github.com/twelsh-aw/go/src@v0.0.0-20230516233729-a56fe86a7c81/crypto/internal/nistec/generate.go (about) 1 // Copyright 2022 The Go Authors. All rights reserved. 2 // Use of this source code is governed by a BSD-style 3 // license that can be found in the LICENSE file. 4 5 //go:build ignore 6 7 package main 8 9 // Running this generator requires addchain v0.4.0, which can be installed with 10 // 11 // go install github.com/mmcloughlin/addchain/cmd/addchain@v0.4.0 12 // 13 14 import ( 15 "bytes" 16 "crypto/elliptic" 17 "fmt" 18 "go/format" 19 "io" 20 "log" 21 "math/big" 22 "os" 23 "os/exec" 24 "strings" 25 "text/template" 26 ) 27 28 var curves = []struct { 29 P string 30 Element string 31 Params *elliptic.CurveParams 32 BuildTags string 33 }{ 34 { 35 P: "P224", 36 Element: "fiat.P224Element", 37 Params: elliptic.P224().Params(), 38 }, 39 { 40 P: "P256", 41 Element: "fiat.P256Element", 42 Params: elliptic.P256().Params(), 43 BuildTags: "!amd64 && !arm64 && !ppc64le && !s390x", 44 }, 45 { 46 P: "P384", 47 Element: "fiat.P384Element", 48 Params: elliptic.P384().Params(), 49 }, 50 { 51 P: "P521", 52 Element: "fiat.P521Element", 53 Params: elliptic.P521().Params(), 54 }, 55 } 56 57 func main() { 58 t := template.Must(template.New("tmplNISTEC").Parse(tmplNISTEC)) 59 60 tmplAddchainFile, err := os.CreateTemp("", "addchain-template") 61 if err != nil { 62 log.Fatal(err) 63 } 64 defer os.Remove(tmplAddchainFile.Name()) 65 if _, err := io.WriteString(tmplAddchainFile, tmplAddchain); err != nil { 66 log.Fatal(err) 67 } 68 if err := tmplAddchainFile.Close(); err != nil { 69 log.Fatal(err) 70 } 71 72 for _, c := range curves { 73 p := strings.ToLower(c.P) 74 elementLen := (c.Params.BitSize + 7) / 8 75 B := fmt.Sprintf("%#v", c.Params.B.FillBytes(make([]byte, elementLen))) 76 Gx := fmt.Sprintf("%#v", c.Params.Gx.FillBytes(make([]byte, elementLen))) 77 Gy := fmt.Sprintf("%#v", c.Params.Gy.FillBytes(make([]byte, elementLen))) 78 79 log.Printf("Generating %s.go...", p) 80 f, err := os.Create(p + ".go") 81 if err != nil { 82 log.Fatal(err) 83 } 84 defer f.Close() 85 buf := &bytes.Buffer{} 86 if err := t.Execute(buf, map[string]interface{}{ 87 "P": c.P, "p": p, "B": B, "Gx": Gx, "Gy": Gy, 88 "Element": c.Element, "ElementLen": elementLen, 89 "BuildTags": c.BuildTags, 90 }); err != nil { 91 log.Fatal(err) 92 } 93 out, err := format.Source(buf.Bytes()) 94 if err != nil { 95 log.Fatal(err) 96 } 97 if _, err := f.Write(out); err != nil { 98 log.Fatal(err) 99 } 100 101 // If p = 3 mod 4, implement modular square root by exponentiation. 102 mod4 := new(big.Int).Mod(c.Params.P, big.NewInt(4)) 103 if mod4.Cmp(big.NewInt(3)) != 0 { 104 continue 105 } 106 107 exp := new(big.Int).Add(c.Params.P, big.NewInt(1)) 108 exp.Div(exp, big.NewInt(4)) 109 110 tmp, err := os.CreateTemp("", "addchain-"+p) 111 if err != nil { 112 log.Fatal(err) 113 } 114 defer os.Remove(tmp.Name()) 115 cmd := exec.Command("addchain", "search", fmt.Sprintf("%d", exp)) 116 cmd.Stderr = os.Stderr 117 cmd.Stdout = tmp 118 if err := cmd.Run(); err != nil { 119 log.Fatal(err) 120 } 121 if err := tmp.Close(); err != nil { 122 log.Fatal(err) 123 } 124 cmd = exec.Command("addchain", "gen", "-tmpl", tmplAddchainFile.Name(), tmp.Name()) 125 cmd.Stderr = os.Stderr 126 out, err = cmd.Output() 127 if err != nil { 128 log.Fatal(err) 129 } 130 out = bytes.Replace(out, []byte("Element"), []byte(c.Element), -1) 131 out = bytes.Replace(out, []byte("sqrtCandidate"), []byte(p+"SqrtCandidate"), -1) 132 out, err = format.Source(out) 133 if err != nil { 134 log.Fatal(err) 135 } 136 if _, err := f.Write(out); err != nil { 137 log.Fatal(err) 138 } 139 } 140 } 141 142 const tmplNISTEC = `// Copyright 2022 The Go Authors. All rights reserved. 143 // Use of this source code is governed by a BSD-style 144 // license that can be found in the LICENSE file. 145 146 // Code generated by generate.go. DO NOT EDIT. 147 148 {{ if .BuildTags }} 149 //go:build {{ .BuildTags }} 150 {{ end }} 151 152 package nistec 153 154 import ( 155 "crypto/internal/nistec/fiat" 156 "crypto/subtle" 157 "errors" 158 "sync" 159 ) 160 161 // {{.p}}ElementLength is the length of an element of the base or scalar field, 162 // which have the same bytes length for all NIST P curves. 163 const {{.p}}ElementLength = {{ .ElementLen }} 164 165 // {{.P}}Point is a {{.P}} point. The zero value is NOT valid. 166 type {{.P}}Point struct { 167 // The point is represented in projective coordinates (X:Y:Z), 168 // where x = X/Z and y = Y/Z. 169 x, y, z *{{.Element}} 170 } 171 172 // New{{.P}}Point returns a new {{.P}}Point representing the point at infinity point. 173 func New{{.P}}Point() *{{.P}}Point { 174 return &{{.P}}Point{ 175 x: new({{.Element}}), 176 y: new({{.Element}}).One(), 177 z: new({{.Element}}), 178 } 179 } 180 181 // SetGenerator sets p to the canonical generator and returns p. 182 func (p *{{.P}}Point) SetGenerator() *{{.P}}Point { 183 p.x.SetBytes({{.Gx}}) 184 p.y.SetBytes({{.Gy}}) 185 p.z.One() 186 return p 187 } 188 189 // Set sets p = q and returns p. 190 func (p *{{.P}}Point) Set(q *{{.P}}Point) *{{.P}}Point { 191 p.x.Set(q.x) 192 p.y.Set(q.y) 193 p.z.Set(q.z) 194 return p 195 } 196 197 // SetBytes sets p to the compressed, uncompressed, or infinity value encoded in 198 // b, as specified in SEC 1, Version 2.0, Section 2.3.4. If the point is not on 199 // the curve, it returns nil and an error, and the receiver is unchanged. 200 // Otherwise, it returns p. 201 func (p *{{.P}}Point) SetBytes(b []byte) (*{{.P}}Point, error) { 202 switch { 203 // Point at infinity. 204 case len(b) == 1 && b[0] == 0: 205 return p.Set(New{{.P}}Point()), nil 206 207 // Uncompressed form. 208 case len(b) == 1+2*{{.p}}ElementLength && b[0] == 4: 209 x, err := new({{.Element}}).SetBytes(b[1 : 1+{{.p}}ElementLength]) 210 if err != nil { 211 return nil, err 212 } 213 y, err := new({{.Element}}).SetBytes(b[1+{{.p}}ElementLength:]) 214 if err != nil { 215 return nil, err 216 } 217 if err := {{.p}}CheckOnCurve(x, y); err != nil { 218 return nil, err 219 } 220 p.x.Set(x) 221 p.y.Set(y) 222 p.z.One() 223 return p, nil 224 225 // Compressed form. 226 case len(b) == 1+{{.p}}ElementLength && (b[0] == 2 || b[0] == 3): 227 x, err := new({{.Element}}).SetBytes(b[1:]) 228 if err != nil { 229 return nil, err 230 } 231 232 // y² = x³ - 3x + b 233 y := {{.p}}Polynomial(new({{.Element}}), x) 234 if !{{.p}}Sqrt(y, y) { 235 return nil, errors.New("invalid {{.P}} compressed point encoding") 236 } 237 238 // Select the positive or negative root, as indicated by the least 239 // significant bit, based on the encoding type byte. 240 otherRoot := new({{.Element}}) 241 otherRoot.Sub(otherRoot, y) 242 cond := y.Bytes()[{{.p}}ElementLength-1]&1 ^ b[0]&1 243 y.Select(otherRoot, y, int(cond)) 244 245 p.x.Set(x) 246 p.y.Set(y) 247 p.z.One() 248 return p, nil 249 250 default: 251 return nil, errors.New("invalid {{.P}} point encoding") 252 } 253 } 254 255 256 var _{{.p}}B *{{.Element}} 257 var _{{.p}}BOnce sync.Once 258 259 func {{.p}}B() *{{.Element}} { 260 _{{.p}}BOnce.Do(func() { 261 _{{.p}}B, _ = new({{.Element}}).SetBytes({{.B}}) 262 }) 263 return _{{.p}}B 264 } 265 266 // {{.p}}Polynomial sets y2 to x³ - 3x + b, and returns y2. 267 func {{.p}}Polynomial(y2, x *{{.Element}}) *{{.Element}} { 268 y2.Square(x) 269 y2.Mul(y2, x) 270 271 threeX := new({{.Element}}).Add(x, x) 272 threeX.Add(threeX, x) 273 y2.Sub(y2, threeX) 274 275 return y2.Add(y2, {{.p}}B()) 276 } 277 278 func {{.p}}CheckOnCurve(x, y *{{.Element}}) error { 279 // y² = x³ - 3x + b 280 rhs := {{.p}}Polynomial(new({{.Element}}), x) 281 lhs := new({{.Element}}).Square(y) 282 if rhs.Equal(lhs) != 1 { 283 return errors.New("{{.P}} point not on curve") 284 } 285 return nil 286 } 287 288 // Bytes returns the uncompressed or infinity encoding of p, as specified in 289 // SEC 1, Version 2.0, Section 2.3.3. Note that the encoding of the point at 290 // infinity is shorter than all other encodings. 291 func (p *{{.P}}Point) Bytes() []byte { 292 // This function is outlined to make the allocations inline in the caller 293 // rather than happen on the heap. 294 var out [1+2*{{.p}}ElementLength]byte 295 return p.bytes(&out) 296 } 297 298 func (p *{{.P}}Point) bytes(out *[1+2*{{.p}}ElementLength]byte) []byte { 299 if p.z.IsZero() == 1 { 300 return append(out[:0], 0) 301 } 302 303 zinv := new({{.Element}}).Invert(p.z) 304 x := new({{.Element}}).Mul(p.x, zinv) 305 y := new({{.Element}}).Mul(p.y, zinv) 306 307 buf := append(out[:0], 4) 308 buf = append(buf, x.Bytes()...) 309 buf = append(buf, y.Bytes()...) 310 return buf 311 } 312 313 // BytesX returns the encoding of the x-coordinate of p, as specified in SEC 1, 314 // Version 2.0, Section 2.3.5, or an error if p is the point at infinity. 315 func (p *{{.P}}Point) BytesX() ([]byte, error) { 316 // This function is outlined to make the allocations inline in the caller 317 // rather than happen on the heap. 318 var out [{{.p}}ElementLength]byte 319 return p.bytesX(&out) 320 } 321 322 func (p *{{.P}}Point) bytesX(out *[{{.p}}ElementLength]byte) ([]byte, error) { 323 if p.z.IsZero() == 1 { 324 return nil, errors.New("{{.P}} point is the point at infinity") 325 } 326 327 zinv := new({{.Element}}).Invert(p.z) 328 x := new({{.Element}}).Mul(p.x, zinv) 329 330 return append(out[:0], x.Bytes()...), nil 331 } 332 333 // BytesCompressed returns the compressed or infinity encoding of p, as 334 // specified in SEC 1, Version 2.0, Section 2.3.3. Note that the encoding of the 335 // point at infinity is shorter than all other encodings. 336 func (p *{{.P}}Point) BytesCompressed() []byte { 337 // This function is outlined to make the allocations inline in the caller 338 // rather than happen on the heap. 339 var out [1 + {{.p}}ElementLength]byte 340 return p.bytesCompressed(&out) 341 } 342 343 func (p *{{.P}}Point) bytesCompressed(out *[1 + {{.p}}ElementLength]byte) []byte { 344 if p.z.IsZero() == 1 { 345 return append(out[:0], 0) 346 } 347 348 zinv := new({{.Element}}).Invert(p.z) 349 x := new({{.Element}}).Mul(p.x, zinv) 350 y := new({{.Element}}).Mul(p.y, zinv) 351 352 // Encode the sign of the y coordinate (indicated by the least significant 353 // bit) as the encoding type (2 or 3). 354 buf := append(out[:0], 2) 355 buf[0] |= y.Bytes()[{{.p}}ElementLength-1] & 1 356 buf = append(buf, x.Bytes()...) 357 return buf 358 } 359 360 // Add sets q = p1 + p2, and returns q. The points may overlap. 361 func (q *{{.P}}Point) Add(p1, p2 *{{.P}}Point) *{{.P}}Point { 362 // Complete addition formula for a = -3 from "Complete addition formulas for 363 // prime order elliptic curves" (https://eprint.iacr.org/2015/1060), §A.2. 364 365 t0 := new({{.Element}}).Mul(p1.x, p2.x) // t0 := X1 * X2 366 t1 := new({{.Element}}).Mul(p1.y, p2.y) // t1 := Y1 * Y2 367 t2 := new({{.Element}}).Mul(p1.z, p2.z) // t2 := Z1 * Z2 368 t3 := new({{.Element}}).Add(p1.x, p1.y) // t3 := X1 + Y1 369 t4 := new({{.Element}}).Add(p2.x, p2.y) // t4 := X2 + Y2 370 t3.Mul(t3, t4) // t3 := t3 * t4 371 t4.Add(t0, t1) // t4 := t0 + t1 372 t3.Sub(t3, t4) // t3 := t3 - t4 373 t4.Add(p1.y, p1.z) // t4 := Y1 + Z1 374 x3 := new({{.Element}}).Add(p2.y, p2.z) // X3 := Y2 + Z2 375 t4.Mul(t4, x3) // t4 := t4 * X3 376 x3.Add(t1, t2) // X3 := t1 + t2 377 t4.Sub(t4, x3) // t4 := t4 - X3 378 x3.Add(p1.x, p1.z) // X3 := X1 + Z1 379 y3 := new({{.Element}}).Add(p2.x, p2.z) // Y3 := X2 + Z2 380 x3.Mul(x3, y3) // X3 := X3 * Y3 381 y3.Add(t0, t2) // Y3 := t0 + t2 382 y3.Sub(x3, y3) // Y3 := X3 - Y3 383 z3 := new({{.Element}}).Mul({{.p}}B(), t2) // Z3 := b * t2 384 x3.Sub(y3, z3) // X3 := Y3 - Z3 385 z3.Add(x3, x3) // Z3 := X3 + X3 386 x3.Add(x3, z3) // X3 := X3 + Z3 387 z3.Sub(t1, x3) // Z3 := t1 - X3 388 x3.Add(t1, x3) // X3 := t1 + X3 389 y3.Mul({{.p}}B(), y3) // Y3 := b * Y3 390 t1.Add(t2, t2) // t1 := t2 + t2 391 t2.Add(t1, t2) // t2 := t1 + t2 392 y3.Sub(y3, t2) // Y3 := Y3 - t2 393 y3.Sub(y3, t0) // Y3 := Y3 - t0 394 t1.Add(y3, y3) // t1 := Y3 + Y3 395 y3.Add(t1, y3) // Y3 := t1 + Y3 396 t1.Add(t0, t0) // t1 := t0 + t0 397 t0.Add(t1, t0) // t0 := t1 + t0 398 t0.Sub(t0, t2) // t0 := t0 - t2 399 t1.Mul(t4, y3) // t1 := t4 * Y3 400 t2.Mul(t0, y3) // t2 := t0 * Y3 401 y3.Mul(x3, z3) // Y3 := X3 * Z3 402 y3.Add(y3, t2) // Y3 := Y3 + t2 403 x3.Mul(t3, x3) // X3 := t3 * X3 404 x3.Sub(x3, t1) // X3 := X3 - t1 405 z3.Mul(t4, z3) // Z3 := t4 * Z3 406 t1.Mul(t3, t0) // t1 := t3 * t0 407 z3.Add(z3, t1) // Z3 := Z3 + t1 408 409 q.x.Set(x3) 410 q.y.Set(y3) 411 q.z.Set(z3) 412 return q 413 } 414 415 // Double sets q = p + p, and returns q. The points may overlap. 416 func (q *{{.P}}Point) Double(p *{{.P}}Point) *{{.P}}Point { 417 // Complete addition formula for a = -3 from "Complete addition formulas for 418 // prime order elliptic curves" (https://eprint.iacr.org/2015/1060), §A.2. 419 420 t0 := new({{.Element}}).Square(p.x) // t0 := X ^ 2 421 t1 := new({{.Element}}).Square(p.y) // t1 := Y ^ 2 422 t2 := new({{.Element}}).Square(p.z) // t2 := Z ^ 2 423 t3 := new({{.Element}}).Mul(p.x, p.y) // t3 := X * Y 424 t3.Add(t3, t3) // t3 := t3 + t3 425 z3 := new({{.Element}}).Mul(p.x, p.z) // Z3 := X * Z 426 z3.Add(z3, z3) // Z3 := Z3 + Z3 427 y3 := new({{.Element}}).Mul({{.p}}B(), t2) // Y3 := b * t2 428 y3.Sub(y3, z3) // Y3 := Y3 - Z3 429 x3 := new({{.Element}}).Add(y3, y3) // X3 := Y3 + Y3 430 y3.Add(x3, y3) // Y3 := X3 + Y3 431 x3.Sub(t1, y3) // X3 := t1 - Y3 432 y3.Add(t1, y3) // Y3 := t1 + Y3 433 y3.Mul(x3, y3) // Y3 := X3 * Y3 434 x3.Mul(x3, t3) // X3 := X3 * t3 435 t3.Add(t2, t2) // t3 := t2 + t2 436 t2.Add(t2, t3) // t2 := t2 + t3 437 z3.Mul({{.p}}B(), z3) // Z3 := b * Z3 438 z3.Sub(z3, t2) // Z3 := Z3 - t2 439 z3.Sub(z3, t0) // Z3 := Z3 - t0 440 t3.Add(z3, z3) // t3 := Z3 + Z3 441 z3.Add(z3, t3) // Z3 := Z3 + t3 442 t3.Add(t0, t0) // t3 := t0 + t0 443 t0.Add(t3, t0) // t0 := t3 + t0 444 t0.Sub(t0, t2) // t0 := t0 - t2 445 t0.Mul(t0, z3) // t0 := t0 * Z3 446 y3.Add(y3, t0) // Y3 := Y3 + t0 447 t0.Mul(p.y, p.z) // t0 := Y * Z 448 t0.Add(t0, t0) // t0 := t0 + t0 449 z3.Mul(t0, z3) // Z3 := t0 * Z3 450 x3.Sub(x3, z3) // X3 := X3 - Z3 451 z3.Mul(t0, t1) // Z3 := t0 * t1 452 z3.Add(z3, z3) // Z3 := Z3 + Z3 453 z3.Add(z3, z3) // Z3 := Z3 + Z3 454 455 q.x.Set(x3) 456 q.y.Set(y3) 457 q.z.Set(z3) 458 return q 459 } 460 461 // Select sets q to p1 if cond == 1, and to p2 if cond == 0. 462 func (q *{{.P}}Point) Select(p1, p2 *{{.P}}Point, cond int) *{{.P}}Point { 463 q.x.Select(p1.x, p2.x, cond) 464 q.y.Select(p1.y, p2.y, cond) 465 q.z.Select(p1.z, p2.z, cond) 466 return q 467 } 468 469 // A {{.p}}Table holds the first 15 multiples of a point at offset -1, so [1]P 470 // is at table[0], [15]P is at table[14], and [0]P is implicitly the identity 471 // point. 472 type {{.p}}Table [15]*{{.P}}Point 473 474 // Select selects the n-th multiple of the table base point into p. It works in 475 // constant time by iterating over every entry of the table. n must be in [0, 15]. 476 func (table *{{.p}}Table) Select(p *{{.P}}Point, n uint8) { 477 if n >= 16 { 478 panic("nistec: internal error: {{.p}}Table called with out-of-bounds value") 479 } 480 p.Set(New{{.P}}Point()) 481 for i := uint8(1); i < 16; i++ { 482 cond := subtle.ConstantTimeByteEq(i, n) 483 p.Select(table[i-1], p, cond) 484 } 485 } 486 487 // ScalarMult sets p = scalar * q, and returns p. 488 func (p *{{.P}}Point) ScalarMult(q *{{.P}}Point, scalar []byte) (*{{.P}}Point, error) { 489 // Compute a {{.p}}Table for the base point q. The explicit New{{.P}}Point 490 // calls get inlined, letting the allocations live on the stack. 491 var table = {{.p}}Table{New{{.P}}Point(), New{{.P}}Point(), New{{.P}}Point(), 492 New{{.P}}Point(), New{{.P}}Point(), New{{.P}}Point(), New{{.P}}Point(), 493 New{{.P}}Point(), New{{.P}}Point(), New{{.P}}Point(), New{{.P}}Point(), 494 New{{.P}}Point(), New{{.P}}Point(), New{{.P}}Point(), New{{.P}}Point()} 495 table[0].Set(q) 496 for i := 1; i < 15; i += 2 { 497 table[i].Double(table[i/2]) 498 table[i+1].Add(table[i], q) 499 } 500 501 // Instead of doing the classic double-and-add chain, we do it with a 502 // four-bit window: we double four times, and then add [0-15]P. 503 t := New{{.P}}Point() 504 p.Set(New{{.P}}Point()) 505 for i, byte := range scalar { 506 // No need to double on the first iteration, as p is the identity at 507 // this point, and [N]∞ = ∞. 508 if i != 0 { 509 p.Double(p) 510 p.Double(p) 511 p.Double(p) 512 p.Double(p) 513 } 514 515 windowValue := byte >> 4 516 table.Select(t, windowValue) 517 p.Add(p, t) 518 519 p.Double(p) 520 p.Double(p) 521 p.Double(p) 522 p.Double(p) 523 524 windowValue = byte & 0b1111 525 table.Select(t, windowValue) 526 p.Add(p, t) 527 } 528 529 return p, nil 530 } 531 532 var {{.p}}GeneratorTable *[{{.p}}ElementLength * 2]{{.p}}Table 533 var {{.p}}GeneratorTableOnce sync.Once 534 535 // generatorTable returns a sequence of {{.p}}Tables. The first table contains 536 // multiples of G. Each successive table is the previous table doubled four 537 // times. 538 func (p *{{.P}}Point) generatorTable() *[{{.p}}ElementLength * 2]{{.p}}Table { 539 {{.p}}GeneratorTableOnce.Do(func() { 540 {{.p}}GeneratorTable = new([{{.p}}ElementLength * 2]{{.p}}Table) 541 base := New{{.P}}Point().SetGenerator() 542 for i := 0; i < {{.p}}ElementLength*2; i++ { 543 {{.p}}GeneratorTable[i][0] = New{{.P}}Point().Set(base) 544 for j := 1; j < 15; j++ { 545 {{.p}}GeneratorTable[i][j] = New{{.P}}Point().Add({{.p}}GeneratorTable[i][j-1], base) 546 } 547 base.Double(base) 548 base.Double(base) 549 base.Double(base) 550 base.Double(base) 551 } 552 }) 553 return {{.p}}GeneratorTable 554 } 555 556 // ScalarBaseMult sets p = scalar * B, where B is the canonical generator, and 557 // returns p. 558 func (p *{{.P}}Point) ScalarBaseMult(scalar []byte) (*{{.P}}Point, error) { 559 if len(scalar) != {{.p}}ElementLength { 560 return nil, errors.New("invalid scalar length") 561 } 562 tables := p.generatorTable() 563 564 // This is also a scalar multiplication with a four-bit window like in 565 // ScalarMult, but in this case the doublings are precomputed. The value 566 // [windowValue]G added at iteration k would normally get doubled 567 // (totIterations-k)×4 times, but with a larger precomputation we can 568 // instead add [2^((totIterations-k)×4)][windowValue]G and avoid the 569 // doublings between iterations. 570 t := New{{.P}}Point() 571 p.Set(New{{.P}}Point()) 572 tableIndex := len(tables) - 1 573 for _, byte := range scalar { 574 windowValue := byte >> 4 575 tables[tableIndex].Select(t, windowValue) 576 p.Add(p, t) 577 tableIndex-- 578 579 windowValue = byte & 0b1111 580 tables[tableIndex].Select(t, windowValue) 581 p.Add(p, t) 582 tableIndex-- 583 } 584 585 return p, nil 586 } 587 588 // {{.p}}Sqrt sets e to a square root of x. If x is not a square, {{.p}}Sqrt returns 589 // false and e is unchanged. e and x can overlap. 590 func {{.p}}Sqrt(e, x *{{ .Element }}) (isSquare bool) { 591 candidate := new({{ .Element }}) 592 {{.p}}SqrtCandidate(candidate, x) 593 square := new({{ .Element }}).Square(candidate) 594 if square.Equal(x) != 1 { 595 return false 596 } 597 e.Set(candidate) 598 return true 599 } 600 ` 601 602 const tmplAddchain = ` 603 // sqrtCandidate sets z to a square root candidate for x. z and x must not overlap. 604 func sqrtCandidate(z, x *Element) { 605 // Since p = 3 mod 4, exponentiation by (p + 1) / 4 yields a square root candidate. 606 // 607 // The sequence of {{ .Ops.Adds }} multiplications and {{ .Ops.Doubles }} squarings is derived from the 608 // following addition chain generated with {{ .Meta.Module }} {{ .Meta.ReleaseTag }}. 609 // 610 {{- range lines (format .Script) }} 611 // {{ . }} 612 {{- end }} 613 // 614 615 {{- range .Program.Temporaries }} 616 var {{ . }} = new(Element) 617 {{- end }} 618 {{ range $i := .Program.Instructions -}} 619 {{- with add $i.Op }} 620 {{ $i.Output }}.Mul({{ .X }}, {{ .Y }}) 621 {{- end -}} 622 623 {{- with double $i.Op }} 624 {{ $i.Output }}.Square({{ .X }}) 625 {{- end -}} 626 627 {{- with shift $i.Op -}} 628 {{- $first := 0 -}} 629 {{- if ne $i.Output.Identifier .X.Identifier }} 630 {{ $i.Output }}.Square({{ .X }}) 631 {{- $first = 1 -}} 632 {{- end }} 633 for s := {{ $first }}; s < {{ .S }}; s++ { 634 {{ $i.Output }}.Square({{ $i.Output }}) 635 } 636 {{- end -}} 637 {{- end }} 638 } 639 `