github.com/twelsh-aw/go/src@v0.0.0-20230516233729-a56fe86a7c81/crypto/internal/nistec/p224_sqrt.go (about) 1 // Copyright 2022 The Go Authors. All rights reserved. 2 // Use of this source code is governed by a BSD-style 3 // license that can be found in the LICENSE file. 4 5 package nistec 6 7 import ( 8 "crypto/internal/nistec/fiat" 9 "sync" 10 ) 11 12 var p224GG *[96]fiat.P224Element 13 var p224GGOnce sync.Once 14 15 // p224SqrtCandidate sets r to a square root candidate for x. r and x must not overlap. 16 func p224SqrtCandidate(r, x *fiat.P224Element) { 17 // Since p = 1 mod 4, we can't use the exponentiation by (p + 1) / 4 like 18 // for the other primes. Instead, implement a variation of Tonelli–Shanks. 19 // The constant-time implementation is adapted from Thomas Pornin's ecGFp5. 20 // 21 // https://github.com/pornin/ecgfp5/blob/82325b965/rust/src/field.rs#L337-L385 22 23 // p = q*2^n + 1 with q odd -> q = 2^128 - 1 and n = 96 24 // g^(2^n) = 1 -> g = 11 ^ q (where 11 is the smallest non-square) 25 // GG[j] = g^(2^j) for j = 0 to n-1 26 27 p224GGOnce.Do(func() { 28 p224GG = new([96]fiat.P224Element) 29 for i := range p224GG { 30 if i == 0 { 31 p224GG[i].SetBytes([]byte{0x6a, 0x0f, 0xec, 0x67, 32 0x85, 0x98, 0xa7, 0x92, 0x0c, 0x55, 0xb2, 0xd4, 33 0x0b, 0x2d, 0x6f, 0xfb, 0xbe, 0xa3, 0xd8, 0xce, 34 0xf3, 0xfb, 0x36, 0x32, 0xdc, 0x69, 0x1b, 0x74}) 35 } else { 36 p224GG[i].Square(&p224GG[i-1]) 37 } 38 } 39 }) 40 41 // r <- x^((q+1)/2) = x^(2^127) 42 // v <- x^q = x^(2^128-1) 43 44 // Compute x^(2^127-1) first. 45 // 46 // The sequence of 10 multiplications and 126 squarings is derived from the 47 // following addition chain generated with github.com/mmcloughlin/addchain v0.4.0. 48 // 49 // _10 = 2*1 50 // _11 = 1 + _10 51 // _110 = 2*_11 52 // _111 = 1 + _110 53 // _111000 = _111 << 3 54 // _111111 = _111 + _111000 55 // _1111110 = 2*_111111 56 // _1111111 = 1 + _1111110 57 // x12 = _1111110 << 5 + _111111 58 // x24 = x12 << 12 + x12 59 // i36 = x24 << 7 60 // x31 = _1111111 + i36 61 // x48 = i36 << 17 + x24 62 // x96 = x48 << 48 + x48 63 // return x96 << 31 + x31 64 // 65 var t0 = new(fiat.P224Element) 66 var t1 = new(fiat.P224Element) 67 68 r.Square(x) 69 r.Mul(x, r) 70 r.Square(r) 71 r.Mul(x, r) 72 t0.Square(r) 73 for s := 1; s < 3; s++ { 74 t0.Square(t0) 75 } 76 t0.Mul(r, t0) 77 t1.Square(t0) 78 r.Mul(x, t1) 79 for s := 0; s < 5; s++ { 80 t1.Square(t1) 81 } 82 t0.Mul(t0, t1) 83 t1.Square(t0) 84 for s := 1; s < 12; s++ { 85 t1.Square(t1) 86 } 87 t0.Mul(t0, t1) 88 t1.Square(t0) 89 for s := 1; s < 7; s++ { 90 t1.Square(t1) 91 } 92 r.Mul(r, t1) 93 for s := 0; s < 17; s++ { 94 t1.Square(t1) 95 } 96 t0.Mul(t0, t1) 97 t1.Square(t0) 98 for s := 1; s < 48; s++ { 99 t1.Square(t1) 100 } 101 t0.Mul(t0, t1) 102 for s := 0; s < 31; s++ { 103 t0.Square(t0) 104 } 105 r.Mul(r, t0) 106 107 // v = x^(2^127-1)^2 * x 108 v := new(fiat.P224Element).Square(r) 109 v.Mul(v, x) 110 111 // r = x^(2^127-1) * x 112 r.Mul(r, x) 113 114 // for i = n-1 down to 1: 115 // w = v^(2^(i-1)) 116 // if w == -1 then: 117 // v <- v*GG[n-i] 118 // r <- r*GG[n-i-1] 119 120 var p224MinusOne = new(fiat.P224Element).Sub( 121 new(fiat.P224Element), new(fiat.P224Element).One()) 122 123 for i := 96 - 1; i >= 1; i-- { 124 w := new(fiat.P224Element).Set(v) 125 for j := 0; j < i-1; j++ { 126 w.Square(w) 127 } 128 cond := w.Equal(p224MinusOne) 129 v.Select(t0.Mul(v, &p224GG[96-i]), v, cond) 130 r.Select(t0.Mul(r, &p224GG[96-i-1]), r, cond) 131 } 132 }