github.com/twelsh-aw/go/src@v0.0.0-20230516233729-a56fe86a7c81/crypto/x509/verify.go (about) 1 // Copyright 2011 The Go Authors. All rights reserved. 2 // Use of this source code is governed by a BSD-style 3 // license that can be found in the LICENSE file. 4 5 package x509 6 7 import ( 8 "bytes" 9 "crypto" 10 "crypto/x509/pkix" 11 "errors" 12 "fmt" 13 "net" 14 "net/url" 15 "reflect" 16 "runtime" 17 "strings" 18 "time" 19 "unicode/utf8" 20 ) 21 22 type InvalidReason int 23 24 const ( 25 // NotAuthorizedToSign results when a certificate is signed by another 26 // which isn't marked as a CA certificate. 27 NotAuthorizedToSign InvalidReason = iota 28 // Expired results when a certificate has expired, based on the time 29 // given in the VerifyOptions. 30 Expired 31 // CANotAuthorizedForThisName results when an intermediate or root 32 // certificate has a name constraint which doesn't permit a DNS or 33 // other name (including IP address) in the leaf certificate. 34 CANotAuthorizedForThisName 35 // TooManyIntermediates results when a path length constraint is 36 // violated. 37 TooManyIntermediates 38 // IncompatibleUsage results when the certificate's key usage indicates 39 // that it may only be used for a different purpose. 40 IncompatibleUsage 41 // NameMismatch results when the subject name of a parent certificate 42 // does not match the issuer name in the child. 43 NameMismatch 44 // NameConstraintsWithoutSANs is a legacy error and is no longer returned. 45 NameConstraintsWithoutSANs 46 // UnconstrainedName results when a CA certificate contains permitted 47 // name constraints, but leaf certificate contains a name of an 48 // unsupported or unconstrained type. 49 UnconstrainedName 50 // TooManyConstraints results when the number of comparison operations 51 // needed to check a certificate exceeds the limit set by 52 // VerifyOptions.MaxConstraintComparisions. This limit exists to 53 // prevent pathological certificates can consuming excessive amounts of 54 // CPU time to verify. 55 TooManyConstraints 56 // CANotAuthorizedForExtKeyUsage results when an intermediate or root 57 // certificate does not permit a requested extended key usage. 58 CANotAuthorizedForExtKeyUsage 59 ) 60 61 // CertificateInvalidError results when an odd error occurs. Users of this 62 // library probably want to handle all these errors uniformly. 63 type CertificateInvalidError struct { 64 Cert *Certificate 65 Reason InvalidReason 66 Detail string 67 } 68 69 func (e CertificateInvalidError) Error() string { 70 switch e.Reason { 71 case NotAuthorizedToSign: 72 return "x509: certificate is not authorized to sign other certificates" 73 case Expired: 74 return "x509: certificate has expired or is not yet valid: " + e.Detail 75 case CANotAuthorizedForThisName: 76 return "x509: a root or intermediate certificate is not authorized to sign for this name: " + e.Detail 77 case CANotAuthorizedForExtKeyUsage: 78 return "x509: a root or intermediate certificate is not authorized for an extended key usage: " + e.Detail 79 case TooManyIntermediates: 80 return "x509: too many intermediates for path length constraint" 81 case IncompatibleUsage: 82 return "x509: certificate specifies an incompatible key usage" 83 case NameMismatch: 84 return "x509: issuer name does not match subject from issuing certificate" 85 case NameConstraintsWithoutSANs: 86 return "x509: issuer has name constraints but leaf doesn't have a SAN extension" 87 case UnconstrainedName: 88 return "x509: issuer has name constraints but leaf contains unknown or unconstrained name: " + e.Detail 89 } 90 return "x509: unknown error" 91 } 92 93 // HostnameError results when the set of authorized names doesn't match the 94 // requested name. 95 type HostnameError struct { 96 Certificate *Certificate 97 Host string 98 } 99 100 func (h HostnameError) Error() string { 101 c := h.Certificate 102 103 if !c.hasSANExtension() && matchHostnames(c.Subject.CommonName, h.Host) { 104 return "x509: certificate relies on legacy Common Name field, use SANs instead" 105 } 106 107 var valid string 108 if ip := net.ParseIP(h.Host); ip != nil { 109 // Trying to validate an IP 110 if len(c.IPAddresses) == 0 { 111 return "x509: cannot validate certificate for " + h.Host + " because it doesn't contain any IP SANs" 112 } 113 for _, san := range c.IPAddresses { 114 if len(valid) > 0 { 115 valid += ", " 116 } 117 valid += san.String() 118 } 119 } else { 120 valid = strings.Join(c.DNSNames, ", ") 121 } 122 123 if len(valid) == 0 { 124 return "x509: certificate is not valid for any names, but wanted to match " + h.Host 125 } 126 return "x509: certificate is valid for " + valid + ", not " + h.Host 127 } 128 129 // UnknownAuthorityError results when the certificate issuer is unknown 130 type UnknownAuthorityError struct { 131 Cert *Certificate 132 // hintErr contains an error that may be helpful in determining why an 133 // authority wasn't found. 134 hintErr error 135 // hintCert contains a possible authority certificate that was rejected 136 // because of the error in hintErr. 137 hintCert *Certificate 138 } 139 140 func (e UnknownAuthorityError) Error() string { 141 s := "x509: certificate signed by unknown authority" 142 if e.hintErr != nil { 143 certName := e.hintCert.Subject.CommonName 144 if len(certName) == 0 { 145 if len(e.hintCert.Subject.Organization) > 0 { 146 certName = e.hintCert.Subject.Organization[0] 147 } else { 148 certName = "serial:" + e.hintCert.SerialNumber.String() 149 } 150 } 151 s += fmt.Sprintf(" (possibly because of %q while trying to verify candidate authority certificate %q)", e.hintErr, certName) 152 } 153 return s 154 } 155 156 // SystemRootsError results when we fail to load the system root certificates. 157 type SystemRootsError struct { 158 Err error 159 } 160 161 func (se SystemRootsError) Error() string { 162 msg := "x509: failed to load system roots and no roots provided" 163 if se.Err != nil { 164 return msg + "; " + se.Err.Error() 165 } 166 return msg 167 } 168 169 func (se SystemRootsError) Unwrap() error { return se.Err } 170 171 // errNotParsed is returned when a certificate without ASN.1 contents is 172 // verified. Platform-specific verification needs the ASN.1 contents. 173 var errNotParsed = errors.New("x509: missing ASN.1 contents; use ParseCertificate") 174 175 // VerifyOptions contains parameters for Certificate.Verify. 176 type VerifyOptions struct { 177 // DNSName, if set, is checked against the leaf certificate with 178 // Certificate.VerifyHostname or the platform verifier. 179 DNSName string 180 181 // Intermediates is an optional pool of certificates that are not trust 182 // anchors, but can be used to form a chain from the leaf certificate to a 183 // root certificate. 184 Intermediates *CertPool 185 // Roots is the set of trusted root certificates the leaf certificate needs 186 // to chain up to. If nil, the system roots or the platform verifier are used. 187 Roots *CertPool 188 189 // CurrentTime is used to check the validity of all certificates in the 190 // chain. If zero, the current time is used. 191 CurrentTime time.Time 192 193 // KeyUsages specifies which Extended Key Usage values are acceptable. A 194 // chain is accepted if it allows any of the listed values. An empty list 195 // means ExtKeyUsageServerAuth. To accept any key usage, include ExtKeyUsageAny. 196 KeyUsages []ExtKeyUsage 197 198 // MaxConstraintComparisions is the maximum number of comparisons to 199 // perform when checking a given certificate's name constraints. If 200 // zero, a sensible default is used. This limit prevents pathological 201 // certificates from consuming excessive amounts of CPU time when 202 // validating. It does not apply to the platform verifier. 203 MaxConstraintComparisions int 204 } 205 206 const ( 207 leafCertificate = iota 208 intermediateCertificate 209 rootCertificate 210 ) 211 212 // rfc2821Mailbox represents a “mailbox” (which is an email address to most 213 // people) by breaking it into the “local” (i.e. before the '@') and “domain” 214 // parts. 215 type rfc2821Mailbox struct { 216 local, domain string 217 } 218 219 // parseRFC2821Mailbox parses an email address into local and domain parts, 220 // based on the ABNF for a “Mailbox” from RFC 2821. According to RFC 5280, 221 // Section 4.2.1.6 that's correct for an rfc822Name from a certificate: “The 222 // format of an rfc822Name is a "Mailbox" as defined in RFC 2821, Section 4.1.2”. 223 func parseRFC2821Mailbox(in string) (mailbox rfc2821Mailbox, ok bool) { 224 if len(in) == 0 { 225 return mailbox, false 226 } 227 228 localPartBytes := make([]byte, 0, len(in)/2) 229 230 if in[0] == '"' { 231 // Quoted-string = DQUOTE *qcontent DQUOTE 232 // non-whitespace-control = %d1-8 / %d11 / %d12 / %d14-31 / %d127 233 // qcontent = qtext / quoted-pair 234 // qtext = non-whitespace-control / 235 // %d33 / %d35-91 / %d93-126 236 // quoted-pair = ("\" text) / obs-qp 237 // text = %d1-9 / %d11 / %d12 / %d14-127 / obs-text 238 // 239 // (Names beginning with “obs-” are the obsolete syntax from RFC 2822, 240 // Section 4. Since it has been 16 years, we no longer accept that.) 241 in = in[1:] 242 QuotedString: 243 for { 244 if len(in) == 0 { 245 return mailbox, false 246 } 247 c := in[0] 248 in = in[1:] 249 250 switch { 251 case c == '"': 252 break QuotedString 253 254 case c == '\\': 255 // quoted-pair 256 if len(in) == 0 { 257 return mailbox, false 258 } 259 if in[0] == 11 || 260 in[0] == 12 || 261 (1 <= in[0] && in[0] <= 9) || 262 (14 <= in[0] && in[0] <= 127) { 263 localPartBytes = append(localPartBytes, in[0]) 264 in = in[1:] 265 } else { 266 return mailbox, false 267 } 268 269 case c == 11 || 270 c == 12 || 271 // Space (char 32) is not allowed based on the 272 // BNF, but RFC 3696 gives an example that 273 // assumes that it is. Several “verified” 274 // errata continue to argue about this point. 275 // We choose to accept it. 276 c == 32 || 277 c == 33 || 278 c == 127 || 279 (1 <= c && c <= 8) || 280 (14 <= c && c <= 31) || 281 (35 <= c && c <= 91) || 282 (93 <= c && c <= 126): 283 // qtext 284 localPartBytes = append(localPartBytes, c) 285 286 default: 287 return mailbox, false 288 } 289 } 290 } else { 291 // Atom ("." Atom)* 292 NextChar: 293 for len(in) > 0 { 294 // atext from RFC 2822, Section 3.2.4 295 c := in[0] 296 297 switch { 298 case c == '\\': 299 // Examples given in RFC 3696 suggest that 300 // escaped characters can appear outside of a 301 // quoted string. Several “verified” errata 302 // continue to argue the point. We choose to 303 // accept it. 304 in = in[1:] 305 if len(in) == 0 { 306 return mailbox, false 307 } 308 fallthrough 309 310 case ('0' <= c && c <= '9') || 311 ('a' <= c && c <= 'z') || 312 ('A' <= c && c <= 'Z') || 313 c == '!' || c == '#' || c == '$' || c == '%' || 314 c == '&' || c == '\'' || c == '*' || c == '+' || 315 c == '-' || c == '/' || c == '=' || c == '?' || 316 c == '^' || c == '_' || c == '`' || c == '{' || 317 c == '|' || c == '}' || c == '~' || c == '.': 318 localPartBytes = append(localPartBytes, in[0]) 319 in = in[1:] 320 321 default: 322 break NextChar 323 } 324 } 325 326 if len(localPartBytes) == 0 { 327 return mailbox, false 328 } 329 330 // From RFC 3696, Section 3: 331 // “period (".") may also appear, but may not be used to start 332 // or end the local part, nor may two or more consecutive 333 // periods appear.” 334 twoDots := []byte{'.', '.'} 335 if localPartBytes[0] == '.' || 336 localPartBytes[len(localPartBytes)-1] == '.' || 337 bytes.Contains(localPartBytes, twoDots) { 338 return mailbox, false 339 } 340 } 341 342 if len(in) == 0 || in[0] != '@' { 343 return mailbox, false 344 } 345 in = in[1:] 346 347 // The RFC species a format for domains, but that's known to be 348 // violated in practice so we accept that anything after an '@' is the 349 // domain part. 350 if _, ok := domainToReverseLabels(in); !ok { 351 return mailbox, false 352 } 353 354 mailbox.local = string(localPartBytes) 355 mailbox.domain = in 356 return mailbox, true 357 } 358 359 // domainToReverseLabels converts a textual domain name like foo.example.com to 360 // the list of labels in reverse order, e.g. ["com", "example", "foo"]. 361 func domainToReverseLabels(domain string) (reverseLabels []string, ok bool) { 362 for len(domain) > 0 { 363 if i := strings.LastIndexByte(domain, '.'); i == -1 { 364 reverseLabels = append(reverseLabels, domain) 365 domain = "" 366 } else { 367 reverseLabels = append(reverseLabels, domain[i+1:]) 368 domain = domain[:i] 369 } 370 } 371 372 if len(reverseLabels) > 0 && len(reverseLabels[0]) == 0 { 373 // An empty label at the end indicates an absolute value. 374 return nil, false 375 } 376 377 for _, label := range reverseLabels { 378 if len(label) == 0 { 379 // Empty labels are otherwise invalid. 380 return nil, false 381 } 382 383 for _, c := range label { 384 if c < 33 || c > 126 { 385 // Invalid character. 386 return nil, false 387 } 388 } 389 } 390 391 return reverseLabels, true 392 } 393 394 func matchEmailConstraint(mailbox rfc2821Mailbox, constraint string) (bool, error) { 395 // If the constraint contains an @, then it specifies an exact mailbox 396 // name. 397 if strings.Contains(constraint, "@") { 398 constraintMailbox, ok := parseRFC2821Mailbox(constraint) 399 if !ok { 400 return false, fmt.Errorf("x509: internal error: cannot parse constraint %q", constraint) 401 } 402 return mailbox.local == constraintMailbox.local && strings.EqualFold(mailbox.domain, constraintMailbox.domain), nil 403 } 404 405 // Otherwise the constraint is like a DNS constraint of the domain part 406 // of the mailbox. 407 return matchDomainConstraint(mailbox.domain, constraint) 408 } 409 410 func matchURIConstraint(uri *url.URL, constraint string) (bool, error) { 411 // From RFC 5280, Section 4.2.1.10: 412 // “a uniformResourceIdentifier that does not include an authority 413 // component with a host name specified as a fully qualified domain 414 // name (e.g., if the URI either does not include an authority 415 // component or includes an authority component in which the host name 416 // is specified as an IP address), then the application MUST reject the 417 // certificate.” 418 419 host := uri.Host 420 if len(host) == 0 { 421 return false, fmt.Errorf("URI with empty host (%q) cannot be matched against constraints", uri.String()) 422 } 423 424 if strings.Contains(host, ":") && !strings.HasSuffix(host, "]") { 425 var err error 426 host, _, err = net.SplitHostPort(uri.Host) 427 if err != nil { 428 return false, err 429 } 430 } 431 432 if strings.HasPrefix(host, "[") && strings.HasSuffix(host, "]") || 433 net.ParseIP(host) != nil { 434 return false, fmt.Errorf("URI with IP (%q) cannot be matched against constraints", uri.String()) 435 } 436 437 return matchDomainConstraint(host, constraint) 438 } 439 440 func matchIPConstraint(ip net.IP, constraint *net.IPNet) (bool, error) { 441 if len(ip) != len(constraint.IP) { 442 return false, nil 443 } 444 445 for i := range ip { 446 if mask := constraint.Mask[i]; ip[i]&mask != constraint.IP[i]&mask { 447 return false, nil 448 } 449 } 450 451 return true, nil 452 } 453 454 func matchDomainConstraint(domain, constraint string) (bool, error) { 455 // The meaning of zero length constraints is not specified, but this 456 // code follows NSS and accepts them as matching everything. 457 if len(constraint) == 0 { 458 return true, nil 459 } 460 461 domainLabels, ok := domainToReverseLabels(domain) 462 if !ok { 463 return false, fmt.Errorf("x509: internal error: cannot parse domain %q", domain) 464 } 465 466 // RFC 5280 says that a leading period in a domain name means that at 467 // least one label must be prepended, but only for URI and email 468 // constraints, not DNS constraints. The code also supports that 469 // behaviour for DNS constraints. 470 471 mustHaveSubdomains := false 472 if constraint[0] == '.' { 473 mustHaveSubdomains = true 474 constraint = constraint[1:] 475 } 476 477 constraintLabels, ok := domainToReverseLabels(constraint) 478 if !ok { 479 return false, fmt.Errorf("x509: internal error: cannot parse domain %q", constraint) 480 } 481 482 if len(domainLabels) < len(constraintLabels) || 483 (mustHaveSubdomains && len(domainLabels) == len(constraintLabels)) { 484 return false, nil 485 } 486 487 for i, constraintLabel := range constraintLabels { 488 if !strings.EqualFold(constraintLabel, domainLabels[i]) { 489 return false, nil 490 } 491 } 492 493 return true, nil 494 } 495 496 // checkNameConstraints checks that c permits a child certificate to claim the 497 // given name, of type nameType. The argument parsedName contains the parsed 498 // form of name, suitable for passing to the match function. The total number 499 // of comparisons is tracked in the given count and should not exceed the given 500 // limit. 501 func (c *Certificate) checkNameConstraints(count *int, 502 maxConstraintComparisons int, 503 nameType string, 504 name string, 505 parsedName any, 506 match func(parsedName, constraint any) (match bool, err error), 507 permitted, excluded any) error { 508 509 excludedValue := reflect.ValueOf(excluded) 510 511 *count += excludedValue.Len() 512 if *count > maxConstraintComparisons { 513 return CertificateInvalidError{c, TooManyConstraints, ""} 514 } 515 516 for i := 0; i < excludedValue.Len(); i++ { 517 constraint := excludedValue.Index(i).Interface() 518 match, err := match(parsedName, constraint) 519 if err != nil { 520 return CertificateInvalidError{c, CANotAuthorizedForThisName, err.Error()} 521 } 522 523 if match { 524 return CertificateInvalidError{c, CANotAuthorizedForThisName, fmt.Sprintf("%s %q is excluded by constraint %q", nameType, name, constraint)} 525 } 526 } 527 528 permittedValue := reflect.ValueOf(permitted) 529 530 *count += permittedValue.Len() 531 if *count > maxConstraintComparisons { 532 return CertificateInvalidError{c, TooManyConstraints, ""} 533 } 534 535 ok := true 536 for i := 0; i < permittedValue.Len(); i++ { 537 constraint := permittedValue.Index(i).Interface() 538 539 var err error 540 if ok, err = match(parsedName, constraint); err != nil { 541 return CertificateInvalidError{c, CANotAuthorizedForThisName, err.Error()} 542 } 543 544 if ok { 545 break 546 } 547 } 548 549 if !ok { 550 return CertificateInvalidError{c, CANotAuthorizedForThisName, fmt.Sprintf("%s %q is not permitted by any constraint", nameType, name)} 551 } 552 553 return nil 554 } 555 556 // isValid performs validity checks on c given that it is a candidate to append 557 // to the chain in currentChain. 558 func (c *Certificate) isValid(certType int, currentChain []*Certificate, opts *VerifyOptions) error { 559 if len(c.UnhandledCriticalExtensions) > 0 { 560 return UnhandledCriticalExtension{} 561 } 562 563 if len(currentChain) > 0 { 564 child := currentChain[len(currentChain)-1] 565 if !bytes.Equal(child.RawIssuer, c.RawSubject) { 566 return CertificateInvalidError{c, NameMismatch, ""} 567 } 568 } 569 570 now := opts.CurrentTime 571 if now.IsZero() { 572 now = time.Now() 573 } 574 if now.Before(c.NotBefore) { 575 return CertificateInvalidError{ 576 Cert: c, 577 Reason: Expired, 578 Detail: fmt.Sprintf("current time %s is before %s", now.Format(time.RFC3339), c.NotBefore.Format(time.RFC3339)), 579 } 580 } else if now.After(c.NotAfter) { 581 return CertificateInvalidError{ 582 Cert: c, 583 Reason: Expired, 584 Detail: fmt.Sprintf("current time %s is after %s", now.Format(time.RFC3339), c.NotAfter.Format(time.RFC3339)), 585 } 586 } 587 588 maxConstraintComparisons := opts.MaxConstraintComparisions 589 if maxConstraintComparisons == 0 { 590 maxConstraintComparisons = 250000 591 } 592 comparisonCount := 0 593 594 var leaf *Certificate 595 if certType == intermediateCertificate || certType == rootCertificate { 596 if len(currentChain) == 0 { 597 return errors.New("x509: internal error: empty chain when appending CA cert") 598 } 599 leaf = currentChain[0] 600 } 601 602 if (certType == intermediateCertificate || certType == rootCertificate) && 603 c.hasNameConstraints() { 604 toCheck := []*Certificate{} 605 if leaf.hasSANExtension() { 606 toCheck = append(toCheck, leaf) 607 } 608 if c.hasSANExtension() { 609 toCheck = append(toCheck, c) 610 } 611 for _, sanCert := range toCheck { 612 err := forEachSAN(sanCert.getSANExtension(), func(tag int, data []byte) error { 613 switch tag { 614 case nameTypeEmail: 615 name := string(data) 616 mailbox, ok := parseRFC2821Mailbox(name) 617 if !ok { 618 return fmt.Errorf("x509: cannot parse rfc822Name %q", mailbox) 619 } 620 621 if err := c.checkNameConstraints(&comparisonCount, maxConstraintComparisons, "email address", name, mailbox, 622 func(parsedName, constraint any) (bool, error) { 623 return matchEmailConstraint(parsedName.(rfc2821Mailbox), constraint.(string)) 624 }, c.PermittedEmailAddresses, c.ExcludedEmailAddresses); err != nil { 625 return err 626 } 627 628 case nameTypeDNS: 629 name := string(data) 630 if _, ok := domainToReverseLabels(name); !ok { 631 return fmt.Errorf("x509: cannot parse dnsName %q", name) 632 } 633 634 if err := c.checkNameConstraints(&comparisonCount, maxConstraintComparisons, "DNS name", name, name, 635 func(parsedName, constraint any) (bool, error) { 636 return matchDomainConstraint(parsedName.(string), constraint.(string)) 637 }, c.PermittedDNSDomains, c.ExcludedDNSDomains); err != nil { 638 return err 639 } 640 641 case nameTypeURI: 642 name := string(data) 643 uri, err := url.Parse(name) 644 if err != nil { 645 return fmt.Errorf("x509: internal error: URI SAN %q failed to parse", name) 646 } 647 648 if err := c.checkNameConstraints(&comparisonCount, maxConstraintComparisons, "URI", name, uri, 649 func(parsedName, constraint any) (bool, error) { 650 return matchURIConstraint(parsedName.(*url.URL), constraint.(string)) 651 }, c.PermittedURIDomains, c.ExcludedURIDomains); err != nil { 652 return err 653 } 654 655 case nameTypeIP: 656 ip := net.IP(data) 657 if l := len(ip); l != net.IPv4len && l != net.IPv6len { 658 return fmt.Errorf("x509: internal error: IP SAN %x failed to parse", data) 659 } 660 661 if err := c.checkNameConstraints(&comparisonCount, maxConstraintComparisons, "IP address", ip.String(), ip, 662 func(parsedName, constraint any) (bool, error) { 663 return matchIPConstraint(parsedName.(net.IP), constraint.(*net.IPNet)) 664 }, c.PermittedIPRanges, c.ExcludedIPRanges); err != nil { 665 return err 666 } 667 668 default: 669 // Unknown SAN types are ignored. 670 } 671 672 return nil 673 }) 674 675 if err != nil { 676 return err 677 } 678 } 679 } 680 681 // KeyUsage status flags are ignored. From Engineering Security, Peter 682 // Gutmann: A European government CA marked its signing certificates as 683 // being valid for encryption only, but no-one noticed. Another 684 // European CA marked its signature keys as not being valid for 685 // signatures. A different CA marked its own trusted root certificate 686 // as being invalid for certificate signing. Another national CA 687 // distributed a certificate to be used to encrypt data for the 688 // country’s tax authority that was marked as only being usable for 689 // digital signatures but not for encryption. Yet another CA reversed 690 // the order of the bit flags in the keyUsage due to confusion over 691 // encoding endianness, essentially setting a random keyUsage in 692 // certificates that it issued. Another CA created a self-invalidating 693 // certificate by adding a certificate policy statement stipulating 694 // that the certificate had to be used strictly as specified in the 695 // keyUsage, and a keyUsage containing a flag indicating that the RSA 696 // encryption key could only be used for Diffie-Hellman key agreement. 697 698 if certType == intermediateCertificate && (!c.BasicConstraintsValid || !c.IsCA) { 699 return CertificateInvalidError{c, NotAuthorizedToSign, ""} 700 } 701 702 if c.BasicConstraintsValid && c.MaxPathLen >= 0 { 703 numIntermediates := len(currentChain) - 1 704 if numIntermediates > c.MaxPathLen { 705 return CertificateInvalidError{c, TooManyIntermediates, ""} 706 } 707 } 708 709 if !boringAllowCert(c) { 710 // IncompatibleUsage is not quite right here, 711 // but it's also the "no chains found" error 712 // and is close enough. 713 return CertificateInvalidError{c, IncompatibleUsage, ""} 714 } 715 716 return nil 717 } 718 719 // Verify attempts to verify c by building one or more chains from c to a 720 // certificate in opts.Roots, using certificates in opts.Intermediates if 721 // needed. If successful, it returns one or more chains where the first 722 // element of the chain is c and the last element is from opts.Roots. 723 // 724 // If opts.Roots is nil, the platform verifier might be used, and 725 // verification details might differ from what is described below. If system 726 // roots are unavailable the returned error will be of type SystemRootsError. 727 // 728 // Name constraints in the intermediates will be applied to all names claimed 729 // in the chain, not just opts.DNSName. Thus it is invalid for a leaf to claim 730 // example.com if an intermediate doesn't permit it, even if example.com is not 731 // the name being validated. Note that DirectoryName constraints are not 732 // supported. 733 // 734 // Name constraint validation follows the rules from RFC 5280, with the 735 // addition that DNS name constraints may use the leading period format 736 // defined for emails and URIs. When a constraint has a leading period 737 // it indicates that at least one additional label must be prepended to 738 // the constrained name to be considered valid. 739 // 740 // Extended Key Usage values are enforced nested down a chain, so an intermediate 741 // or root that enumerates EKUs prevents a leaf from asserting an EKU not in that 742 // list. (While this is not specified, it is common practice in order to limit 743 // the types of certificates a CA can issue.) 744 // 745 // Certificates that use SHA1WithRSA and ECDSAWithSHA1 signatures are not supported, 746 // and will not be used to build chains. 747 // 748 // Certificates other than c in the returned chains should not be modified. 749 // 750 // WARNING: this function doesn't do any revocation checking. 751 func (c *Certificate) Verify(opts VerifyOptions) (chains [][]*Certificate, err error) { 752 // Platform-specific verification needs the ASN.1 contents so 753 // this makes the behavior consistent across platforms. 754 if len(c.Raw) == 0 { 755 return nil, errNotParsed 756 } 757 for i := 0; i < opts.Intermediates.len(); i++ { 758 c, err := opts.Intermediates.cert(i) 759 if err != nil { 760 return nil, fmt.Errorf("crypto/x509: error fetching intermediate: %w", err) 761 } 762 if len(c.Raw) == 0 { 763 return nil, errNotParsed 764 } 765 } 766 767 // Use platform verifiers, where available, if Roots is from SystemCertPool. 768 if runtime.GOOS == "windows" || runtime.GOOS == "darwin" || runtime.GOOS == "ios" { 769 // Don't use the system verifier if the system pool was replaced with a non-system pool, 770 // i.e. if SetFallbackRoots was called with x509usefallbackroots=1. 771 systemPool := systemRootsPool() 772 if opts.Roots == nil && (systemPool == nil || systemPool.systemPool) { 773 return c.systemVerify(&opts) 774 } 775 if opts.Roots != nil && opts.Roots.systemPool { 776 platformChains, err := c.systemVerify(&opts) 777 // If the platform verifier succeeded, or there are no additional 778 // roots, return the platform verifier result. Otherwise, continue 779 // with the Go verifier. 780 if err == nil || opts.Roots.len() == 0 { 781 return platformChains, err 782 } 783 } 784 } 785 786 if opts.Roots == nil { 787 opts.Roots = systemRootsPool() 788 if opts.Roots == nil { 789 return nil, SystemRootsError{systemRootsErr} 790 } 791 } 792 793 err = c.isValid(leafCertificate, nil, &opts) 794 if err != nil { 795 return 796 } 797 798 if len(opts.DNSName) > 0 { 799 err = c.VerifyHostname(opts.DNSName) 800 if err != nil { 801 return 802 } 803 } 804 805 var candidateChains [][]*Certificate 806 if opts.Roots.contains(c) { 807 candidateChains = [][]*Certificate{{c}} 808 } else { 809 candidateChains, err = c.buildChains([]*Certificate{c}, nil, &opts) 810 if err != nil { 811 return nil, err 812 } 813 } 814 815 if len(opts.KeyUsages) == 0 { 816 opts.KeyUsages = []ExtKeyUsage{ExtKeyUsageServerAuth} 817 } 818 819 for _, eku := range opts.KeyUsages { 820 if eku == ExtKeyUsageAny { 821 // If any key usage is acceptable, no need to check the chain for 822 // key usages. 823 return candidateChains, nil 824 } 825 } 826 827 chains = make([][]*Certificate, 0, len(candidateChains)) 828 for _, candidate := range candidateChains { 829 if checkChainForKeyUsage(candidate, opts.KeyUsages) { 830 chains = append(chains, candidate) 831 } 832 } 833 834 if len(chains) == 0 { 835 return nil, CertificateInvalidError{c, IncompatibleUsage, ""} 836 } 837 838 return chains, nil 839 } 840 841 func appendToFreshChain(chain []*Certificate, cert *Certificate) []*Certificate { 842 n := make([]*Certificate, len(chain)+1) 843 copy(n, chain) 844 n[len(chain)] = cert 845 return n 846 } 847 848 // alreadyInChain checks whether a candidate certificate is present in a chain. 849 // Rather than doing a direct byte for byte equivalency check, we check if the 850 // subject, public key, and SAN, if present, are equal. This prevents loops that 851 // are created by mutual cross-signatures, or other cross-signature bridge 852 // oddities. 853 func alreadyInChain(candidate *Certificate, chain []*Certificate) bool { 854 type pubKeyEqual interface { 855 Equal(crypto.PublicKey) bool 856 } 857 858 var candidateSAN *pkix.Extension 859 for _, ext := range candidate.Extensions { 860 if ext.Id.Equal(oidExtensionSubjectAltName) { 861 candidateSAN = &ext 862 break 863 } 864 } 865 866 for _, cert := range chain { 867 if !bytes.Equal(candidate.RawSubject, cert.RawSubject) { 868 continue 869 } 870 if !candidate.PublicKey.(pubKeyEqual).Equal(cert.PublicKey) { 871 continue 872 } 873 var certSAN *pkix.Extension 874 for _, ext := range cert.Extensions { 875 if ext.Id.Equal(oidExtensionSubjectAltName) { 876 certSAN = &ext 877 break 878 } 879 } 880 if candidateSAN == nil && certSAN == nil { 881 return true 882 } else if candidateSAN == nil || certSAN == nil { 883 return false 884 } 885 if bytes.Equal(candidateSAN.Value, certSAN.Value) { 886 return true 887 } 888 } 889 return false 890 } 891 892 // maxChainSignatureChecks is the maximum number of CheckSignatureFrom calls 893 // that an invocation of buildChains will (transitively) make. Most chains are 894 // less than 15 certificates long, so this leaves space for multiple chains and 895 // for failed checks due to different intermediates having the same Subject. 896 const maxChainSignatureChecks = 100 897 898 func (c *Certificate) buildChains(currentChain []*Certificate, sigChecks *int, opts *VerifyOptions) (chains [][]*Certificate, err error) { 899 var ( 900 hintErr error 901 hintCert *Certificate 902 ) 903 904 considerCandidate := func(certType int, candidate *Certificate) { 905 if alreadyInChain(candidate, currentChain) { 906 return 907 } 908 909 if sigChecks == nil { 910 sigChecks = new(int) 911 } 912 *sigChecks++ 913 if *sigChecks > maxChainSignatureChecks { 914 err = errors.New("x509: signature check attempts limit reached while verifying certificate chain") 915 return 916 } 917 918 if err := c.CheckSignatureFrom(candidate); err != nil { 919 if hintErr == nil { 920 hintErr = err 921 hintCert = candidate 922 } 923 return 924 } 925 926 err = candidate.isValid(certType, currentChain, opts) 927 if err != nil { 928 if hintErr == nil { 929 hintErr = err 930 hintCert = candidate 931 } 932 return 933 } 934 935 switch certType { 936 case rootCertificate: 937 chains = append(chains, appendToFreshChain(currentChain, candidate)) 938 case intermediateCertificate: 939 var childChains [][]*Certificate 940 childChains, err = candidate.buildChains(appendToFreshChain(currentChain, candidate), sigChecks, opts) 941 chains = append(chains, childChains...) 942 } 943 } 944 945 for _, root := range opts.Roots.findPotentialParents(c) { 946 considerCandidate(rootCertificate, root) 947 } 948 for _, intermediate := range opts.Intermediates.findPotentialParents(c) { 949 considerCandidate(intermediateCertificate, intermediate) 950 } 951 952 if len(chains) > 0 { 953 err = nil 954 } 955 if len(chains) == 0 && err == nil { 956 err = UnknownAuthorityError{c, hintErr, hintCert} 957 } 958 959 return 960 } 961 962 func validHostnamePattern(host string) bool { return validHostname(host, true) } 963 func validHostnameInput(host string) bool { return validHostname(host, false) } 964 965 // validHostname reports whether host is a valid hostname that can be matched or 966 // matched against according to RFC 6125 2.2, with some leniency to accommodate 967 // legacy values. 968 func validHostname(host string, isPattern bool) bool { 969 if !isPattern { 970 host = strings.TrimSuffix(host, ".") 971 } 972 if len(host) == 0 { 973 return false 974 } 975 976 for i, part := range strings.Split(host, ".") { 977 if part == "" { 978 // Empty label. 979 return false 980 } 981 if isPattern && i == 0 && part == "*" { 982 // Only allow full left-most wildcards, as those are the only ones 983 // we match, and matching literal '*' characters is probably never 984 // the expected behavior. 985 continue 986 } 987 for j, c := range part { 988 if 'a' <= c && c <= 'z' { 989 continue 990 } 991 if '0' <= c && c <= '9' { 992 continue 993 } 994 if 'A' <= c && c <= 'Z' { 995 continue 996 } 997 if c == '-' && j != 0 { 998 continue 999 } 1000 if c == '_' { 1001 // Not a valid character in hostnames, but commonly 1002 // found in deployments outside the WebPKI. 1003 continue 1004 } 1005 return false 1006 } 1007 } 1008 1009 return true 1010 } 1011 1012 func matchExactly(hostA, hostB string) bool { 1013 if hostA == "" || hostA == "." || hostB == "" || hostB == "." { 1014 return false 1015 } 1016 return toLowerCaseASCII(hostA) == toLowerCaseASCII(hostB) 1017 } 1018 1019 func matchHostnames(pattern, host string) bool { 1020 pattern = toLowerCaseASCII(pattern) 1021 host = toLowerCaseASCII(strings.TrimSuffix(host, ".")) 1022 1023 if len(pattern) == 0 || len(host) == 0 { 1024 return false 1025 } 1026 1027 patternParts := strings.Split(pattern, ".") 1028 hostParts := strings.Split(host, ".") 1029 1030 if len(patternParts) != len(hostParts) { 1031 return false 1032 } 1033 1034 for i, patternPart := range patternParts { 1035 if i == 0 && patternPart == "*" { 1036 continue 1037 } 1038 if patternPart != hostParts[i] { 1039 return false 1040 } 1041 } 1042 1043 return true 1044 } 1045 1046 // toLowerCaseASCII returns a lower-case version of in. See RFC 6125 6.4.1. We use 1047 // an explicitly ASCII function to avoid any sharp corners resulting from 1048 // performing Unicode operations on DNS labels. 1049 func toLowerCaseASCII(in string) string { 1050 // If the string is already lower-case then there's nothing to do. 1051 isAlreadyLowerCase := true 1052 for _, c := range in { 1053 if c == utf8.RuneError { 1054 // If we get a UTF-8 error then there might be 1055 // upper-case ASCII bytes in the invalid sequence. 1056 isAlreadyLowerCase = false 1057 break 1058 } 1059 if 'A' <= c && c <= 'Z' { 1060 isAlreadyLowerCase = false 1061 break 1062 } 1063 } 1064 1065 if isAlreadyLowerCase { 1066 return in 1067 } 1068 1069 out := []byte(in) 1070 for i, c := range out { 1071 if 'A' <= c && c <= 'Z' { 1072 out[i] += 'a' - 'A' 1073 } 1074 } 1075 return string(out) 1076 } 1077 1078 // VerifyHostname returns nil if c is a valid certificate for the named host. 1079 // Otherwise it returns an error describing the mismatch. 1080 // 1081 // IP addresses can be optionally enclosed in square brackets and are checked 1082 // against the IPAddresses field. Other names are checked case insensitively 1083 // against the DNSNames field. If the names are valid hostnames, the certificate 1084 // fields can have a wildcard as the complete left-most label (e.g. *.example.com). 1085 // 1086 // Note that the legacy Common Name field is ignored. 1087 func (c *Certificate) VerifyHostname(h string) error { 1088 // IP addresses may be written in [ ]. 1089 candidateIP := h 1090 if len(h) >= 3 && h[0] == '[' && h[len(h)-1] == ']' { 1091 candidateIP = h[1 : len(h)-1] 1092 } 1093 if ip := net.ParseIP(candidateIP); ip != nil { 1094 // We only match IP addresses against IP SANs. 1095 // See RFC 6125, Appendix B.2. 1096 for _, candidate := range c.IPAddresses { 1097 if ip.Equal(candidate) { 1098 return nil 1099 } 1100 } 1101 return HostnameError{c, candidateIP} 1102 } 1103 1104 candidateName := toLowerCaseASCII(h) // Save allocations inside the loop. 1105 validCandidateName := validHostnameInput(candidateName) 1106 1107 for _, match := range c.DNSNames { 1108 // Ideally, we'd only match valid hostnames according to RFC 6125 like 1109 // browsers (more or less) do, but in practice Go is used in a wider 1110 // array of contexts and can't even assume DNS resolution. Instead, 1111 // always allow perfect matches, and only apply wildcard and trailing 1112 // dot processing to valid hostnames. 1113 if validCandidateName && validHostnamePattern(match) { 1114 if matchHostnames(match, candidateName) { 1115 return nil 1116 } 1117 } else { 1118 if matchExactly(match, candidateName) { 1119 return nil 1120 } 1121 } 1122 } 1123 1124 return HostnameError{c, h} 1125 } 1126 1127 func checkChainForKeyUsage(chain []*Certificate, keyUsages []ExtKeyUsage) bool { 1128 usages := make([]ExtKeyUsage, len(keyUsages)) 1129 copy(usages, keyUsages) 1130 1131 if len(chain) == 0 { 1132 return false 1133 } 1134 1135 usagesRemaining := len(usages) 1136 1137 // We walk down the list and cross out any usages that aren't supported 1138 // by each certificate. If we cross out all the usages, then the chain 1139 // is unacceptable. 1140 1141 NextCert: 1142 for i := len(chain) - 1; i >= 0; i-- { 1143 cert := chain[i] 1144 if len(cert.ExtKeyUsage) == 0 && len(cert.UnknownExtKeyUsage) == 0 { 1145 // The certificate doesn't have any extended key usage specified. 1146 continue 1147 } 1148 1149 for _, usage := range cert.ExtKeyUsage { 1150 if usage == ExtKeyUsageAny { 1151 // The certificate is explicitly good for any usage. 1152 continue NextCert 1153 } 1154 } 1155 1156 const invalidUsage ExtKeyUsage = -1 1157 1158 NextRequestedUsage: 1159 for i, requestedUsage := range usages { 1160 if requestedUsage == invalidUsage { 1161 continue 1162 } 1163 1164 for _, usage := range cert.ExtKeyUsage { 1165 if requestedUsage == usage { 1166 continue NextRequestedUsage 1167 } 1168 } 1169 1170 usages[i] = invalidUsage 1171 usagesRemaining-- 1172 if usagesRemaining == 0 { 1173 return false 1174 } 1175 } 1176 } 1177 1178 return true 1179 }