github.com/twelsh-aw/go/src@v0.0.0-20230516233729-a56fe86a7c81/crypto/internal/edwards25519/field/fe.go (about) 1 // Copyright (c) 2017 The Go Authors. All rights reserved. 2 // Use of this source code is governed by a BSD-style 3 // license that can be found in the LICENSE file. 4 5 // Package field implements fast arithmetic modulo 2^255-19. 6 package field 7 8 import ( 9 "crypto/subtle" 10 "encoding/binary" 11 "errors" 12 "math/bits" 13 ) 14 15 // Element represents an element of the field GF(2^255-19). Note that this 16 // is not a cryptographically secure group, and should only be used to interact 17 // with edwards25519.Point coordinates. 18 // 19 // This type works similarly to math/big.Int, and all arguments and receivers 20 // are allowed to alias. 21 // 22 // The zero value is a valid zero element. 23 type Element struct { 24 // An element t represents the integer 25 // t.l0 + t.l1*2^51 + t.l2*2^102 + t.l3*2^153 + t.l4*2^204 26 // 27 // Between operations, all limbs are expected to be lower than 2^52. 28 l0 uint64 29 l1 uint64 30 l2 uint64 31 l3 uint64 32 l4 uint64 33 } 34 35 const maskLow51Bits uint64 = (1 << 51) - 1 36 37 var feZero = &Element{0, 0, 0, 0, 0} 38 39 // Zero sets v = 0, and returns v. 40 func (v *Element) Zero() *Element { 41 *v = *feZero 42 return v 43 } 44 45 var feOne = &Element{1, 0, 0, 0, 0} 46 47 // One sets v = 1, and returns v. 48 func (v *Element) One() *Element { 49 *v = *feOne 50 return v 51 } 52 53 // reduce reduces v modulo 2^255 - 19 and returns it. 54 func (v *Element) reduce() *Element { 55 v.carryPropagate() 56 57 // After the light reduction we now have a field element representation 58 // v < 2^255 + 2^13 * 19, but need v < 2^255 - 19. 59 60 // If v >= 2^255 - 19, then v + 19 >= 2^255, which would overflow 2^255 - 1, 61 // generating a carry. That is, c will be 0 if v < 2^255 - 19, and 1 otherwise. 62 c := (v.l0 + 19) >> 51 63 c = (v.l1 + c) >> 51 64 c = (v.l2 + c) >> 51 65 c = (v.l3 + c) >> 51 66 c = (v.l4 + c) >> 51 67 68 // If v < 2^255 - 19 and c = 0, this will be a no-op. Otherwise, it's 69 // effectively applying the reduction identity to the carry. 70 v.l0 += 19 * c 71 72 v.l1 += v.l0 >> 51 73 v.l0 = v.l0 & maskLow51Bits 74 v.l2 += v.l1 >> 51 75 v.l1 = v.l1 & maskLow51Bits 76 v.l3 += v.l2 >> 51 77 v.l2 = v.l2 & maskLow51Bits 78 v.l4 += v.l3 >> 51 79 v.l3 = v.l3 & maskLow51Bits 80 // no additional carry 81 v.l4 = v.l4 & maskLow51Bits 82 83 return v 84 } 85 86 // Add sets v = a + b, and returns v. 87 func (v *Element) Add(a, b *Element) *Element { 88 v.l0 = a.l0 + b.l0 89 v.l1 = a.l1 + b.l1 90 v.l2 = a.l2 + b.l2 91 v.l3 = a.l3 + b.l3 92 v.l4 = a.l4 + b.l4 93 // Using the generic implementation here is actually faster than the 94 // assembly. Probably because the body of this function is so simple that 95 // the compiler can figure out better optimizations by inlining the carry 96 // propagation. 97 return v.carryPropagateGeneric() 98 } 99 100 // Subtract sets v = a - b, and returns v. 101 func (v *Element) Subtract(a, b *Element) *Element { 102 // We first add 2 * p, to guarantee the subtraction won't underflow, and 103 // then subtract b (which can be up to 2^255 + 2^13 * 19). 104 v.l0 = (a.l0 + 0xFFFFFFFFFFFDA) - b.l0 105 v.l1 = (a.l1 + 0xFFFFFFFFFFFFE) - b.l1 106 v.l2 = (a.l2 + 0xFFFFFFFFFFFFE) - b.l2 107 v.l3 = (a.l3 + 0xFFFFFFFFFFFFE) - b.l3 108 v.l4 = (a.l4 + 0xFFFFFFFFFFFFE) - b.l4 109 return v.carryPropagate() 110 } 111 112 // Negate sets v = -a, and returns v. 113 func (v *Element) Negate(a *Element) *Element { 114 return v.Subtract(feZero, a) 115 } 116 117 // Invert sets v = 1/z mod p, and returns v. 118 // 119 // If z == 0, Invert returns v = 0. 120 func (v *Element) Invert(z *Element) *Element { 121 // Inversion is implemented as exponentiation with exponent p − 2. It uses the 122 // same sequence of 255 squarings and 11 multiplications as [Curve25519]. 123 var z2, z9, z11, z2_5_0, z2_10_0, z2_20_0, z2_50_0, z2_100_0, t Element 124 125 z2.Square(z) // 2 126 t.Square(&z2) // 4 127 t.Square(&t) // 8 128 z9.Multiply(&t, z) // 9 129 z11.Multiply(&z9, &z2) // 11 130 t.Square(&z11) // 22 131 z2_5_0.Multiply(&t, &z9) // 31 = 2^5 - 2^0 132 133 t.Square(&z2_5_0) // 2^6 - 2^1 134 for i := 0; i < 4; i++ { 135 t.Square(&t) // 2^10 - 2^5 136 } 137 z2_10_0.Multiply(&t, &z2_5_0) // 2^10 - 2^0 138 139 t.Square(&z2_10_0) // 2^11 - 2^1 140 for i := 0; i < 9; i++ { 141 t.Square(&t) // 2^20 - 2^10 142 } 143 z2_20_0.Multiply(&t, &z2_10_0) // 2^20 - 2^0 144 145 t.Square(&z2_20_0) // 2^21 - 2^1 146 for i := 0; i < 19; i++ { 147 t.Square(&t) // 2^40 - 2^20 148 } 149 t.Multiply(&t, &z2_20_0) // 2^40 - 2^0 150 151 t.Square(&t) // 2^41 - 2^1 152 for i := 0; i < 9; i++ { 153 t.Square(&t) // 2^50 - 2^10 154 } 155 z2_50_0.Multiply(&t, &z2_10_0) // 2^50 - 2^0 156 157 t.Square(&z2_50_0) // 2^51 - 2^1 158 for i := 0; i < 49; i++ { 159 t.Square(&t) // 2^100 - 2^50 160 } 161 z2_100_0.Multiply(&t, &z2_50_0) // 2^100 - 2^0 162 163 t.Square(&z2_100_0) // 2^101 - 2^1 164 for i := 0; i < 99; i++ { 165 t.Square(&t) // 2^200 - 2^100 166 } 167 t.Multiply(&t, &z2_100_0) // 2^200 - 2^0 168 169 t.Square(&t) // 2^201 - 2^1 170 for i := 0; i < 49; i++ { 171 t.Square(&t) // 2^250 - 2^50 172 } 173 t.Multiply(&t, &z2_50_0) // 2^250 - 2^0 174 175 t.Square(&t) // 2^251 - 2^1 176 t.Square(&t) // 2^252 - 2^2 177 t.Square(&t) // 2^253 - 2^3 178 t.Square(&t) // 2^254 - 2^4 179 t.Square(&t) // 2^255 - 2^5 180 181 return v.Multiply(&t, &z11) // 2^255 - 21 182 } 183 184 // Set sets v = a, and returns v. 185 func (v *Element) Set(a *Element) *Element { 186 *v = *a 187 return v 188 } 189 190 // SetBytes sets v to x, where x is a 32-byte little-endian encoding. If x is 191 // not of the right length, SetBytes returns nil and an error, and the 192 // receiver is unchanged. 193 // 194 // Consistent with RFC 7748, the most significant bit (the high bit of the 195 // last byte) is ignored, and non-canonical values (2^255-19 through 2^255-1) 196 // are accepted. Note that this is laxer than specified by RFC 8032, but 197 // consistent with most Ed25519 implementations. 198 func (v *Element) SetBytes(x []byte) (*Element, error) { 199 if len(x) != 32 { 200 return nil, errors.New("edwards25519: invalid field element input size") 201 } 202 203 // Bits 0:51 (bytes 0:8, bits 0:64, shift 0, mask 51). 204 v.l0 = binary.LittleEndian.Uint64(x[0:8]) 205 v.l0 &= maskLow51Bits 206 // Bits 51:102 (bytes 6:14, bits 48:112, shift 3, mask 51). 207 v.l1 = binary.LittleEndian.Uint64(x[6:14]) >> 3 208 v.l1 &= maskLow51Bits 209 // Bits 102:153 (bytes 12:20, bits 96:160, shift 6, mask 51). 210 v.l2 = binary.LittleEndian.Uint64(x[12:20]) >> 6 211 v.l2 &= maskLow51Bits 212 // Bits 153:204 (bytes 19:27, bits 152:216, shift 1, mask 51). 213 v.l3 = binary.LittleEndian.Uint64(x[19:27]) >> 1 214 v.l3 &= maskLow51Bits 215 // Bits 204:255 (bytes 24:32, bits 192:256, shift 12, mask 51). 216 // Note: not bytes 25:33, shift 4, to avoid overread. 217 v.l4 = binary.LittleEndian.Uint64(x[24:32]) >> 12 218 v.l4 &= maskLow51Bits 219 220 return v, nil 221 } 222 223 // Bytes returns the canonical 32-byte little-endian encoding of v. 224 func (v *Element) Bytes() []byte { 225 // This function is outlined to make the allocations inline in the caller 226 // rather than happen on the heap. 227 var out [32]byte 228 return v.bytes(&out) 229 } 230 231 func (v *Element) bytes(out *[32]byte) []byte { 232 t := *v 233 t.reduce() 234 235 var buf [8]byte 236 for i, l := range [5]uint64{t.l0, t.l1, t.l2, t.l3, t.l4} { 237 bitsOffset := i * 51 238 binary.LittleEndian.PutUint64(buf[:], l<<uint(bitsOffset%8)) 239 for i, bb := range buf { 240 off := bitsOffset/8 + i 241 if off >= len(out) { 242 break 243 } 244 out[off] |= bb 245 } 246 } 247 248 return out[:] 249 } 250 251 // Equal returns 1 if v and u are equal, and 0 otherwise. 252 func (v *Element) Equal(u *Element) int { 253 sa, sv := u.Bytes(), v.Bytes() 254 return subtle.ConstantTimeCompare(sa, sv) 255 } 256 257 // mask64Bits returns 0xffffffff if cond is 1, and 0 otherwise. 258 func mask64Bits(cond int) uint64 { return ^(uint64(cond) - 1) } 259 260 // Select sets v to a if cond == 1, and to b if cond == 0. 261 func (v *Element) Select(a, b *Element, cond int) *Element { 262 m := mask64Bits(cond) 263 v.l0 = (m & a.l0) | (^m & b.l0) 264 v.l1 = (m & a.l1) | (^m & b.l1) 265 v.l2 = (m & a.l2) | (^m & b.l2) 266 v.l3 = (m & a.l3) | (^m & b.l3) 267 v.l4 = (m & a.l4) | (^m & b.l4) 268 return v 269 } 270 271 // Swap swaps v and u if cond == 1 or leaves them unchanged if cond == 0, and returns v. 272 func (v *Element) Swap(u *Element, cond int) { 273 m := mask64Bits(cond) 274 t := m & (v.l0 ^ u.l0) 275 v.l0 ^= t 276 u.l0 ^= t 277 t = m & (v.l1 ^ u.l1) 278 v.l1 ^= t 279 u.l1 ^= t 280 t = m & (v.l2 ^ u.l2) 281 v.l2 ^= t 282 u.l2 ^= t 283 t = m & (v.l3 ^ u.l3) 284 v.l3 ^= t 285 u.l3 ^= t 286 t = m & (v.l4 ^ u.l4) 287 v.l4 ^= t 288 u.l4 ^= t 289 } 290 291 // IsNegative returns 1 if v is negative, and 0 otherwise. 292 func (v *Element) IsNegative() int { 293 return int(v.Bytes()[0] & 1) 294 } 295 296 // Absolute sets v to |u|, and returns v. 297 func (v *Element) Absolute(u *Element) *Element { 298 return v.Select(new(Element).Negate(u), u, u.IsNegative()) 299 } 300 301 // Multiply sets v = x * y, and returns v. 302 func (v *Element) Multiply(x, y *Element) *Element { 303 feMul(v, x, y) 304 return v 305 } 306 307 // Square sets v = x * x, and returns v. 308 func (v *Element) Square(x *Element) *Element { 309 feSquare(v, x) 310 return v 311 } 312 313 // Mult32 sets v = x * y, and returns v. 314 func (v *Element) Mult32(x *Element, y uint32) *Element { 315 x0lo, x0hi := mul51(x.l0, y) 316 x1lo, x1hi := mul51(x.l1, y) 317 x2lo, x2hi := mul51(x.l2, y) 318 x3lo, x3hi := mul51(x.l3, y) 319 x4lo, x4hi := mul51(x.l4, y) 320 v.l0 = x0lo + 19*x4hi // carried over per the reduction identity 321 v.l1 = x1lo + x0hi 322 v.l2 = x2lo + x1hi 323 v.l3 = x3lo + x2hi 324 v.l4 = x4lo + x3hi 325 // The hi portions are going to be only 32 bits, plus any previous excess, 326 // so we can skip the carry propagation. 327 return v 328 } 329 330 // mul51 returns lo + hi * 2⁵¹ = a * b. 331 func mul51(a uint64, b uint32) (lo uint64, hi uint64) { 332 mh, ml := bits.Mul64(a, uint64(b)) 333 lo = ml & maskLow51Bits 334 hi = (mh << 13) | (ml >> 51) 335 return 336 } 337 338 // Pow22523 set v = x^((p-5)/8), and returns v. (p-5)/8 is 2^252-3. 339 func (v *Element) Pow22523(x *Element) *Element { 340 var t0, t1, t2 Element 341 342 t0.Square(x) // x^2 343 t1.Square(&t0) // x^4 344 t1.Square(&t1) // x^8 345 t1.Multiply(x, &t1) // x^9 346 t0.Multiply(&t0, &t1) // x^11 347 t0.Square(&t0) // x^22 348 t0.Multiply(&t1, &t0) // x^31 349 t1.Square(&t0) // x^62 350 for i := 1; i < 5; i++ { // x^992 351 t1.Square(&t1) 352 } 353 t0.Multiply(&t1, &t0) // x^1023 -> 1023 = 2^10 - 1 354 t1.Square(&t0) // 2^11 - 2 355 for i := 1; i < 10; i++ { // 2^20 - 2^10 356 t1.Square(&t1) 357 } 358 t1.Multiply(&t1, &t0) // 2^20 - 1 359 t2.Square(&t1) // 2^21 - 2 360 for i := 1; i < 20; i++ { // 2^40 - 2^20 361 t2.Square(&t2) 362 } 363 t1.Multiply(&t2, &t1) // 2^40 - 1 364 t1.Square(&t1) // 2^41 - 2 365 for i := 1; i < 10; i++ { // 2^50 - 2^10 366 t1.Square(&t1) 367 } 368 t0.Multiply(&t1, &t0) // 2^50 - 1 369 t1.Square(&t0) // 2^51 - 2 370 for i := 1; i < 50; i++ { // 2^100 - 2^50 371 t1.Square(&t1) 372 } 373 t1.Multiply(&t1, &t0) // 2^100 - 1 374 t2.Square(&t1) // 2^101 - 2 375 for i := 1; i < 100; i++ { // 2^200 - 2^100 376 t2.Square(&t2) 377 } 378 t1.Multiply(&t2, &t1) // 2^200 - 1 379 t1.Square(&t1) // 2^201 - 2 380 for i := 1; i < 50; i++ { // 2^250 - 2^50 381 t1.Square(&t1) 382 } 383 t0.Multiply(&t1, &t0) // 2^250 - 1 384 t0.Square(&t0) // 2^251 - 2 385 t0.Square(&t0) // 2^252 - 4 386 return v.Multiply(&t0, x) // 2^252 - 3 -> x^(2^252-3) 387 } 388 389 // sqrtM1 is 2^((p-1)/4), which squared is equal to -1 by Euler's Criterion. 390 var sqrtM1 = &Element{1718705420411056, 234908883556509, 391 2233514472574048, 2117202627021982, 765476049583133} 392 393 // SqrtRatio sets r to the non-negative square root of the ratio of u and v. 394 // 395 // If u/v is square, SqrtRatio returns r and 1. If u/v is not square, SqrtRatio 396 // sets r according to Section 4.3 of draft-irtf-cfrg-ristretto255-decaf448-00, 397 // and returns r and 0. 398 func (r *Element) SqrtRatio(u, v *Element) (R *Element, wasSquare int) { 399 t0 := new(Element) 400 401 // r = (u * v3) * (u * v7)^((p-5)/8) 402 v2 := new(Element).Square(v) 403 uv3 := new(Element).Multiply(u, t0.Multiply(v2, v)) 404 uv7 := new(Element).Multiply(uv3, t0.Square(v2)) 405 rr := new(Element).Multiply(uv3, t0.Pow22523(uv7)) 406 407 check := new(Element).Multiply(v, t0.Square(rr)) // check = v * r^2 408 409 uNeg := new(Element).Negate(u) 410 correctSignSqrt := check.Equal(u) 411 flippedSignSqrt := check.Equal(uNeg) 412 flippedSignSqrtI := check.Equal(t0.Multiply(uNeg, sqrtM1)) 413 414 rPrime := new(Element).Multiply(rr, sqrtM1) // r_prime = SQRT_M1 * r 415 // r = CT_SELECT(r_prime IF flipped_sign_sqrt | flipped_sign_sqrt_i ELSE r) 416 rr.Select(rPrime, rr, flippedSignSqrt|flippedSignSqrtI) 417 418 r.Absolute(rr) // Choose the nonnegative square root. 419 return r, correctSignSqrt | flippedSignSqrt 420 }