 if err != nil { 388 t.Fatal(err) 389 } 390 if !bytes.Equal(pt, message) { 391 t.Fatal("ecies: plaintext doesn't match message") 392 } 393 if _, err = prv1.Decrypt(ct, nil, nil); err == nil { 394 t.Fatal("ecies: encryption should not have succeeded") 395 } 396 } 397 398 // Verify GenerateShared against static values - useful when 399 // debugging changes in underlying libs 400 func TestSharedKeyStatic(t *testing.T) { 401 prv1 := hexKey("7ebbc6a8358bc76dd73ebc557056702c8cfc34e5cfcd90eb83af0347575fd2ad") 402 prv2 := hexKey("6a3d6396903245bba5837752b9e0348874e72db0c4e11e9c485a81b4ea4353b9") 403 404 skLen := MaxSharedKeyLength(&prv1.PublicKey) / 2 405 406 sk1, err := prv1.GenerateShared(&prv2.PublicKey, skLen, skLen) 407 if err != nil { 408 t.Fatal(err) 409 } 410 411 sk2, err := prv2.GenerateShared(&prv1.PublicKey, skLen, skLen) 412 if err != nil { 413 t.Fatal(err) 414 } 415 416 if !bytes.Equal(sk1, sk2) { 417 t.Fatal(ErrBadSharedKeys) 418 } 419 420 sk, _ := hex.DecodeString("167ccc13ac5e8a26b131c3446030c60fbfac6aa8e31149d0869f93626a4cdf62") 421 if !bytes.Equal(sk1, sk) { 422 t.Fatalf("shared secret mismatch: want: %x have: %x", sk, sk1) 423 } 424 } 425 426 func hexKey(prv string) *PrivateKey { 427 key, err := crypto.HexToECDSA(prv) 428 if err != nil { 429 panic(err) 430 } 431 return ImportECDSA(key) 432 }