github.com/ttpreport/gvisor-ligolo@v0.0.0-20240123134145-a858404967ba/pkg/atomicbitops/atomicbitops_float64.go (about) 1 // Copyright 2023 The gVisor Authors. 2 // 3 // Licensed under the Apache License, Version 2.0 (the "License"); 4 // you may not use this file except in compliance with the License. 5 // You may obtain a copy of the License at 6 // 7 // http://www.apache.org/licenses/LICENSE-2.0 8 // 9 // Unless required by applicable law or agreed to in writing, software 10 // distributed under the License is distributed on an "AS IS" BASIS, 11 // WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. 12 // See the License for the specific language governing permissions and 13 // limitations under the License. 14 15 package atomicbitops 16 17 import ( 18 "math" 19 20 "github.com/ttpreport/gvisor-ligolo/pkg/sync" 21 ) 22 23 // Float64 is an atomic 64-bit floating-point number. 24 // 25 // +stateify savable 26 type Float64 struct { 27 _ sync.NoCopy 28 // bits stores the bit of a 64-bit floating point number. 29 // It is not (and should not be interpreted as) a real uint64. 30 bits Uint64 31 } 32 33 // FromFloat64 returns a Float64 initialized to value v. 34 // 35 //go:nosplit 36 func FromFloat64(v float64) Float64 { 37 return Float64{bits: FromUint64(math.Float64bits(v))} 38 } 39 40 // Load loads the floating-point value. 41 // 42 //go:nosplit 43 func (f *Float64) Load() float64 { 44 return math.Float64frombits(f.bits.Load()) 45 } 46 47 // RacyLoad is analogous to reading an atomic value without using 48 // synchronization. 49 // 50 // It may be helpful to document why a racy operation is permitted. 51 // 52 //go:nosplit 53 func (f *Float64) RacyLoad() float64 { 54 return math.Float64frombits(f.bits.RacyLoad()) 55 } 56 57 // Store stores the given floating-point value in the Float64. 58 // 59 //go:nosplit 60 func (f *Float64) Store(v float64) { 61 f.bits.Store(math.Float64bits(v)) 62 } 63 64 // RacyStore is analogous to setting an atomic value without using 65 // synchronization. 66 // 67 // It may be helpful to document why a racy operation is permitted. 68 // 69 //go:nosplit 70 func (f *Float64) RacyStore(v float64) { 71 f.bits.RacyStore(math.Float64bits(v)) 72 } 73 74 // Swap stores the given value and returns the previously-stored one. 75 // 76 //go:nosplit 77 func (f *Float64) Swap(v float64) float64 { 78 return math.Float64frombits(f.bits.Swap(math.Float64bits(v))) 79 } 80 81 // CompareAndSwap does a compare-and-swap operation on the float64 value. 82 // Note that unlike typical IEEE 754 semantics, this function will treat NaN 83 // as equal to itself if all of its bits exactly match. 84 // 85 //go:nosplit 86 func (f *Float64) CompareAndSwap(oldVal, newVal float64) bool { 87 return f.bits.CompareAndSwap(math.Float64bits(oldVal), math.Float64bits(newVal)) 88 } 89 90 // Add increments the float by the given value. 91 // Note that unlike an atomic integer, this requires spin-looping until we win 92 // the compare-and-swap race, so this may take an indeterminate amount of time. 93 // 94 //go:nosplit 95 func (f *Float64) Add(v float64) { 96 // We do a racy load here because we optimistically think it may pass the 97 // compare-and-swap operation. If it doesn't, we'll load it safely, so this 98 // is OK and not a race for the overall intent of the user to add a number. 99 sync.RaceDisable() 100 oldVal := f.RacyLoad() 101 for !f.CompareAndSwap(oldVal, oldVal+v) { 102 oldVal = f.Load() 103 } 104 sync.RaceEnable() 105 }