github.com/twelsh-aw/go/src@v0.0.0-20230516233729-a56fe86a7c81/crypto/internal/nistec/p384.go (about) 1 // Copyright 2022 The Go Authors. All rights reserved. 2 // Use of this source code is governed by a BSD-style 3 // license that can be found in the LICENSE file. 4 5 // Code generated by generate.go. DO NOT EDIT. 6 7 package nistec 8 9 import ( 10 "crypto/internal/nistec/fiat" 11 "crypto/subtle" 12 "errors" 13 "sync" 14 ) 15 16 // p384ElementLength is the length of an element of the base or scalar field, 17 // which have the same bytes length for all NIST P curves. 18 const p384ElementLength = 48 19 20 // P384Point is a P384 point. The zero value is NOT valid. 21 type P384Point struct { 22 // The point is represented in projective coordinates (X:Y:Z), 23 // where x = X/Z and y = Y/Z. 24 x, y, z *fiat.P384Element 25 } 26 27 // NewP384Point returns a new P384Point representing the point at infinity point. 28 func NewP384Point() *P384Point { 29 return &P384Point{ 30 x: new(fiat.P384Element), 31 y: new(fiat.P384Element).One(), 32 z: new(fiat.P384Element), 33 } 34 } 35 36 // SetGenerator sets p to the canonical generator and returns p. 37 func (p *P384Point) SetGenerator() *P384Point { 38 p.x.SetBytes([]byte{0xaa, 0x87, 0xca, 0x22, 0xbe, 0x8b, 0x5, 0x37, 0x8e, 0xb1, 0xc7, 0x1e, 0xf3, 0x20, 0xad, 0x74, 0x6e, 0x1d, 0x3b, 0x62, 0x8b, 0xa7, 0x9b, 0x98, 0x59, 0xf7, 0x41, 0xe0, 0x82, 0x54, 0x2a, 0x38, 0x55, 0x2, 0xf2, 0x5d, 0xbf, 0x55, 0x29, 0x6c, 0x3a, 0x54, 0x5e, 0x38, 0x72, 0x76, 0xa, 0xb7}) 39 p.y.SetBytes([]byte{0x36, 0x17, 0xde, 0x4a, 0x96, 0x26, 0x2c, 0x6f, 0x5d, 0x9e, 0x98, 0xbf, 0x92, 0x92, 0xdc, 0x29, 0xf8, 0xf4, 0x1d, 0xbd, 0x28, 0x9a, 0x14, 0x7c, 0xe9, 0xda, 0x31, 0x13, 0xb5, 0xf0, 0xb8, 0xc0, 0xa, 0x60, 0xb1, 0xce, 0x1d, 0x7e, 0x81, 0x9d, 0x7a, 0x43, 0x1d, 0x7c, 0x90, 0xea, 0xe, 0x5f}) 40 p.z.One() 41 return p 42 } 43 44 // Set sets p = q and returns p. 45 func (p *P384Point) Set(q *P384Point) *P384Point { 46 p.x.Set(q.x) 47 p.y.Set(q.y) 48 p.z.Set(q.z) 49 return p 50 } 51 52 // SetBytes sets p to the compressed, uncompressed, or infinity value encoded in 53 // b, as specified in SEC 1, Version 2.0, Section 2.3.4. If the point is not on 54 // the curve, it returns nil and an error, and the receiver is unchanged. 55 // Otherwise, it returns p. 56 func (p *P384Point) SetBytes(b []byte) (*P384Point, error) { 57 switch { 58 // Point at infinity. 59 case len(b) == 1 && b[0] == 0: 60 return p.Set(NewP384Point()), nil 61 62 // Uncompressed form. 63 case len(b) == 1+2*p384ElementLength && b[0] == 4: 64 x, err := new(fiat.P384Element).SetBytes(b[1 : 1+p384ElementLength]) 65 if err != nil { 66 return nil, err 67 } 68 y, err := new(fiat.P384Element).SetBytes(b[1+p384ElementLength:]) 69 if err != nil { 70 return nil, err 71 } 72 if err := p384CheckOnCurve(x, y); err != nil { 73 return nil, err 74 } 75 p.x.Set(x) 76 p.y.Set(y) 77 p.z.One() 78 return p, nil 79 80 // Compressed form. 81 case len(b) == 1+p384ElementLength && (b[0] == 2 || b[0] == 3): 82 x, err := new(fiat.P384Element).SetBytes(b[1:]) 83 if err != nil { 84 return nil, err 85 } 86 87 // y² = x³ - 3x + b 88 y := p384Polynomial(new(fiat.P384Element), x) 89 if !p384Sqrt(y, y) { 90 return nil, errors.New("invalid P384 compressed point encoding") 91 } 92 93 // Select the positive or negative root, as indicated by the least 94 // significant bit, based on the encoding type byte. 95 otherRoot := new(fiat.P384Element) 96 otherRoot.Sub(otherRoot, y) 97 cond := y.Bytes()[p384ElementLength-1]&1 ^ b[0]&1 98 y.Select(otherRoot, y, int(cond)) 99 100 p.x.Set(x) 101 p.y.Set(y) 102 p.z.One() 103 return p, nil 104 105 default: 106 return nil, errors.New("invalid P384 point encoding") 107 } 108 } 109 110 var _p384B *fiat.P384Element 111 var _p384BOnce sync.Once 112 113 func p384B() *fiat.P384Element { 114 _p384BOnce.Do(func() { 115 _p384B, _ = new(fiat.P384Element).SetBytes([]byte{0xb3, 0x31, 0x2f, 0xa7, 0xe2, 0x3e, 0xe7, 0xe4, 0x98, 0x8e, 0x5, 0x6b, 0xe3, 0xf8, 0x2d, 0x19, 0x18, 0x1d, 0x9c, 0x6e, 0xfe, 0x81, 0x41, 0x12, 0x3, 0x14, 0x8, 0x8f, 0x50, 0x13, 0x87, 0x5a, 0xc6, 0x56, 0x39, 0x8d, 0x8a, 0x2e, 0xd1, 0x9d, 0x2a, 0x85, 0xc8, 0xed, 0xd3, 0xec, 0x2a, 0xef}) 116 }) 117 return _p384B 118 } 119 120 // p384Polynomial sets y2 to x³ - 3x + b, and returns y2. 121 func p384Polynomial(y2, x *fiat.P384Element) *fiat.P384Element { 122 y2.Square(x) 123 y2.Mul(y2, x) 124 125 threeX := new(fiat.P384Element).Add(x, x) 126 threeX.Add(threeX, x) 127 y2.Sub(y2, threeX) 128 129 return y2.Add(y2, p384B()) 130 } 131 132 func p384CheckOnCurve(x, y *fiat.P384Element) error { 133 // y² = x³ - 3x + b 134 rhs := p384Polynomial(new(fiat.P384Element), x) 135 lhs := new(fiat.P384Element).Square(y) 136 if rhs.Equal(lhs) != 1 { 137 return errors.New("P384 point not on curve") 138 } 139 return nil 140 } 141 142 // Bytes returns the uncompressed or infinity encoding of p, as specified in 143 // SEC 1, Version 2.0, Section 2.3.3. Note that the encoding of the point at 144 // infinity is shorter than all other encodings. 145 func (p *P384Point) Bytes() []byte { 146 // This function is outlined to make the allocations inline in the caller 147 // rather than happen on the heap. 148 var out [1 + 2*p384ElementLength]byte 149 return p.bytes(&out) 150 } 151 152 func (p *P384Point) bytes(out *[1 + 2*p384ElementLength]byte) []byte { 153 if p.z.IsZero() == 1 { 154 return append(out[:0], 0) 155 } 156 157 zinv := new(fiat.P384Element).Invert(p.z) 158 x := new(fiat.P384Element).Mul(p.x, zinv) 159 y := new(fiat.P384Element).Mul(p.y, zinv) 160 161 buf := append(out[:0], 4) 162 buf = append(buf, x.Bytes()...) 163 buf = append(buf, y.Bytes()...) 164 return buf 165 } 166 167 // BytesX returns the encoding of the x-coordinate of p, as specified in SEC 1, 168 // Version 2.0, Section 2.3.5, or an error if p is the point at infinity. 169 func (p *P384Point) BytesX() ([]byte, error) { 170 // This function is outlined to make the allocations inline in the caller 171 // rather than happen on the heap. 172 var out [p384ElementLength]byte 173 return p.bytesX(&out) 174 } 175 176 func (p *P384Point) bytesX(out *[p384ElementLength]byte) ([]byte, error) { 177 if p.z.IsZero() == 1 { 178 return nil, errors.New("P384 point is the point at infinity") 179 } 180 181 zinv := new(fiat.P384Element).Invert(p.z) 182 x := new(fiat.P384Element).Mul(p.x, zinv) 183 184 return append(out[:0], x.Bytes()...), nil 185 } 186 187 // BytesCompressed returns the compressed or infinity encoding of p, as 188 // specified in SEC 1, Version 2.0, Section 2.3.3. Note that the encoding of the 189 // point at infinity is shorter than all other encodings. 190 func (p *P384Point) BytesCompressed() []byte { 191 // This function is outlined to make the allocations inline in the caller 192 // rather than happen on the heap. 193 var out [1 + p384ElementLength]byte 194 return p.bytesCompressed(&out) 195 } 196 197 func (p *P384Point) bytesCompressed(out *[1 + p384ElementLength]byte) []byte { 198 if p.z.IsZero() == 1 { 199 return append(out[:0], 0) 200 } 201 202 zinv := new(fiat.P384Element).Invert(p.z) 203 x := new(fiat.P384Element).Mul(p.x, zinv) 204 y := new(fiat.P384Element).Mul(p.y, zinv) 205 206 // Encode the sign of the y coordinate (indicated by the least significant 207 // bit) as the encoding type (2 or 3). 208 buf := append(out[:0], 2) 209 buf[0] |= y.Bytes()[p384ElementLength-1] & 1 210 buf = append(buf, x.Bytes()...) 211 return buf 212 } 213 214 // Add sets q = p1 + p2, and returns q. The points may overlap. 215 func (q *P384Point) Add(p1, p2 *P384Point) *P384Point { 216 // Complete addition formula for a = -3 from "Complete addition formulas for 217 // prime order elliptic curves" (https://eprint.iacr.org/2015/1060), §A.2. 218 219 t0 := new(fiat.P384Element).Mul(p1.x, p2.x) // t0 := X1 * X2 220 t1 := new(fiat.P384Element).Mul(p1.y, p2.y) // t1 := Y1 * Y2 221 t2 := new(fiat.P384Element).Mul(p1.z, p2.z) // t2 := Z1 * Z2 222 t3 := new(fiat.P384Element).Add(p1.x, p1.y) // t3 := X1 + Y1 223 t4 := new(fiat.P384Element).Add(p2.x, p2.y) // t4 := X2 + Y2 224 t3.Mul(t3, t4) // t3 := t3 * t4 225 t4.Add(t0, t1) // t4 := t0 + t1 226 t3.Sub(t3, t4) // t3 := t3 - t4 227 t4.Add(p1.y, p1.z) // t4 := Y1 + Z1 228 x3 := new(fiat.P384Element).Add(p2.y, p2.z) // X3 := Y2 + Z2 229 t4.Mul(t4, x3) // t4 := t4 * X3 230 x3.Add(t1, t2) // X3 := t1 + t2 231 t4.Sub(t4, x3) // t4 := t4 - X3 232 x3.Add(p1.x, p1.z) // X3 := X1 + Z1 233 y3 := new(fiat.P384Element).Add(p2.x, p2.z) // Y3 := X2 + Z2 234 x3.Mul(x3, y3) // X3 := X3 * Y3 235 y3.Add(t0, t2) // Y3 := t0 + t2 236 y3.Sub(x3, y3) // Y3 := X3 - Y3 237 z3 := new(fiat.P384Element).Mul(p384B(), t2) // Z3 := b * t2 238 x3.Sub(y3, z3) // X3 := Y3 - Z3 239 z3.Add(x3, x3) // Z3 := X3 + X3 240 x3.Add(x3, z3) // X3 := X3 + Z3 241 z3.Sub(t1, x3) // Z3 := t1 - X3 242 x3.Add(t1, x3) // X3 := t1 + X3 243 y3.Mul(p384B(), y3) // Y3 := b * Y3 244 t1.Add(t2, t2) // t1 := t2 + t2 245 t2.Add(t1, t2) // t2 := t1 + t2 246 y3.Sub(y3, t2) // Y3 := Y3 - t2 247 y3.Sub(y3, t0) // Y3 := Y3 - t0 248 t1.Add(y3, y3) // t1 := Y3 + Y3 249 y3.Add(t1, y3) // Y3 := t1 + Y3 250 t1.Add(t0, t0) // t1 := t0 + t0 251 t0.Add(t1, t0) // t0 := t1 + t0 252 t0.Sub(t0, t2) // t0 := t0 - t2 253 t1.Mul(t4, y3) // t1 := t4 * Y3 254 t2.Mul(t0, y3) // t2 := t0 * Y3 255 y3.Mul(x3, z3) // Y3 := X3 * Z3 256 y3.Add(y3, t2) // Y3 := Y3 + t2 257 x3.Mul(t3, x3) // X3 := t3 * X3 258 x3.Sub(x3, t1) // X3 := X3 - t1 259 z3.Mul(t4, z3) // Z3 := t4 * Z3 260 t1.Mul(t3, t0) // t1 := t3 * t0 261 z3.Add(z3, t1) // Z3 := Z3 + t1 262 263 q.x.Set(x3) 264 q.y.Set(y3) 265 q.z.Set(z3) 266 return q 267 } 268 269 // Double sets q = p + p, and returns q. The points may overlap. 270 func (q *P384Point) Double(p *P384Point) *P384Point { 271 // Complete addition formula for a = -3 from "Complete addition formulas for 272 // prime order elliptic curves" (https://eprint.iacr.org/2015/1060), §A.2. 273 274 t0 := new(fiat.P384Element).Square(p.x) // t0 := X ^ 2 275 t1 := new(fiat.P384Element).Square(p.y) // t1 := Y ^ 2 276 t2 := new(fiat.P384Element).Square(p.z) // t2 := Z ^ 2 277 t3 := new(fiat.P384Element).Mul(p.x, p.y) // t3 := X * Y 278 t3.Add(t3, t3) // t3 := t3 + t3 279 z3 := new(fiat.P384Element).Mul(p.x, p.z) // Z3 := X * Z 280 z3.Add(z3, z3) // Z3 := Z3 + Z3 281 y3 := new(fiat.P384Element).Mul(p384B(), t2) // Y3 := b * t2 282 y3.Sub(y3, z3) // Y3 := Y3 - Z3 283 x3 := new(fiat.P384Element).Add(y3, y3) // X3 := Y3 + Y3 284 y3.Add(x3, y3) // Y3 := X3 + Y3 285 x3.Sub(t1, y3) // X3 := t1 - Y3 286 y3.Add(t1, y3) // Y3 := t1 + Y3 287 y3.Mul(x3, y3) // Y3 := X3 * Y3 288 x3.Mul(x3, t3) // X3 := X3 * t3 289 t3.Add(t2, t2) // t3 := t2 + t2 290 t2.Add(t2, t3) // t2 := t2 + t3 291 z3.Mul(p384B(), z3) // Z3 := b * Z3 292 z3.Sub(z3, t2) // Z3 := Z3 - t2 293 z3.Sub(z3, t0) // Z3 := Z3 - t0 294 t3.Add(z3, z3) // t3 := Z3 + Z3 295 z3.Add(z3, t3) // Z3 := Z3 + t3 296 t3.Add(t0, t0) // t3 := t0 + t0 297 t0.Add(t3, t0) // t0 := t3 + t0 298 t0.Sub(t0, t2) // t0 := t0 - t2 299 t0.Mul(t0, z3) // t0 := t0 * Z3 300 y3.Add(y3, t0) // Y3 := Y3 + t0 301 t0.Mul(p.y, p.z) // t0 := Y * Z 302 t0.Add(t0, t0) // t0 := t0 + t0 303 z3.Mul(t0, z3) // Z3 := t0 * Z3 304 x3.Sub(x3, z3) // X3 := X3 - Z3 305 z3.Mul(t0, t1) // Z3 := t0 * t1 306 z3.Add(z3, z3) // Z3 := Z3 + Z3 307 z3.Add(z3, z3) // Z3 := Z3 + Z3 308 309 q.x.Set(x3) 310 q.y.Set(y3) 311 q.z.Set(z3) 312 return q 313 } 314 315 // Select sets q to p1 if cond == 1, and to p2 if cond == 0. 316 func (q *P384Point) Select(p1, p2 *P384Point, cond int) *P384Point { 317 q.x.Select(p1.x, p2.x, cond) 318 q.y.Select(p1.y, p2.y, cond) 319 q.z.Select(p1.z, p2.z, cond) 320 return q 321 } 322 323 // A p384Table holds the first 15 multiples of a point at offset -1, so [1]P 324 // is at table[0], [15]P is at table[14], and [0]P is implicitly the identity 325 // point. 326 type p384Table [15]*P384Point 327 328 // Select selects the n-th multiple of the table base point into p. It works in 329 // constant time by iterating over every entry of the table. n must be in [0, 15]. 330 func (table *p384Table) Select(p *P384Point, n uint8) { 331 if n >= 16 { 332 panic("nistec: internal error: p384Table called with out-of-bounds value") 333 } 334 p.Set(NewP384Point()) 335 for i := uint8(1); i < 16; i++ { 336 cond := subtle.ConstantTimeByteEq(i, n) 337 p.Select(table[i-1], p, cond) 338 } 339 } 340 341 // ScalarMult sets p = scalar * q, and returns p. 342 func (p *P384Point) ScalarMult(q *P384Point, scalar []byte) (*P384Point, error) { 343 // Compute a p384Table for the base point q. The explicit NewP384Point 344 // calls get inlined, letting the allocations live on the stack. 345 var table = p384Table{NewP384Point(), NewP384Point(), NewP384Point(), 346 NewP384Point(), NewP384Point(), NewP384Point(), NewP384Point(), 347 NewP384Point(), NewP384Point(), NewP384Point(), NewP384Point(), 348 NewP384Point(), NewP384Point(), NewP384Point(), NewP384Point()} 349 table[0].Set(q) 350 for i := 1; i < 15; i += 2 { 351 table[i].Double(table[i/2]) 352 table[i+1].Add(table[i], q) 353 } 354 355 // Instead of doing the classic double-and-add chain, we do it with a 356 // four-bit window: we double four times, and then add [0-15]P. 357 t := NewP384Point() 358 p.Set(NewP384Point()) 359 for i, byte := range scalar { 360 // No need to double on the first iteration, as p is the identity at 361 // this point, and [N]∞ = ∞. 362 if i != 0 { 363 p.Double(p) 364 p.Double(p) 365 p.Double(p) 366 p.Double(p) 367 } 368 369 windowValue := byte >> 4 370 table.Select(t, windowValue) 371 p.Add(p, t) 372 373 p.Double(p) 374 p.Double(p) 375 p.Double(p) 376 p.Double(p) 377 378 windowValue = byte & 0b1111 379 table.Select(t, windowValue) 380 p.Add(p, t) 381 } 382 383 return p, nil 384 } 385 386 var p384GeneratorTable *[p384ElementLength * 2]p384Table 387 var p384GeneratorTableOnce sync.Once 388 389 // generatorTable returns a sequence of p384Tables. The first table contains 390 // multiples of G. Each successive table is the previous table doubled four 391 // times. 392 func (p *P384Point) generatorTable() *[p384ElementLength * 2]p384Table { 393 p384GeneratorTableOnce.Do(func() { 394 p384GeneratorTable = new([p384ElementLength * 2]p384Table) 395 base := NewP384Point().SetGenerator() 396 for i := 0; i < p384ElementLength*2; i++ { 397 p384GeneratorTable[i][0] = NewP384Point().Set(base) 398 for j := 1; j < 15; j++ { 399 p384GeneratorTable[i][j] = NewP384Point().Add(p384GeneratorTable[i][j-1], base) 400 } 401 base.Double(base) 402 base.Double(base) 403 base.Double(base) 404 base.Double(base) 405 } 406 }) 407 return p384GeneratorTable 408 } 409 410 // ScalarBaseMult sets p = scalar * B, where B is the canonical generator, and 411 // returns p. 412 func (p *P384Point) ScalarBaseMult(scalar []byte) (*P384Point, error) { 413 if len(scalar) != p384ElementLength { 414 return nil, errors.New("invalid scalar length") 415 } 416 tables := p.generatorTable() 417 418 // This is also a scalar multiplication with a four-bit window like in 419 // ScalarMult, but in this case the doublings are precomputed. The value 420 // [windowValue]G added at iteration k would normally get doubled 421 // (totIterations-k)×4 times, but with a larger precomputation we can 422 // instead add [2^((totIterations-k)×4)][windowValue]G and avoid the 423 // doublings between iterations. 424 t := NewP384Point() 425 p.Set(NewP384Point()) 426 tableIndex := len(tables) - 1 427 for _, byte := range scalar { 428 windowValue := byte >> 4 429 tables[tableIndex].Select(t, windowValue) 430 p.Add(p, t) 431 tableIndex-- 432 433 windowValue = byte & 0b1111 434 tables[tableIndex].Select(t, windowValue) 435 p.Add(p, t) 436 tableIndex-- 437 } 438 439 return p, nil 440 } 441 442 // p384Sqrt sets e to a square root of x. If x is not a square, p384Sqrt returns 443 // false and e is unchanged. e and x can overlap. 444 func p384Sqrt(e, x *fiat.P384Element) (isSquare bool) { 445 candidate := new(fiat.P384Element) 446 p384SqrtCandidate(candidate, x) 447 square := new(fiat.P384Element).Square(candidate) 448 if square.Equal(x) != 1 { 449 return false 450 } 451 e.Set(candidate) 452 return true 453 } 454 455 // p384SqrtCandidate sets z to a square root candidate for x. z and x must not overlap. 456 func p384SqrtCandidate(z, x *fiat.P384Element) { 457 // Since p = 3 mod 4, exponentiation by (p + 1) / 4 yields a square root candidate. 458 // 459 // The sequence of 14 multiplications and 381 squarings is derived from the 460 // following addition chain generated with github.com/mmcloughlin/addchain v0.4.0. 461 // 462 // _10 = 2*1 463 // _11 = 1 + _10 464 // _110 = 2*_11 465 // _111 = 1 + _110 466 // _111000 = _111 << 3 467 // _111111 = _111 + _111000 468 // _1111110 = 2*_111111 469 // _1111111 = 1 + _1111110 470 // x12 = _1111110 << 5 + _111111 471 // x24 = x12 << 12 + x12 472 // x31 = x24 << 7 + _1111111 473 // x32 = 2*x31 + 1 474 // x63 = x32 << 31 + x31 475 // x126 = x63 << 63 + x63 476 // x252 = x126 << 126 + x126 477 // x255 = x252 << 3 + _111 478 // return ((x255 << 33 + x32) << 64 + 1) << 30 479 // 480 var t0 = new(fiat.P384Element) 481 var t1 = new(fiat.P384Element) 482 var t2 = new(fiat.P384Element) 483 484 z.Square(x) 485 z.Mul(x, z) 486 z.Square(z) 487 t0.Mul(x, z) 488 z.Square(t0) 489 for s := 1; s < 3; s++ { 490 z.Square(z) 491 } 492 t1.Mul(t0, z) 493 t2.Square(t1) 494 z.Mul(x, t2) 495 for s := 0; s < 5; s++ { 496 t2.Square(t2) 497 } 498 t1.Mul(t1, t2) 499 t2.Square(t1) 500 for s := 1; s < 12; s++ { 501 t2.Square(t2) 502 } 503 t1.Mul(t1, t2) 504 for s := 0; s < 7; s++ { 505 t1.Square(t1) 506 } 507 t1.Mul(z, t1) 508 z.Square(t1) 509 z.Mul(x, z) 510 t2.Square(z) 511 for s := 1; s < 31; s++ { 512 t2.Square(t2) 513 } 514 t1.Mul(t1, t2) 515 t2.Square(t1) 516 for s := 1; s < 63; s++ { 517 t2.Square(t2) 518 } 519 t1.Mul(t1, t2) 520 t2.Square(t1) 521 for s := 1; s < 126; s++ { 522 t2.Square(t2) 523 } 524 t1.Mul(t1, t2) 525 for s := 0; s < 3; s++ { 526 t1.Square(t1) 527 } 528 t0.Mul(t0, t1) 529 for s := 0; s < 33; s++ { 530 t0.Square(t0) 531 } 532 z.Mul(z, t0) 533 for s := 0; s < 64; s++ { 534 z.Square(z) 535 } 536 z.Mul(x, z) 537 for s := 0; s < 30; s++ { 538 z.Square(z) 539 } 540 }