github.com/twelsh-aw/go/src@v0.0.0-20230516233729-a56fe86a7c81/crypto/tls/conn.go (about)

     1  // Copyright 2010 The Go Authors. All rights reserved.
     2  // Use of this source code is governed by a BSD-style
     3  // license that can be found in the LICENSE file.
     4  
     5  // TLS low level connection and record layer
     6  
     7  package tls
     8  
     9  import (
    10  	"bytes"
    11  	"context"
    12  	"crypto/cipher"
    13  	"crypto/subtle"
    14  	"crypto/x509"
    15  	"errors"
    16  	"fmt"
    17  	"hash"
    18  	"io"
    19  	"net"
    20  	"sync"
    21  	"sync/atomic"
    22  	"time"
    23  )
    24  
    25  // A Conn represents a secured connection.
    26  // It implements the net.Conn interface.
    27  type Conn struct {
    28  	// constant
    29  	conn        net.Conn
    30  	isClient    bool
    31  	handshakeFn func(context.Context) error // (*Conn).clientHandshake or serverHandshake
    32  
    33  	// isHandshakeComplete is true if the connection is currently transferring
    34  	// application data (i.e. is not currently processing a handshake).
    35  	// isHandshakeComplete is true implies handshakeErr == nil.
    36  	isHandshakeComplete atomic.Bool
    37  	// constant after handshake; protected by handshakeMutex
    38  	handshakeMutex sync.Mutex
    39  	handshakeErr   error   // error resulting from handshake
    40  	vers           uint16  // TLS version
    41  	haveVers       bool    // version has been negotiated
    42  	config         *Config // configuration passed to constructor
    43  	// handshakes counts the number of handshakes performed on the
    44  	// connection so far. If renegotiation is disabled then this is either
    45  	// zero or one.
    46  	handshakes       int
    47  	didResume        bool // whether this connection was a session resumption
    48  	cipherSuite      uint16
    49  	ocspResponse     []byte   // stapled OCSP response
    50  	scts             [][]byte // signed certificate timestamps from server
    51  	peerCertificates []*x509.Certificate
    52  	// activeCertHandles contains the cache handles to certificates in
    53  	// peerCertificates that are used to track active references.
    54  	activeCertHandles []*activeCert
    55  	// verifiedChains contains the certificate chains that we built, as
    56  	// opposed to the ones presented by the server.
    57  	verifiedChains [][]*x509.Certificate
    58  	// serverName contains the server name indicated by the client, if any.
    59  	serverName string
    60  	// secureRenegotiation is true if the server echoed the secure
    61  	// renegotiation extension. (This is meaningless as a server because
    62  	// renegotiation is not supported in that case.)
    63  	secureRenegotiation bool
    64  	// ekm is a closure for exporting keying material.
    65  	ekm func(label string, context []byte, length int) ([]byte, error)
    66  	// resumptionSecret is the resumption_master_secret for handling
    67  	// NewSessionTicket messages. nil if config.SessionTicketsDisabled.
    68  	resumptionSecret []byte
    69  
    70  	// ticketKeys is the set of active session ticket keys for this
    71  	// connection. The first one is used to encrypt new tickets and
    72  	// all are tried to decrypt tickets.
    73  	ticketKeys []ticketKey
    74  
    75  	// clientFinishedIsFirst is true if the client sent the first Finished
    76  	// message during the most recent handshake. This is recorded because
    77  	// the first transmitted Finished message is the tls-unique
    78  	// channel-binding value.
    79  	clientFinishedIsFirst bool
    80  
    81  	// closeNotifyErr is any error from sending the alertCloseNotify record.
    82  	closeNotifyErr error
    83  	// closeNotifySent is true if the Conn attempted to send an
    84  	// alertCloseNotify record.
    85  	closeNotifySent bool
    86  
    87  	// clientFinished and serverFinished contain the Finished message sent
    88  	// by the client or server in the most recent handshake. This is
    89  	// retained to support the renegotiation extension and tls-unique
    90  	// channel-binding.
    91  	clientFinished [12]byte
    92  	serverFinished [12]byte
    93  
    94  	// clientProtocol is the negotiated ALPN protocol.
    95  	clientProtocol string
    96  
    97  	// input/output
    98  	in, out   halfConn
    99  	rawInput  bytes.Buffer // raw input, starting with a record header
   100  	input     bytes.Reader // application data waiting to be read, from rawInput.Next
   101  	hand      bytes.Buffer // handshake data waiting to be read
   102  	buffering bool         // whether records are buffered in sendBuf
   103  	sendBuf   []byte       // a buffer of records waiting to be sent
   104  
   105  	// bytesSent counts the bytes of application data sent.
   106  	// packetsSent counts packets.
   107  	bytesSent   int64
   108  	packetsSent int64
   109  
   110  	// retryCount counts the number of consecutive non-advancing records
   111  	// received by Conn.readRecord. That is, records that neither advance the
   112  	// handshake, nor deliver application data. Protected by in.Mutex.
   113  	retryCount int
   114  
   115  	// activeCall indicates whether Close has been call in the low bit.
   116  	// the rest of the bits are the number of goroutines in Conn.Write.
   117  	activeCall atomic.Int32
   118  
   119  	tmp [16]byte
   120  }
   121  
   122  // Access to net.Conn methods.
   123  // Cannot just embed net.Conn because that would
   124  // export the struct field too.
   125  
   126  // LocalAddr returns the local network address.
   127  func (c *Conn) LocalAddr() net.Addr {
   128  	return c.conn.LocalAddr()
   129  }
   130  
   131  // RemoteAddr returns the remote network address.
   132  func (c *Conn) RemoteAddr() net.Addr {
   133  	return c.conn.RemoteAddr()
   134  }
   135  
   136  // SetDeadline sets the read and write deadlines associated with the connection.
   137  // A zero value for t means Read and Write will not time out.
   138  // After a Write has timed out, the TLS state is corrupt and all future writes will return the same error.
   139  func (c *Conn) SetDeadline(t time.Time) error {
   140  	return c.conn.SetDeadline(t)
   141  }
   142  
   143  // SetReadDeadline sets the read deadline on the underlying connection.
   144  // A zero value for t means Read will not time out.
   145  func (c *Conn) SetReadDeadline(t time.Time) error {
   146  	return c.conn.SetReadDeadline(t)
   147  }
   148  
   149  // SetWriteDeadline sets the write deadline on the underlying connection.
   150  // A zero value for t means Write will not time out.
   151  // After a Write has timed out, the TLS state is corrupt and all future writes will return the same error.
   152  func (c *Conn) SetWriteDeadline(t time.Time) error {
   153  	return c.conn.SetWriteDeadline(t)
   154  }
   155  
   156  // NetConn returns the underlying connection that is wrapped by c.
   157  // Note that writing to or reading from this connection directly will corrupt the
   158  // TLS session.
   159  func (c *Conn) NetConn() net.Conn {
   160  	return c.conn
   161  }
   162  
   163  // A halfConn represents one direction of the record layer
   164  // connection, either sending or receiving.
   165  type halfConn struct {
   166  	sync.Mutex
   167  
   168  	err     error  // first permanent error
   169  	version uint16 // protocol version
   170  	cipher  any    // cipher algorithm
   171  	mac     hash.Hash
   172  	seq     [8]byte // 64-bit sequence number
   173  
   174  	scratchBuf [13]byte // to avoid allocs; interface method args escape
   175  
   176  	nextCipher any       // next encryption state
   177  	nextMac    hash.Hash // next MAC algorithm
   178  
   179  	trafficSecret []byte // current TLS 1.3 traffic secret
   180  }
   181  
   182  type permanentError struct {
   183  	err net.Error
   184  }
   185  
   186  func (e *permanentError) Error() string   { return e.err.Error() }
   187  func (e *permanentError) Unwrap() error   { return e.err }
   188  func (e *permanentError) Timeout() bool   { return e.err.Timeout() }
   189  func (e *permanentError) Temporary() bool { return false }
   190  
   191  func (hc *halfConn) setErrorLocked(err error) error {
   192  	if e, ok := err.(net.Error); ok {
   193  		hc.err = &permanentError{err: e}
   194  	} else {
   195  		hc.err = err
   196  	}
   197  	return hc.err
   198  }
   199  
   200  // prepareCipherSpec sets the encryption and MAC states
   201  // that a subsequent changeCipherSpec will use.
   202  func (hc *halfConn) prepareCipherSpec(version uint16, cipher any, mac hash.Hash) {
   203  	hc.version = version
   204  	hc.nextCipher = cipher
   205  	hc.nextMac = mac
   206  }
   207  
   208  // changeCipherSpec changes the encryption and MAC states
   209  // to the ones previously passed to prepareCipherSpec.
   210  func (hc *halfConn) changeCipherSpec() error {
   211  	if hc.nextCipher == nil || hc.version == VersionTLS13 {
   212  		return alertInternalError
   213  	}
   214  	hc.cipher = hc.nextCipher
   215  	hc.mac = hc.nextMac
   216  	hc.nextCipher = nil
   217  	hc.nextMac = nil
   218  	for i := range hc.seq {
   219  		hc.seq[i] = 0
   220  	}
   221  	return nil
   222  }
   223  
   224  func (hc *halfConn) setTrafficSecret(suite *cipherSuiteTLS13, secret []byte) {
   225  	hc.trafficSecret = secret
   226  	key, iv := suite.trafficKey(secret)
   227  	hc.cipher = suite.aead(key, iv)
   228  	for i := range hc.seq {
   229  		hc.seq[i] = 0
   230  	}
   231  }
   232  
   233  // incSeq increments the sequence number.
   234  func (hc *halfConn) incSeq() {
   235  	for i := 7; i >= 0; i-- {
   236  		hc.seq[i]++
   237  		if hc.seq[i] != 0 {
   238  			return
   239  		}
   240  	}
   241  
   242  	// Not allowed to let sequence number wrap.
   243  	// Instead, must renegotiate before it does.
   244  	// Not likely enough to bother.
   245  	panic("TLS: sequence number wraparound")
   246  }
   247  
   248  // explicitNonceLen returns the number of bytes of explicit nonce or IV included
   249  // in each record. Explicit nonces are present only in CBC modes after TLS 1.0
   250  // and in certain AEAD modes in TLS 1.2.
   251  func (hc *halfConn) explicitNonceLen() int {
   252  	if hc.cipher == nil {
   253  		return 0
   254  	}
   255  
   256  	switch c := hc.cipher.(type) {
   257  	case cipher.Stream:
   258  		return 0
   259  	case aead:
   260  		return c.explicitNonceLen()
   261  	case cbcMode:
   262  		// TLS 1.1 introduced a per-record explicit IV to fix the BEAST attack.
   263  		if hc.version >= VersionTLS11 {
   264  			return c.BlockSize()
   265  		}
   266  		return 0
   267  	default:
   268  		panic("unknown cipher type")
   269  	}
   270  }
   271  
   272  // extractPadding returns, in constant time, the length of the padding to remove
   273  // from the end of payload. It also returns a byte which is equal to 255 if the
   274  // padding was valid and 0 otherwise. See RFC 2246, Section 6.2.3.2.
   275  func extractPadding(payload []byte) (toRemove int, good byte) {
   276  	if len(payload) < 1 {
   277  		return 0, 0
   278  	}
   279  
   280  	paddingLen := payload[len(payload)-1]
   281  	t := uint(len(payload)-1) - uint(paddingLen)
   282  	// if len(payload) >= (paddingLen - 1) then the MSB of t is zero
   283  	good = byte(int32(^t) >> 31)
   284  
   285  	// The maximum possible padding length plus the actual length field
   286  	toCheck := 256
   287  	// The length of the padded data is public, so we can use an if here
   288  	if toCheck > len(payload) {
   289  		toCheck = len(payload)
   290  	}
   291  
   292  	for i := 0; i < toCheck; i++ {
   293  		t := uint(paddingLen) - uint(i)
   294  		// if i <= paddingLen then the MSB of t is zero
   295  		mask := byte(int32(^t) >> 31)
   296  		b := payload[len(payload)-1-i]
   297  		good &^= mask&paddingLen ^ mask&b
   298  	}
   299  
   300  	// We AND together the bits of good and replicate the result across
   301  	// all the bits.
   302  	good &= good << 4
   303  	good &= good << 2
   304  	good &= good << 1
   305  	good = uint8(int8(good) >> 7)
   306  
   307  	// Zero the padding length on error. This ensures any unchecked bytes
   308  	// are included in the MAC. Otherwise, an attacker that could
   309  	// distinguish MAC failures from padding failures could mount an attack
   310  	// similar to POODLE in SSL 3.0: given a good ciphertext that uses a
   311  	// full block's worth of padding, replace the final block with another
   312  	// block. If the MAC check passed but the padding check failed, the
   313  	// last byte of that block decrypted to the block size.
   314  	//
   315  	// See also macAndPaddingGood logic below.
   316  	paddingLen &= good
   317  
   318  	toRemove = int(paddingLen) + 1
   319  	return
   320  }
   321  
   322  func roundUp(a, b int) int {
   323  	return a + (b-a%b)%b
   324  }
   325  
   326  // cbcMode is an interface for block ciphers using cipher block chaining.
   327  type cbcMode interface {
   328  	cipher.BlockMode
   329  	SetIV([]byte)
   330  }
   331  
   332  // decrypt authenticates and decrypts the record if protection is active at
   333  // this stage. The returned plaintext might overlap with the input.
   334  func (hc *halfConn) decrypt(record []byte) ([]byte, recordType, error) {
   335  	var plaintext []byte
   336  	typ := recordType(record[0])
   337  	payload := record[recordHeaderLen:]
   338  
   339  	// In TLS 1.3, change_cipher_spec messages are to be ignored without being
   340  	// decrypted. See RFC 8446, Appendix D.4.
   341  	if hc.version == VersionTLS13 && typ == recordTypeChangeCipherSpec {
   342  		return payload, typ, nil
   343  	}
   344  
   345  	paddingGood := byte(255)
   346  	paddingLen := 0
   347  
   348  	explicitNonceLen := hc.explicitNonceLen()
   349  
   350  	if hc.cipher != nil {
   351  		switch c := hc.cipher.(type) {
   352  		case cipher.Stream:
   353  			c.XORKeyStream(payload, payload)
   354  		case aead:
   355  			if len(payload) < explicitNonceLen {
   356  				return nil, 0, alertBadRecordMAC
   357  			}
   358  			nonce := payload[:explicitNonceLen]
   359  			if len(nonce) == 0 {
   360  				nonce = hc.seq[:]
   361  			}
   362  			payload = payload[explicitNonceLen:]
   363  
   364  			var additionalData []byte
   365  			if hc.version == VersionTLS13 {
   366  				additionalData = record[:recordHeaderLen]
   367  			} else {
   368  				additionalData = append(hc.scratchBuf[:0], hc.seq[:]...)
   369  				additionalData = append(additionalData, record[:3]...)
   370  				n := len(payload) - c.Overhead()
   371  				additionalData = append(additionalData, byte(n>>8), byte(n))
   372  			}
   373  
   374  			var err error
   375  			plaintext, err = c.Open(payload[:0], nonce, payload, additionalData)
   376  			if err != nil {
   377  				return nil, 0, alertBadRecordMAC
   378  			}
   379  		case cbcMode:
   380  			blockSize := c.BlockSize()
   381  			minPayload := explicitNonceLen + roundUp(hc.mac.Size()+1, blockSize)
   382  			if len(payload)%blockSize != 0 || len(payload) < minPayload {
   383  				return nil, 0, alertBadRecordMAC
   384  			}
   385  
   386  			if explicitNonceLen > 0 {
   387  				c.SetIV(payload[:explicitNonceLen])
   388  				payload = payload[explicitNonceLen:]
   389  			}
   390  			c.CryptBlocks(payload, payload)
   391  
   392  			// In a limited attempt to protect against CBC padding oracles like
   393  			// Lucky13, the data past paddingLen (which is secret) is passed to
   394  			// the MAC function as extra data, to be fed into the HMAC after
   395  			// computing the digest. This makes the MAC roughly constant time as
   396  			// long as the digest computation is constant time and does not
   397  			// affect the subsequent write, modulo cache effects.
   398  			paddingLen, paddingGood = extractPadding(payload)
   399  		default:
   400  			panic("unknown cipher type")
   401  		}
   402  
   403  		if hc.version == VersionTLS13 {
   404  			if typ != recordTypeApplicationData {
   405  				return nil, 0, alertUnexpectedMessage
   406  			}
   407  			if len(plaintext) > maxPlaintext+1 {
   408  				return nil, 0, alertRecordOverflow
   409  			}
   410  			// Remove padding and find the ContentType scanning from the end.
   411  			for i := len(plaintext) - 1; i >= 0; i-- {
   412  				if plaintext[i] != 0 {
   413  					typ = recordType(plaintext[i])
   414  					plaintext = plaintext[:i]
   415  					break
   416  				}
   417  				if i == 0 {
   418  					return nil, 0, alertUnexpectedMessage
   419  				}
   420  			}
   421  		}
   422  	} else {
   423  		plaintext = payload
   424  	}
   425  
   426  	if hc.mac != nil {
   427  		macSize := hc.mac.Size()
   428  		if len(payload) < macSize {
   429  			return nil, 0, alertBadRecordMAC
   430  		}
   431  
   432  		n := len(payload) - macSize - paddingLen
   433  		n = subtle.ConstantTimeSelect(int(uint32(n)>>31), 0, n) // if n < 0 { n = 0 }
   434  		record[3] = byte(n >> 8)
   435  		record[4] = byte(n)
   436  		remoteMAC := payload[n : n+macSize]
   437  		localMAC := tls10MAC(hc.mac, hc.scratchBuf[:0], hc.seq[:], record[:recordHeaderLen], payload[:n], payload[n+macSize:])
   438  
   439  		// This is equivalent to checking the MACs and paddingGood
   440  		// separately, but in constant-time to prevent distinguishing
   441  		// padding failures from MAC failures. Depending on what value
   442  		// of paddingLen was returned on bad padding, distinguishing
   443  		// bad MAC from bad padding can lead to an attack.
   444  		//
   445  		// See also the logic at the end of extractPadding.
   446  		macAndPaddingGood := subtle.ConstantTimeCompare(localMAC, remoteMAC) & int(paddingGood)
   447  		if macAndPaddingGood != 1 {
   448  			return nil, 0, alertBadRecordMAC
   449  		}
   450  
   451  		plaintext = payload[:n]
   452  	}
   453  
   454  	hc.incSeq()
   455  	return plaintext, typ, nil
   456  }
   457  
   458  // sliceForAppend extends the input slice by n bytes. head is the full extended
   459  // slice, while tail is the appended part. If the original slice has sufficient
   460  // capacity no allocation is performed.
   461  func sliceForAppend(in []byte, n int) (head, tail []byte) {
   462  	if total := len(in) + n; cap(in) >= total {
   463  		head = in[:total]
   464  	} else {
   465  		head = make([]byte, total)
   466  		copy(head, in)
   467  	}
   468  	tail = head[len(in):]
   469  	return
   470  }
   471  
   472  // encrypt encrypts payload, adding the appropriate nonce and/or MAC, and
   473  // appends it to record, which must already contain the record header.
   474  func (hc *halfConn) encrypt(record, payload []byte, rand io.Reader) ([]byte, error) {
   475  	if hc.cipher == nil {
   476  		return append(record, payload...), nil
   477  	}
   478  
   479  	var explicitNonce []byte
   480  	if explicitNonceLen := hc.explicitNonceLen(); explicitNonceLen > 0 {
   481  		record, explicitNonce = sliceForAppend(record, explicitNonceLen)
   482  		if _, isCBC := hc.cipher.(cbcMode); !isCBC && explicitNonceLen < 16 {
   483  			// The AES-GCM construction in TLS has an explicit nonce so that the
   484  			// nonce can be random. However, the nonce is only 8 bytes which is
   485  			// too small for a secure, random nonce. Therefore we use the
   486  			// sequence number as the nonce. The 3DES-CBC construction also has
   487  			// an 8 bytes nonce but its nonces must be unpredictable (see RFC
   488  			// 5246, Appendix F.3), forcing us to use randomness. That's not
   489  			// 3DES' biggest problem anyway because the birthday bound on block
   490  			// collision is reached first due to its similarly small block size
   491  			// (see the Sweet32 attack).
   492  			copy(explicitNonce, hc.seq[:])
   493  		} else {
   494  			if _, err := io.ReadFull(rand, explicitNonce); err != nil {
   495  				return nil, err
   496  			}
   497  		}
   498  	}
   499  
   500  	var dst []byte
   501  	switch c := hc.cipher.(type) {
   502  	case cipher.Stream:
   503  		mac := tls10MAC(hc.mac, hc.scratchBuf[:0], hc.seq[:], record[:recordHeaderLen], payload, nil)
   504  		record, dst = sliceForAppend(record, len(payload)+len(mac))
   505  		c.XORKeyStream(dst[:len(payload)], payload)
   506  		c.XORKeyStream(dst[len(payload):], mac)
   507  	case aead:
   508  		nonce := explicitNonce
   509  		if len(nonce) == 0 {
   510  			nonce = hc.seq[:]
   511  		}
   512  
   513  		if hc.version == VersionTLS13 {
   514  			record = append(record, payload...)
   515  
   516  			// Encrypt the actual ContentType and replace the plaintext one.
   517  			record = append(record, record[0])
   518  			record[0] = byte(recordTypeApplicationData)
   519  
   520  			n := len(payload) + 1 + c.Overhead()
   521  			record[3] = byte(n >> 8)
   522  			record[4] = byte(n)
   523  
   524  			record = c.Seal(record[:recordHeaderLen],
   525  				nonce, record[recordHeaderLen:], record[:recordHeaderLen])
   526  		} else {
   527  			additionalData := append(hc.scratchBuf[:0], hc.seq[:]...)
   528  			additionalData = append(additionalData, record[:recordHeaderLen]...)
   529  			record = c.Seal(record, nonce, payload, additionalData)
   530  		}
   531  	case cbcMode:
   532  		mac := tls10MAC(hc.mac, hc.scratchBuf[:0], hc.seq[:], record[:recordHeaderLen], payload, nil)
   533  		blockSize := c.BlockSize()
   534  		plaintextLen := len(payload) + len(mac)
   535  		paddingLen := blockSize - plaintextLen%blockSize
   536  		record, dst = sliceForAppend(record, plaintextLen+paddingLen)
   537  		copy(dst, payload)
   538  		copy(dst[len(payload):], mac)
   539  		for i := plaintextLen; i < len(dst); i++ {
   540  			dst[i] = byte(paddingLen - 1)
   541  		}
   542  		if len(explicitNonce) > 0 {
   543  			c.SetIV(explicitNonce)
   544  		}
   545  		c.CryptBlocks(dst, dst)
   546  	default:
   547  		panic("unknown cipher type")
   548  	}
   549  
   550  	// Update length to include nonce, MAC and any block padding needed.
   551  	n := len(record) - recordHeaderLen
   552  	record[3] = byte(n >> 8)
   553  	record[4] = byte(n)
   554  	hc.incSeq()
   555  
   556  	return record, nil
   557  }
   558  
   559  // RecordHeaderError is returned when a TLS record header is invalid.
   560  type RecordHeaderError struct {
   561  	// Msg contains a human readable string that describes the error.
   562  	Msg string
   563  	// RecordHeader contains the five bytes of TLS record header that
   564  	// triggered the error.
   565  	RecordHeader [5]byte
   566  	// Conn provides the underlying net.Conn in the case that a client
   567  	// sent an initial handshake that didn't look like TLS.
   568  	// It is nil if there's already been a handshake or a TLS alert has
   569  	// been written to the connection.
   570  	Conn net.Conn
   571  }
   572  
   573  func (e RecordHeaderError) Error() string { return "tls: " + e.Msg }
   574  
   575  func (c *Conn) newRecordHeaderError(conn net.Conn, msg string) (err RecordHeaderError) {
   576  	err.Msg = msg
   577  	err.Conn = conn
   578  	copy(err.RecordHeader[:], c.rawInput.Bytes())
   579  	return err
   580  }
   581  
   582  func (c *Conn) readRecord() error {
   583  	return c.readRecordOrCCS(false)
   584  }
   585  
   586  func (c *Conn) readChangeCipherSpec() error {
   587  	return c.readRecordOrCCS(true)
   588  }
   589  
   590  // readRecordOrCCS reads one or more TLS records from the connection and
   591  // updates the record layer state. Some invariants:
   592  //   - c.in must be locked
   593  //   - c.input must be empty
   594  //
   595  // During the handshake one and only one of the following will happen:
   596  //   - c.hand grows
   597  //   - c.in.changeCipherSpec is called
   598  //   - an error is returned
   599  //
   600  // After the handshake one and only one of the following will happen:
   601  //   - c.hand grows
   602  //   - c.input is set
   603  //   - an error is returned
   604  func (c *Conn) readRecordOrCCS(expectChangeCipherSpec bool) error {
   605  	if c.in.err != nil {
   606  		return c.in.err
   607  	}
   608  	handshakeComplete := c.isHandshakeComplete.Load()
   609  
   610  	// This function modifies c.rawInput, which owns the c.input memory.
   611  	if c.input.Len() != 0 {
   612  		return c.in.setErrorLocked(errors.New("tls: internal error: attempted to read record with pending application data"))
   613  	}
   614  	c.input.Reset(nil)
   615  
   616  	// Read header, payload.
   617  	if err := c.readFromUntil(c.conn, recordHeaderLen); err != nil {
   618  		// RFC 8446, Section 6.1 suggests that EOF without an alertCloseNotify
   619  		// is an error, but popular web sites seem to do this, so we accept it
   620  		// if and only if at the record boundary.
   621  		if err == io.ErrUnexpectedEOF && c.rawInput.Len() == 0 {
   622  			err = io.EOF
   623  		}
   624  		if e, ok := err.(net.Error); !ok || !e.Temporary() {
   625  			c.in.setErrorLocked(err)
   626  		}
   627  		return err
   628  	}
   629  	hdr := c.rawInput.Bytes()[:recordHeaderLen]
   630  	typ := recordType(hdr[0])
   631  
   632  	// No valid TLS record has a type of 0x80, however SSLv2 handshakes
   633  	// start with a uint16 length where the MSB is set and the first record
   634  	// is always < 256 bytes long. Therefore typ == 0x80 strongly suggests
   635  	// an SSLv2 client.
   636  	if !handshakeComplete && typ == 0x80 {
   637  		c.sendAlert(alertProtocolVersion)
   638  		return c.in.setErrorLocked(c.newRecordHeaderError(nil, "unsupported SSLv2 handshake received"))
   639  	}
   640  
   641  	vers := uint16(hdr[1])<<8 | uint16(hdr[2])
   642  	n := int(hdr[3])<<8 | int(hdr[4])
   643  	if c.haveVers && c.vers != VersionTLS13 && vers != c.vers {
   644  		c.sendAlert(alertProtocolVersion)
   645  		msg := fmt.Sprintf("received record with version %x when expecting version %x", vers, c.vers)
   646  		return c.in.setErrorLocked(c.newRecordHeaderError(nil, msg))
   647  	}
   648  	if !c.haveVers {
   649  		// First message, be extra suspicious: this might not be a TLS
   650  		// client. Bail out before reading a full 'body', if possible.
   651  		// The current max version is 3.3 so if the version is >= 16.0,
   652  		// it's probably not real.
   653  		if (typ != recordTypeAlert && typ != recordTypeHandshake) || vers >= 0x1000 {
   654  			return c.in.setErrorLocked(c.newRecordHeaderError(c.conn, "first record does not look like a TLS handshake"))
   655  		}
   656  	}
   657  	if c.vers == VersionTLS13 && n > maxCiphertextTLS13 || n > maxCiphertext {
   658  		c.sendAlert(alertRecordOverflow)
   659  		msg := fmt.Sprintf("oversized record received with length %d", n)
   660  		return c.in.setErrorLocked(c.newRecordHeaderError(nil, msg))
   661  	}
   662  	if err := c.readFromUntil(c.conn, recordHeaderLen+n); err != nil {
   663  		if e, ok := err.(net.Error); !ok || !e.Temporary() {
   664  			c.in.setErrorLocked(err)
   665  		}
   666  		return err
   667  	}
   668  
   669  	// Process message.
   670  	record := c.rawInput.Next(recordHeaderLen + n)
   671  	data, typ, err := c.in.decrypt(record)
   672  	if err != nil {
   673  		return c.in.setErrorLocked(c.sendAlert(err.(alert)))
   674  	}
   675  	if len(data) > maxPlaintext {
   676  		return c.in.setErrorLocked(c.sendAlert(alertRecordOverflow))
   677  	}
   678  
   679  	// Application Data messages are always protected.
   680  	if c.in.cipher == nil && typ == recordTypeApplicationData {
   681  		return c.in.setErrorLocked(c.sendAlert(alertUnexpectedMessage))
   682  	}
   683  
   684  	if typ != recordTypeAlert && typ != recordTypeChangeCipherSpec && len(data) > 0 {
   685  		// This is a state-advancing message: reset the retry count.
   686  		c.retryCount = 0
   687  	}
   688  
   689  	// Handshake messages MUST NOT be interleaved with other record types in TLS 1.3.
   690  	if c.vers == VersionTLS13 && typ != recordTypeHandshake && c.hand.Len() > 0 {
   691  		return c.in.setErrorLocked(c.sendAlert(alertUnexpectedMessage))
   692  	}
   693  
   694  	switch typ {
   695  	default:
   696  		return c.in.setErrorLocked(c.sendAlert(alertUnexpectedMessage))
   697  
   698  	case recordTypeAlert:
   699  		if len(data) != 2 {
   700  			return c.in.setErrorLocked(c.sendAlert(alertUnexpectedMessage))
   701  		}
   702  		if alert(data[1]) == alertCloseNotify {
   703  			return c.in.setErrorLocked(io.EOF)
   704  		}
   705  		if c.vers == VersionTLS13 {
   706  			return c.in.setErrorLocked(&net.OpError{Op: "remote error", Err: alert(data[1])})
   707  		}
   708  		switch data[0] {
   709  		case alertLevelWarning:
   710  			// Drop the record on the floor and retry.
   711  			return c.retryReadRecord(expectChangeCipherSpec)
   712  		case alertLevelError:
   713  			return c.in.setErrorLocked(&net.OpError{Op: "remote error", Err: alert(data[1])})
   714  		default:
   715  			return c.in.setErrorLocked(c.sendAlert(alertUnexpectedMessage))
   716  		}
   717  
   718  	case recordTypeChangeCipherSpec:
   719  		if len(data) != 1 || data[0] != 1 {
   720  			return c.in.setErrorLocked(c.sendAlert(alertDecodeError))
   721  		}
   722  		// Handshake messages are not allowed to fragment across the CCS.
   723  		if c.hand.Len() > 0 {
   724  			return c.in.setErrorLocked(c.sendAlert(alertUnexpectedMessage))
   725  		}
   726  		// In TLS 1.3, change_cipher_spec records are ignored until the
   727  		// Finished. See RFC 8446, Appendix D.4. Note that according to Section
   728  		// 5, a server can send a ChangeCipherSpec before its ServerHello, when
   729  		// c.vers is still unset. That's not useful though and suspicious if the
   730  		// server then selects a lower protocol version, so don't allow that.
   731  		if c.vers == VersionTLS13 {
   732  			return c.retryReadRecord(expectChangeCipherSpec)
   733  		}
   734  		if !expectChangeCipherSpec {
   735  			return c.in.setErrorLocked(c.sendAlert(alertUnexpectedMessage))
   736  		}
   737  		if err := c.in.changeCipherSpec(); err != nil {
   738  			return c.in.setErrorLocked(c.sendAlert(err.(alert)))
   739  		}
   740  
   741  	case recordTypeApplicationData:
   742  		if !handshakeComplete || expectChangeCipherSpec {
   743  			return c.in.setErrorLocked(c.sendAlert(alertUnexpectedMessage))
   744  		}
   745  		// Some OpenSSL servers send empty records in order to randomize the
   746  		// CBC IV. Ignore a limited number of empty records.
   747  		if len(data) == 0 {
   748  			return c.retryReadRecord(expectChangeCipherSpec)
   749  		}
   750  		// Note that data is owned by c.rawInput, following the Next call above,
   751  		// to avoid copying the plaintext. This is safe because c.rawInput is
   752  		// not read from or written to until c.input is drained.
   753  		c.input.Reset(data)
   754  
   755  	case recordTypeHandshake:
   756  		if len(data) == 0 || expectChangeCipherSpec {
   757  			return c.in.setErrorLocked(c.sendAlert(alertUnexpectedMessage))
   758  		}
   759  		c.hand.Write(data)
   760  	}
   761  
   762  	return nil
   763  }
   764  
   765  // retryReadRecord recurs into readRecordOrCCS to drop a non-advancing record, like
   766  // a warning alert, empty application_data, or a change_cipher_spec in TLS 1.3.
   767  func (c *Conn) retryReadRecord(expectChangeCipherSpec bool) error {
   768  	c.retryCount++
   769  	if c.retryCount > maxUselessRecords {
   770  		c.sendAlert(alertUnexpectedMessage)
   771  		return c.in.setErrorLocked(errors.New("tls: too many ignored records"))
   772  	}
   773  	return c.readRecordOrCCS(expectChangeCipherSpec)
   774  }
   775  
   776  // atLeastReader reads from R, stopping with EOF once at least N bytes have been
   777  // read. It is different from an io.LimitedReader in that it doesn't cut short
   778  // the last Read call, and in that it considers an early EOF an error.
   779  type atLeastReader struct {
   780  	R io.Reader
   781  	N int64
   782  }
   783  
   784  func (r *atLeastReader) Read(p []byte) (int, error) {
   785  	if r.N <= 0 {
   786  		return 0, io.EOF
   787  	}
   788  	n, err := r.R.Read(p)
   789  	r.N -= int64(n) // won't underflow unless len(p) >= n > 9223372036854775809
   790  	if r.N > 0 && err == io.EOF {
   791  		return n, io.ErrUnexpectedEOF
   792  	}
   793  	if r.N <= 0 && err == nil {
   794  		return n, io.EOF
   795  	}
   796  	return n, err
   797  }
   798  
   799  // readFromUntil reads from r into c.rawInput until c.rawInput contains
   800  // at least n bytes or else returns an error.
   801  func (c *Conn) readFromUntil(r io.Reader, n int) error {
   802  	if c.rawInput.Len() >= n {
   803  		return nil
   804  	}
   805  	needs := n - c.rawInput.Len()
   806  	// There might be extra input waiting on the wire. Make a best effort
   807  	// attempt to fetch it so that it can be used in (*Conn).Read to
   808  	// "predict" closeNotify alerts.
   809  	c.rawInput.Grow(needs + bytes.MinRead)
   810  	_, err := c.rawInput.ReadFrom(&atLeastReader{r, int64(needs)})
   811  	return err
   812  }
   813  
   814  // sendAlertLocked sends a TLS alert message.
   815  func (c *Conn) sendAlertLocked(err alert) error {
   816  	switch err {
   817  	case alertNoRenegotiation, alertCloseNotify:
   818  		c.tmp[0] = alertLevelWarning
   819  	default:
   820  		c.tmp[0] = alertLevelError
   821  	}
   822  	c.tmp[1] = byte(err)
   823  
   824  	_, writeErr := c.writeRecordLocked(recordTypeAlert, c.tmp[0:2])
   825  	if err == alertCloseNotify {
   826  		// closeNotify is a special case in that it isn't an error.
   827  		return writeErr
   828  	}
   829  
   830  	return c.out.setErrorLocked(&net.OpError{Op: "local error", Err: err})
   831  }
   832  
   833  // sendAlert sends a TLS alert message.
   834  func (c *Conn) sendAlert(err alert) error {
   835  	c.out.Lock()
   836  	defer c.out.Unlock()
   837  	return c.sendAlertLocked(err)
   838  }
   839  
   840  const (
   841  	// tcpMSSEstimate is a conservative estimate of the TCP maximum segment
   842  	// size (MSS). A constant is used, rather than querying the kernel for
   843  	// the actual MSS, to avoid complexity. The value here is the IPv6
   844  	// minimum MTU (1280 bytes) minus the overhead of an IPv6 header (40
   845  	// bytes) and a TCP header with timestamps (32 bytes).
   846  	tcpMSSEstimate = 1208
   847  
   848  	// recordSizeBoostThreshold is the number of bytes of application data
   849  	// sent after which the TLS record size will be increased to the
   850  	// maximum.
   851  	recordSizeBoostThreshold = 128 * 1024
   852  )
   853  
   854  // maxPayloadSizeForWrite returns the maximum TLS payload size to use for the
   855  // next application data record. There is the following trade-off:
   856  //
   857  //   - For latency-sensitive applications, such as web browsing, each TLS
   858  //     record should fit in one TCP segment.
   859  //   - For throughput-sensitive applications, such as large file transfers,
   860  //     larger TLS records better amortize framing and encryption overheads.
   861  //
   862  // A simple heuristic that works well in practice is to use small records for
   863  // the first 1MB of data, then use larger records for subsequent data, and
   864  // reset back to smaller records after the connection becomes idle. See "High
   865  // Performance Web Networking", Chapter 4, or:
   866  // https://www.igvita.com/2013/10/24/optimizing-tls-record-size-and-buffering-latency/
   867  //
   868  // In the interests of simplicity and determinism, this code does not attempt
   869  // to reset the record size once the connection is idle, however.
   870  func (c *Conn) maxPayloadSizeForWrite(typ recordType) int {
   871  	if c.config.DynamicRecordSizingDisabled || typ != recordTypeApplicationData {
   872  		return maxPlaintext
   873  	}
   874  
   875  	if c.bytesSent >= recordSizeBoostThreshold {
   876  		return maxPlaintext
   877  	}
   878  
   879  	// Subtract TLS overheads to get the maximum payload size.
   880  	payloadBytes := tcpMSSEstimate - recordHeaderLen - c.out.explicitNonceLen()
   881  	if c.out.cipher != nil {
   882  		switch ciph := c.out.cipher.(type) {
   883  		case cipher.Stream:
   884  			payloadBytes -= c.out.mac.Size()
   885  		case cipher.AEAD:
   886  			payloadBytes -= ciph.Overhead()
   887  		case cbcMode:
   888  			blockSize := ciph.BlockSize()
   889  			// The payload must fit in a multiple of blockSize, with
   890  			// room for at least one padding byte.
   891  			payloadBytes = (payloadBytes & ^(blockSize - 1)) - 1
   892  			// The MAC is appended before padding so affects the
   893  			// payload size directly.
   894  			payloadBytes -= c.out.mac.Size()
   895  		default:
   896  			panic("unknown cipher type")
   897  		}
   898  	}
   899  	if c.vers == VersionTLS13 {
   900  		payloadBytes-- // encrypted ContentType
   901  	}
   902  
   903  	// Allow packet growth in arithmetic progression up to max.
   904  	pkt := c.packetsSent
   905  	c.packetsSent++
   906  	if pkt > 1000 {
   907  		return maxPlaintext // avoid overflow in multiply below
   908  	}
   909  
   910  	n := payloadBytes * int(pkt+1)
   911  	if n > maxPlaintext {
   912  		n = maxPlaintext
   913  	}
   914  	return n
   915  }
   916  
   917  func (c *Conn) write(data []byte) (int, error) {
   918  	if c.buffering {
   919  		c.sendBuf = append(c.sendBuf, data...)
   920  		return len(data), nil
   921  	}
   922  
   923  	n, err := c.conn.Write(data)
   924  	c.bytesSent += int64(n)
   925  	return n, err
   926  }
   927  
   928  func (c *Conn) flush() (int, error) {
   929  	if len(c.sendBuf) == 0 {
   930  		return 0, nil
   931  	}
   932  
   933  	n, err := c.conn.Write(c.sendBuf)
   934  	c.bytesSent += int64(n)
   935  	c.sendBuf = nil
   936  	c.buffering = false
   937  	return n, err
   938  }
   939  
   940  // outBufPool pools the record-sized scratch buffers used by writeRecordLocked.
   941  var outBufPool = sync.Pool{
   942  	New: func() any {
   943  		return new([]byte)
   944  	},
   945  }
   946  
   947  // writeRecordLocked writes a TLS record with the given type and payload to the
   948  // connection and updates the record layer state.
   949  func (c *Conn) writeRecordLocked(typ recordType, data []byte) (int, error) {
   950  	outBufPtr := outBufPool.Get().(*[]byte)
   951  	outBuf := *outBufPtr
   952  	defer func() {
   953  		// You might be tempted to simplify this by just passing &outBuf to Put,
   954  		// but that would make the local copy of the outBuf slice header escape
   955  		// to the heap, causing an allocation. Instead, we keep around the
   956  		// pointer to the slice header returned by Get, which is already on the
   957  		// heap, and overwrite and return that.
   958  		*outBufPtr = outBuf
   959  		outBufPool.Put(outBufPtr)
   960  	}()
   961  
   962  	var n int
   963  	for len(data) > 0 {
   964  		m := len(data)
   965  		if maxPayload := c.maxPayloadSizeForWrite(typ); m > maxPayload {
   966  			m = maxPayload
   967  		}
   968  
   969  		_, outBuf = sliceForAppend(outBuf[:0], recordHeaderLen)
   970  		outBuf[0] = byte(typ)
   971  		vers := c.vers
   972  		if vers == 0 {
   973  			// Some TLS servers fail if the record version is
   974  			// greater than TLS 1.0 for the initial ClientHello.
   975  			vers = VersionTLS10
   976  		} else if vers == VersionTLS13 {
   977  			// TLS 1.3 froze the record layer version to 1.2.
   978  			// See RFC 8446, Section 5.1.
   979  			vers = VersionTLS12
   980  		}
   981  		outBuf[1] = byte(vers >> 8)
   982  		outBuf[2] = byte(vers)
   983  		outBuf[3] = byte(m >> 8)
   984  		outBuf[4] = byte(m)
   985  
   986  		var err error
   987  		outBuf, err = c.out.encrypt(outBuf, data[:m], c.config.rand())
   988  		if err != nil {
   989  			return n, err
   990  		}
   991  		if _, err := c.write(outBuf); err != nil {
   992  			return n, err
   993  		}
   994  		n += m
   995  		data = data[m:]
   996  	}
   997  
   998  	if typ == recordTypeChangeCipherSpec && c.vers != VersionTLS13 {
   999  		if err := c.out.changeCipherSpec(); err != nil {
  1000  			return n, c.sendAlertLocked(err.(alert))
  1001  		}
  1002  	}
  1003  
  1004  	return n, nil
  1005  }
  1006  
  1007  // writeHandshakeRecord writes a handshake message to the connection and updates
  1008  // the record layer state. If transcript is non-nil the marshalled message is
  1009  // written to it.
  1010  func (c *Conn) writeHandshakeRecord(msg handshakeMessage, transcript transcriptHash) (int, error) {
  1011  	c.out.Lock()
  1012  	defer c.out.Unlock()
  1013  
  1014  	data, err := msg.marshal()
  1015  	if err != nil {
  1016  		return 0, err
  1017  	}
  1018  	if transcript != nil {
  1019  		transcript.Write(data)
  1020  	}
  1021  
  1022  	return c.writeRecordLocked(recordTypeHandshake, data)
  1023  }
  1024  
  1025  // writeChangeCipherRecord writes a ChangeCipherSpec message to the connection and
  1026  // updates the record layer state.
  1027  func (c *Conn) writeChangeCipherRecord() error {
  1028  	c.out.Lock()
  1029  	defer c.out.Unlock()
  1030  	_, err := c.writeRecordLocked(recordTypeChangeCipherSpec, []byte{1})
  1031  	return err
  1032  }
  1033  
  1034  // readHandshake reads the next handshake message from
  1035  // the record layer. If transcript is non-nil, the message
  1036  // is written to the passed transcriptHash.
  1037  func (c *Conn) readHandshake(transcript transcriptHash) (any, error) {
  1038  	for c.hand.Len() < 4 {
  1039  		if err := c.readRecord(); err != nil {
  1040  			return nil, err
  1041  		}
  1042  	}
  1043  
  1044  	data := c.hand.Bytes()
  1045  	n := int(data[1])<<16 | int(data[2])<<8 | int(data[3])
  1046  	if n > maxHandshake {
  1047  		c.sendAlertLocked(alertInternalError)
  1048  		return nil, c.in.setErrorLocked(fmt.Errorf("tls: handshake message of length %d bytes exceeds maximum of %d bytes", n, maxHandshake))
  1049  	}
  1050  	for c.hand.Len() < 4+n {
  1051  		if err := c.readRecord(); err != nil {
  1052  			return nil, err
  1053  		}
  1054  	}
  1055  	data = c.hand.Next(4 + n)
  1056  	var m handshakeMessage
  1057  	switch data[0] {
  1058  	case typeHelloRequest:
  1059  		m = new(helloRequestMsg)
  1060  	case typeClientHello:
  1061  		m = new(clientHelloMsg)
  1062  	case typeServerHello:
  1063  		m = new(serverHelloMsg)
  1064  	case typeNewSessionTicket:
  1065  		if c.vers == VersionTLS13 {
  1066  			m = new(newSessionTicketMsgTLS13)
  1067  		} else {
  1068  			m = new(newSessionTicketMsg)
  1069  		}
  1070  	case typeCertificate:
  1071  		if c.vers == VersionTLS13 {
  1072  			m = new(certificateMsgTLS13)
  1073  		} else {
  1074  			m = new(certificateMsg)
  1075  		}
  1076  	case typeCertificateRequest:
  1077  		if c.vers == VersionTLS13 {
  1078  			m = new(certificateRequestMsgTLS13)
  1079  		} else {
  1080  			m = &certificateRequestMsg{
  1081  				hasSignatureAlgorithm: c.vers >= VersionTLS12,
  1082  			}
  1083  		}
  1084  	case typeCertificateStatus:
  1085  		m = new(certificateStatusMsg)
  1086  	case typeServerKeyExchange:
  1087  		m = new(serverKeyExchangeMsg)
  1088  	case typeServerHelloDone:
  1089  		m = new(serverHelloDoneMsg)
  1090  	case typeClientKeyExchange:
  1091  		m = new(clientKeyExchangeMsg)
  1092  	case typeCertificateVerify:
  1093  		m = &certificateVerifyMsg{
  1094  			hasSignatureAlgorithm: c.vers >= VersionTLS12,
  1095  		}
  1096  	case typeFinished:
  1097  		m = new(finishedMsg)
  1098  	case typeEncryptedExtensions:
  1099  		m = new(encryptedExtensionsMsg)
  1100  	case typeEndOfEarlyData:
  1101  		m = new(endOfEarlyDataMsg)
  1102  	case typeKeyUpdate:
  1103  		m = new(keyUpdateMsg)
  1104  	default:
  1105  		return nil, c.in.setErrorLocked(c.sendAlert(alertUnexpectedMessage))
  1106  	}
  1107  
  1108  	// The handshake message unmarshalers
  1109  	// expect to be able to keep references to data,
  1110  	// so pass in a fresh copy that won't be overwritten.
  1111  	data = append([]byte(nil), data...)
  1112  
  1113  	if !m.unmarshal(data) {
  1114  		return nil, c.in.setErrorLocked(c.sendAlert(alertUnexpectedMessage))
  1115  	}
  1116  
  1117  	if transcript != nil {
  1118  		transcript.Write(data)
  1119  	}
  1120  
  1121  	return m, nil
  1122  }
  1123  
  1124  var (
  1125  	errShutdown = errors.New("tls: protocol is shutdown")
  1126  )
  1127  
  1128  // Write writes data to the connection.
  1129  //
  1130  // As Write calls Handshake, in order to prevent indefinite blocking a deadline
  1131  // must be set for both Read and Write before Write is called when the handshake
  1132  // has not yet completed. See SetDeadline, SetReadDeadline, and
  1133  // SetWriteDeadline.
  1134  func (c *Conn) Write(b []byte) (int, error) {
  1135  	// interlock with Close below
  1136  	for {
  1137  		x := c.activeCall.Load()
  1138  		if x&1 != 0 {
  1139  			return 0, net.ErrClosed
  1140  		}
  1141  		if c.activeCall.CompareAndSwap(x, x+2) {
  1142  			break
  1143  		}
  1144  	}
  1145  	defer c.activeCall.Add(-2)
  1146  
  1147  	if err := c.Handshake(); err != nil {
  1148  		return 0, err
  1149  	}
  1150  
  1151  	c.out.Lock()
  1152  	defer c.out.Unlock()
  1153  
  1154  	if err := c.out.err; err != nil {
  1155  		return 0, err
  1156  	}
  1157  
  1158  	if !c.isHandshakeComplete.Load() {
  1159  		return 0, alertInternalError
  1160  	}
  1161  
  1162  	if c.closeNotifySent {
  1163  		return 0, errShutdown
  1164  	}
  1165  
  1166  	// TLS 1.0 is susceptible to a chosen-plaintext
  1167  	// attack when using block mode ciphers due to predictable IVs.
  1168  	// This can be prevented by splitting each Application Data
  1169  	// record into two records, effectively randomizing the IV.
  1170  	//
  1171  	// https://www.openssl.org/~bodo/tls-cbc.txt
  1172  	// https://bugzilla.mozilla.org/show_bug.cgi?id=665814
  1173  	// https://www.imperialviolet.org/2012/01/15/beastfollowup.html
  1174  
  1175  	var m int
  1176  	if len(b) > 1 && c.vers == VersionTLS10 {
  1177  		if _, ok := c.out.cipher.(cipher.BlockMode); ok {
  1178  			n, err := c.writeRecordLocked(recordTypeApplicationData, b[:1])
  1179  			if err != nil {
  1180  				return n, c.out.setErrorLocked(err)
  1181  			}
  1182  			m, b = 1, b[1:]
  1183  		}
  1184  	}
  1185  
  1186  	n, err := c.writeRecordLocked(recordTypeApplicationData, b)
  1187  	return n + m, c.out.setErrorLocked(err)
  1188  }
  1189  
  1190  // handleRenegotiation processes a HelloRequest handshake message.
  1191  func (c *Conn) handleRenegotiation() error {
  1192  	if c.vers == VersionTLS13 {
  1193  		return errors.New("tls: internal error: unexpected renegotiation")
  1194  	}
  1195  
  1196  	msg, err := c.readHandshake(nil)
  1197  	if err != nil {
  1198  		return err
  1199  	}
  1200  
  1201  	helloReq, ok := msg.(*helloRequestMsg)
  1202  	if !ok {
  1203  		c.sendAlert(alertUnexpectedMessage)
  1204  		return unexpectedMessageError(helloReq, msg)
  1205  	}
  1206  
  1207  	if !c.isClient {
  1208  		return c.sendAlert(alertNoRenegotiation)
  1209  	}
  1210  
  1211  	switch c.config.Renegotiation {
  1212  	case RenegotiateNever:
  1213  		return c.sendAlert(alertNoRenegotiation)
  1214  	case RenegotiateOnceAsClient:
  1215  		if c.handshakes > 1 {
  1216  			return c.sendAlert(alertNoRenegotiation)
  1217  		}
  1218  	case RenegotiateFreelyAsClient:
  1219  		// Ok.
  1220  	default:
  1221  		c.sendAlert(alertInternalError)
  1222  		return errors.New("tls: unknown Renegotiation value")
  1223  	}
  1224  
  1225  	c.handshakeMutex.Lock()
  1226  	defer c.handshakeMutex.Unlock()
  1227  
  1228  	c.isHandshakeComplete.Store(false)
  1229  	if c.handshakeErr = c.clientHandshake(context.Background()); c.handshakeErr == nil {
  1230  		c.handshakes++
  1231  	}
  1232  	return c.handshakeErr
  1233  }
  1234  
  1235  // handlePostHandshakeMessage processes a handshake message arrived after the
  1236  // handshake is complete. Up to TLS 1.2, it indicates the start of a renegotiation.
  1237  func (c *Conn) handlePostHandshakeMessage() error {
  1238  	if c.vers != VersionTLS13 {
  1239  		return c.handleRenegotiation()
  1240  	}
  1241  
  1242  	msg, err := c.readHandshake(nil)
  1243  	if err != nil {
  1244  		return err
  1245  	}
  1246  
  1247  	c.retryCount++
  1248  	if c.retryCount > maxUselessRecords {
  1249  		c.sendAlert(alertUnexpectedMessage)
  1250  		return c.in.setErrorLocked(errors.New("tls: too many non-advancing records"))
  1251  	}
  1252  
  1253  	switch msg := msg.(type) {
  1254  	case *newSessionTicketMsgTLS13:
  1255  		return c.handleNewSessionTicket(msg)
  1256  	case *keyUpdateMsg:
  1257  		return c.handleKeyUpdate(msg)
  1258  	default:
  1259  		c.sendAlert(alertUnexpectedMessage)
  1260  		return fmt.Errorf("tls: received unexpected handshake message of type %T", msg)
  1261  	}
  1262  }
  1263  
  1264  func (c *Conn) handleKeyUpdate(keyUpdate *keyUpdateMsg) error {
  1265  	cipherSuite := cipherSuiteTLS13ByID(c.cipherSuite)
  1266  	if cipherSuite == nil {
  1267  		return c.in.setErrorLocked(c.sendAlert(alertInternalError))
  1268  	}
  1269  
  1270  	newSecret := cipherSuite.nextTrafficSecret(c.in.trafficSecret)
  1271  	c.in.setTrafficSecret(cipherSuite, newSecret)
  1272  
  1273  	if keyUpdate.updateRequested {
  1274  		c.out.Lock()
  1275  		defer c.out.Unlock()
  1276  
  1277  		msg := &keyUpdateMsg{}
  1278  		msgBytes, err := msg.marshal()
  1279  		if err != nil {
  1280  			return err
  1281  		}
  1282  		_, err = c.writeRecordLocked(recordTypeHandshake, msgBytes)
  1283  		if err != nil {
  1284  			// Surface the error at the next write.
  1285  			c.out.setErrorLocked(err)
  1286  			return nil
  1287  		}
  1288  
  1289  		newSecret := cipherSuite.nextTrafficSecret(c.out.trafficSecret)
  1290  		c.out.setTrafficSecret(cipherSuite, newSecret)
  1291  	}
  1292  
  1293  	return nil
  1294  }
  1295  
  1296  // Read reads data from the connection.
  1297  //
  1298  // As Read calls Handshake, in order to prevent indefinite blocking a deadline
  1299  // must be set for both Read and Write before Read is called when the handshake
  1300  // has not yet completed. See SetDeadline, SetReadDeadline, and
  1301  // SetWriteDeadline.
  1302  func (c *Conn) Read(b []byte) (int, error) {
  1303  	if err := c.Handshake(); err != nil {
  1304  		return 0, err
  1305  	}
  1306  	if len(b) == 0 {
  1307  		// Put this after Handshake, in case people were calling
  1308  		// Read(nil) for the side effect of the Handshake.
  1309  		return 0, nil
  1310  	}
  1311  
  1312  	c.in.Lock()
  1313  	defer c.in.Unlock()
  1314  
  1315  	for c.input.Len() == 0 {
  1316  		if err := c.readRecord(); err != nil {
  1317  			return 0, err
  1318  		}
  1319  		for c.hand.Len() > 0 {
  1320  			if err := c.handlePostHandshakeMessage(); err != nil {
  1321  				return 0, err
  1322  			}
  1323  		}
  1324  	}
  1325  
  1326  	n, _ := c.input.Read(b)
  1327  
  1328  	// If a close-notify alert is waiting, read it so that we can return (n,
  1329  	// EOF) instead of (n, nil), to signal to the HTTP response reading
  1330  	// goroutine that the connection is now closed. This eliminates a race
  1331  	// where the HTTP response reading goroutine would otherwise not observe
  1332  	// the EOF until its next read, by which time a client goroutine might
  1333  	// have already tried to reuse the HTTP connection for a new request.
  1334  	// See https://golang.org/cl/76400046 and https://golang.org/issue/3514
  1335  	if n != 0 && c.input.Len() == 0 && c.rawInput.Len() > 0 &&
  1336  		recordType(c.rawInput.Bytes()[0]) == recordTypeAlert {
  1337  		if err := c.readRecord(); err != nil {
  1338  			return n, err // will be io.EOF on closeNotify
  1339  		}
  1340  	}
  1341  
  1342  	return n, nil
  1343  }
  1344  
  1345  // Close closes the connection.
  1346  func (c *Conn) Close() error {
  1347  	// Interlock with Conn.Write above.
  1348  	var x int32
  1349  	for {
  1350  		x = c.activeCall.Load()
  1351  		if x&1 != 0 {
  1352  			return net.ErrClosed
  1353  		}
  1354  		if c.activeCall.CompareAndSwap(x, x|1) {
  1355  			break
  1356  		}
  1357  	}
  1358  	if x != 0 {
  1359  		// io.Writer and io.Closer should not be used concurrently.
  1360  		// If Close is called while a Write is currently in-flight,
  1361  		// interpret that as a sign that this Close is really just
  1362  		// being used to break the Write and/or clean up resources and
  1363  		// avoid sending the alertCloseNotify, which may block
  1364  		// waiting on handshakeMutex or the c.out mutex.
  1365  		return c.conn.Close()
  1366  	}
  1367  
  1368  	var alertErr error
  1369  	if c.isHandshakeComplete.Load() {
  1370  		if err := c.closeNotify(); err != nil {
  1371  			alertErr = fmt.Errorf("tls: failed to send closeNotify alert (but connection was closed anyway): %w", err)
  1372  		}
  1373  	}
  1374  
  1375  	if err := c.conn.Close(); err != nil {
  1376  		return err
  1377  	}
  1378  	return alertErr
  1379  }
  1380  
  1381  var errEarlyCloseWrite = errors.New("tls: CloseWrite called before handshake complete")
  1382  
  1383  // CloseWrite shuts down the writing side of the connection. It should only be
  1384  // called once the handshake has completed and does not call CloseWrite on the
  1385  // underlying connection. Most callers should just use Close.
  1386  func (c *Conn) CloseWrite() error {
  1387  	if !c.isHandshakeComplete.Load() {
  1388  		return errEarlyCloseWrite
  1389  	}
  1390  
  1391  	return c.closeNotify()
  1392  }
  1393  
  1394  func (c *Conn) closeNotify() error {
  1395  	c.out.Lock()
  1396  	defer c.out.Unlock()
  1397  
  1398  	if !c.closeNotifySent {
  1399  		// Set a Write Deadline to prevent possibly blocking forever.
  1400  		c.SetWriteDeadline(time.Now().Add(time.Second * 5))
  1401  		c.closeNotifyErr = c.sendAlertLocked(alertCloseNotify)
  1402  		c.closeNotifySent = true
  1403  		// Any subsequent writes will fail.
  1404  		c.SetWriteDeadline(time.Now())
  1405  	}
  1406  	return c.closeNotifyErr
  1407  }
  1408  
  1409  // Handshake runs the client or server handshake
  1410  // protocol if it has not yet been run.
  1411  //
  1412  // Most uses of this package need not call Handshake explicitly: the
  1413  // first Read or Write will call it automatically.
  1414  //
  1415  // For control over canceling or setting a timeout on a handshake, use
  1416  // HandshakeContext or the Dialer's DialContext method instead.
  1417  func (c *Conn) Handshake() error {
  1418  	return c.HandshakeContext(context.Background())
  1419  }
  1420  
  1421  // HandshakeContext runs the client or server handshake
  1422  // protocol if it has not yet been run.
  1423  //
  1424  // The provided Context must be non-nil. If the context is canceled before
  1425  // the handshake is complete, the handshake is interrupted and an error is returned.
  1426  // Once the handshake has completed, cancellation of the context will not affect the
  1427  // connection.
  1428  //
  1429  // Most uses of this package need not call HandshakeContext explicitly: the
  1430  // first Read or Write will call it automatically.
  1431  func (c *Conn) HandshakeContext(ctx context.Context) error {
  1432  	// Delegate to unexported method for named return
  1433  	// without confusing documented signature.
  1434  	return c.handshakeContext(ctx)
  1435  }
  1436  
  1437  func (c *Conn) handshakeContext(ctx context.Context) (ret error) {
  1438  	// Fast sync/atomic-based exit if there is no handshake in flight and the
  1439  	// last one succeeded without an error. Avoids the expensive context setup
  1440  	// and mutex for most Read and Write calls.
  1441  	if c.isHandshakeComplete.Load() {
  1442  		return nil
  1443  	}
  1444  
  1445  	handshakeCtx, cancel := context.WithCancel(ctx)
  1446  	// Note: defer this before starting the "interrupter" goroutine
  1447  	// so that we can tell the difference between the input being canceled and
  1448  	// this cancellation. In the former case, we need to close the connection.
  1449  	defer cancel()
  1450  
  1451  	// Start the "interrupter" goroutine, if this context might be canceled.
  1452  	// (The background context cannot).
  1453  	//
  1454  	// The interrupter goroutine waits for the input context to be done and
  1455  	// closes the connection if this happens before the function returns.
  1456  	if ctx.Done() != nil {
  1457  		done := make(chan struct{})
  1458  		interruptRes := make(chan error, 1)
  1459  		defer func() {
  1460  			close(done)
  1461  			if ctxErr := <-interruptRes; ctxErr != nil {
  1462  				// Return context error to user.
  1463  				ret = ctxErr
  1464  			}
  1465  		}()
  1466  		go func() {
  1467  			select {
  1468  			case <-handshakeCtx.Done():
  1469  				// Close the connection, discarding the error
  1470  				_ = c.conn.Close()
  1471  				interruptRes <- handshakeCtx.Err()
  1472  			case <-done:
  1473  				interruptRes <- nil
  1474  			}
  1475  		}()
  1476  	}
  1477  
  1478  	c.handshakeMutex.Lock()
  1479  	defer c.handshakeMutex.Unlock()
  1480  
  1481  	if err := c.handshakeErr; err != nil {
  1482  		return err
  1483  	}
  1484  	if c.isHandshakeComplete.Load() {
  1485  		return nil
  1486  	}
  1487  
  1488  	c.in.Lock()
  1489  	defer c.in.Unlock()
  1490  
  1491  	c.handshakeErr = c.handshakeFn(handshakeCtx)
  1492  	if c.handshakeErr == nil {
  1493  		c.handshakes++
  1494  	} else {
  1495  		// If an error occurred during the handshake try to flush the
  1496  		// alert that might be left in the buffer.
  1497  		c.flush()
  1498  	}
  1499  
  1500  	if c.handshakeErr == nil && !c.isHandshakeComplete.Load() {
  1501  		c.handshakeErr = errors.New("tls: internal error: handshake should have had a result")
  1502  	}
  1503  	if c.handshakeErr != nil && c.isHandshakeComplete.Load() {
  1504  		panic("tls: internal error: handshake returned an error but is marked successful")
  1505  	}
  1506  
  1507  	return c.handshakeErr
  1508  }
  1509  
  1510  // ConnectionState returns basic TLS details about the connection.
  1511  func (c *Conn) ConnectionState() ConnectionState {
  1512  	c.handshakeMutex.Lock()
  1513  	defer c.handshakeMutex.Unlock()
  1514  	return c.connectionStateLocked()
  1515  }
  1516  
  1517  func (c *Conn) connectionStateLocked() ConnectionState {
  1518  	var state ConnectionState
  1519  	state.HandshakeComplete = c.isHandshakeComplete.Load()
  1520  	state.Version = c.vers
  1521  	state.NegotiatedProtocol = c.clientProtocol
  1522  	state.DidResume = c.didResume
  1523  	state.NegotiatedProtocolIsMutual = true
  1524  	state.ServerName = c.serverName
  1525  	state.CipherSuite = c.cipherSuite
  1526  	state.PeerCertificates = c.peerCertificates
  1527  	state.VerifiedChains = c.verifiedChains
  1528  	state.SignedCertificateTimestamps = c.scts
  1529  	state.OCSPResponse = c.ocspResponse
  1530  	if !c.didResume && c.vers != VersionTLS13 {
  1531  		if c.clientFinishedIsFirst {
  1532  			state.TLSUnique = c.clientFinished[:]
  1533  		} else {
  1534  			state.TLSUnique = c.serverFinished[:]
  1535  		}
  1536  	}
  1537  	if c.config.Renegotiation != RenegotiateNever {
  1538  		state.ekm = noExportedKeyingMaterial
  1539  	} else {
  1540  		state.ekm = c.ekm
  1541  	}
  1542  	return state
  1543  }
  1544  
  1545  // OCSPResponse returns the stapled OCSP response from the TLS server, if
  1546  // any. (Only valid for client connections.)
  1547  func (c *Conn) OCSPResponse() []byte {
  1548  	c.handshakeMutex.Lock()
  1549  	defer c.handshakeMutex.Unlock()
  1550  
  1551  	return c.ocspResponse
  1552  }
  1553  
  1554  // VerifyHostname checks that the peer certificate chain is valid for
  1555  // connecting to host. If so, it returns nil; if not, it returns an error
  1556  // describing the problem.
  1557  func (c *Conn) VerifyHostname(host string) error {
  1558  	c.handshakeMutex.Lock()
  1559  	defer c.handshakeMutex.Unlock()
  1560  	if !c.isClient {
  1561  		return errors.New("tls: VerifyHostname called on TLS server connection")
  1562  	}
  1563  	if !c.isHandshakeComplete.Load() {
  1564  		return errors.New("tls: handshake has not yet been performed")
  1565  	}
  1566  	if len(c.verifiedChains) == 0 {
  1567  		return errors.New("tls: handshake did not verify certificate chain")
  1568  	}
  1569  	return c.peerCertificates[0].VerifyHostname(host)
  1570  }