github.com/twelsh-aw/go/src@v0.0.0-20230516233729-a56fe86a7c81/crypto/x509/x509.go (about)

     1  // Copyright 2009 The Go Authors. All rights reserved.
     2  // Use of this source code is governed by a BSD-style
     3  // license that can be found in the LICENSE file.
     4  
     5  // Package x509 implements a subset of the X.509 standard.
     6  //
     7  // It allows parsing and generating certificates, certificate signing
     8  // requests, certificate revocation lists, and encoded public and private keys.
     9  // It provides a certificate verifier, complete with a chain builder.
    10  //
    11  // The package targets the X.509 technical profile defined by the IETF (RFC
    12  // 2459/3280/5280), and as further restricted by the CA/Browser Forum Baseline
    13  // Requirements. There is minimal support for features outside of these
    14  // profiles, as the primary goal of the package is to provide compatibility
    15  // with the publicly trusted TLS certificate ecosystem and its policies and
    16  // constraints.
    17  //
    18  // On macOS and Windows, certificate verification is handled by system APIs, but
    19  // the package aims to apply consistent validation rules across operating
    20  // systems.
    21  package x509
    22  
    23  import (
    24  	"bytes"
    25  	"crypto"
    26  	"crypto/ecdh"
    27  	"crypto/ecdsa"
    28  	"crypto/ed25519"
    29  	"crypto/elliptic"
    30  	"crypto/rsa"
    31  	"crypto/sha1"
    32  	"crypto/x509/pkix"
    33  	"encoding/asn1"
    34  	"encoding/pem"
    35  	"errors"
    36  	"fmt"
    37  	"internal/godebug"
    38  	"io"
    39  	"math/big"
    40  	"net"
    41  	"net/url"
    42  	"strconv"
    43  	"time"
    44  	"unicode"
    45  
    46  	// Explicitly import these for their crypto.RegisterHash init side-effects.
    47  	// Keep these as blank imports, even if they're imported above.
    48  	_ "crypto/sha1"
    49  	_ "crypto/sha256"
    50  	_ "crypto/sha512"
    51  
    52  	"golang.org/x/crypto/cryptobyte"
    53  	cryptobyte_asn1 "golang.org/x/crypto/cryptobyte/asn1"
    54  )
    55  
    56  // pkixPublicKey reflects a PKIX public key structure. See SubjectPublicKeyInfo
    57  // in RFC 3280.
    58  type pkixPublicKey struct {
    59  	Algo      pkix.AlgorithmIdentifier
    60  	BitString asn1.BitString
    61  }
    62  
    63  // ParsePKIXPublicKey parses a public key in PKIX, ASN.1 DER form. The encoded
    64  // public key is a SubjectPublicKeyInfo structure (see RFC 5280, Section 4.1).
    65  //
    66  // It returns a *rsa.PublicKey, *dsa.PublicKey, *ecdsa.PublicKey,
    67  // ed25519.PublicKey (not a pointer), or *ecdh.PublicKey (for X25519).
    68  // More types might be supported in the future.
    69  //
    70  // This kind of key is commonly encoded in PEM blocks of type "PUBLIC KEY".
    71  func ParsePKIXPublicKey(derBytes []byte) (pub any, err error) {
    72  	var pki publicKeyInfo
    73  	if rest, err := asn1.Unmarshal(derBytes, &pki); err != nil {
    74  		if _, err := asn1.Unmarshal(derBytes, &pkcs1PublicKey{}); err == nil {
    75  			return nil, errors.New("x509: failed to parse public key (use ParsePKCS1PublicKey instead for this key format)")
    76  		}
    77  		return nil, err
    78  	} else if len(rest) != 0 {
    79  		return nil, errors.New("x509: trailing data after ASN.1 of public-key")
    80  	}
    81  	return parsePublicKey(&pki)
    82  }
    83  
    84  func marshalPublicKey(pub any) (publicKeyBytes []byte, publicKeyAlgorithm pkix.AlgorithmIdentifier, err error) {
    85  	switch pub := pub.(type) {
    86  	case *rsa.PublicKey:
    87  		publicKeyBytes, err = asn1.Marshal(pkcs1PublicKey{
    88  			N: pub.N,
    89  			E: pub.E,
    90  		})
    91  		if err != nil {
    92  			return nil, pkix.AlgorithmIdentifier{}, err
    93  		}
    94  		publicKeyAlgorithm.Algorithm = oidPublicKeyRSA
    95  		// This is a NULL parameters value which is required by
    96  		// RFC 3279, Section 2.3.1.
    97  		publicKeyAlgorithm.Parameters = asn1.NullRawValue
    98  	case *ecdsa.PublicKey:
    99  		oid, ok := oidFromNamedCurve(pub.Curve)
   100  		if !ok {
   101  			return nil, pkix.AlgorithmIdentifier{}, errors.New("x509: unsupported elliptic curve")
   102  		}
   103  		if !pub.Curve.IsOnCurve(pub.X, pub.Y) {
   104  			return nil, pkix.AlgorithmIdentifier{}, errors.New("x509: invalid elliptic curve public key")
   105  		}
   106  		publicKeyBytes = elliptic.Marshal(pub.Curve, pub.X, pub.Y)
   107  		publicKeyAlgorithm.Algorithm = oidPublicKeyECDSA
   108  		var paramBytes []byte
   109  		paramBytes, err = asn1.Marshal(oid)
   110  		if err != nil {
   111  			return
   112  		}
   113  		publicKeyAlgorithm.Parameters.FullBytes = paramBytes
   114  	case ed25519.PublicKey:
   115  		publicKeyBytes = pub
   116  		publicKeyAlgorithm.Algorithm = oidPublicKeyEd25519
   117  	case *ecdh.PublicKey:
   118  		publicKeyBytes = pub.Bytes()
   119  		if pub.Curve() == ecdh.X25519() {
   120  			publicKeyAlgorithm.Algorithm = oidPublicKeyX25519
   121  		} else {
   122  			oid, ok := oidFromECDHCurve(pub.Curve())
   123  			if !ok {
   124  				return nil, pkix.AlgorithmIdentifier{}, errors.New("x509: unsupported elliptic curve")
   125  			}
   126  			publicKeyAlgorithm.Algorithm = oidPublicKeyECDSA
   127  			var paramBytes []byte
   128  			paramBytes, err = asn1.Marshal(oid)
   129  			if err != nil {
   130  				return
   131  			}
   132  			publicKeyAlgorithm.Parameters.FullBytes = paramBytes
   133  		}
   134  	default:
   135  		return nil, pkix.AlgorithmIdentifier{}, fmt.Errorf("x509: unsupported public key type: %T", pub)
   136  	}
   137  
   138  	return publicKeyBytes, publicKeyAlgorithm, nil
   139  }
   140  
   141  // MarshalPKIXPublicKey converts a public key to PKIX, ASN.1 DER form.
   142  // The encoded public key is a SubjectPublicKeyInfo structure
   143  // (see RFC 5280, Section 4.1).
   144  //
   145  // The following key types are currently supported: *rsa.PublicKey,
   146  // *ecdsa.PublicKey, ed25519.PublicKey (not a pointer), and *ecdh.PublicKey.
   147  // Unsupported key types result in an error.
   148  //
   149  // This kind of key is commonly encoded in PEM blocks of type "PUBLIC KEY".
   150  func MarshalPKIXPublicKey(pub any) ([]byte, error) {
   151  	var publicKeyBytes []byte
   152  	var publicKeyAlgorithm pkix.AlgorithmIdentifier
   153  	var err error
   154  
   155  	if publicKeyBytes, publicKeyAlgorithm, err = marshalPublicKey(pub); err != nil {
   156  		return nil, err
   157  	}
   158  
   159  	pkix := pkixPublicKey{
   160  		Algo: publicKeyAlgorithm,
   161  		BitString: asn1.BitString{
   162  			Bytes:     publicKeyBytes,
   163  			BitLength: 8 * len(publicKeyBytes),
   164  		},
   165  	}
   166  
   167  	ret, _ := asn1.Marshal(pkix)
   168  	return ret, nil
   169  }
   170  
   171  // These structures reflect the ASN.1 structure of X.509 certificates.:
   172  
   173  type certificate struct {
   174  	TBSCertificate     tbsCertificate
   175  	SignatureAlgorithm pkix.AlgorithmIdentifier
   176  	SignatureValue     asn1.BitString
   177  }
   178  
   179  type tbsCertificate struct {
   180  	Raw                asn1.RawContent
   181  	Version            int `asn1:"optional,explicit,default:0,tag:0"`
   182  	SerialNumber       *big.Int
   183  	SignatureAlgorithm pkix.AlgorithmIdentifier
   184  	Issuer             asn1.RawValue
   185  	Validity           validity
   186  	Subject            asn1.RawValue
   187  	PublicKey          publicKeyInfo
   188  	UniqueId           asn1.BitString   `asn1:"optional,tag:1"`
   189  	SubjectUniqueId    asn1.BitString   `asn1:"optional,tag:2"`
   190  	Extensions         []pkix.Extension `asn1:"omitempty,optional,explicit,tag:3"`
   191  }
   192  
   193  type dsaAlgorithmParameters struct {
   194  	P, Q, G *big.Int
   195  }
   196  
   197  type validity struct {
   198  	NotBefore, NotAfter time.Time
   199  }
   200  
   201  type publicKeyInfo struct {
   202  	Raw       asn1.RawContent
   203  	Algorithm pkix.AlgorithmIdentifier
   204  	PublicKey asn1.BitString
   205  }
   206  
   207  // RFC 5280,  4.2.1.1
   208  type authKeyId struct {
   209  	Id []byte `asn1:"optional,tag:0"`
   210  }
   211  
   212  type SignatureAlgorithm int
   213  
   214  const (
   215  	UnknownSignatureAlgorithm SignatureAlgorithm = iota
   216  
   217  	MD2WithRSA  // Unsupported.
   218  	MD5WithRSA  // Only supported for signing, not verification.
   219  	SHA1WithRSA // Only supported for signing, and verification of CRLs, CSRs, and OCSP responses.
   220  	SHA256WithRSA
   221  	SHA384WithRSA
   222  	SHA512WithRSA
   223  	DSAWithSHA1   // Unsupported.
   224  	DSAWithSHA256 // Unsupported.
   225  	ECDSAWithSHA1 // Only supported for signing, and verification of CRLs, CSRs, and OCSP responses.
   226  	ECDSAWithSHA256
   227  	ECDSAWithSHA384
   228  	ECDSAWithSHA512
   229  	SHA256WithRSAPSS
   230  	SHA384WithRSAPSS
   231  	SHA512WithRSAPSS
   232  	PureEd25519
   233  )
   234  
   235  func (algo SignatureAlgorithm) isRSAPSS() bool {
   236  	switch algo {
   237  	case SHA256WithRSAPSS, SHA384WithRSAPSS, SHA512WithRSAPSS:
   238  		return true
   239  	default:
   240  		return false
   241  	}
   242  }
   243  
   244  func (algo SignatureAlgorithm) String() string {
   245  	for _, details := range signatureAlgorithmDetails {
   246  		if details.algo == algo {
   247  			return details.name
   248  		}
   249  	}
   250  	return strconv.Itoa(int(algo))
   251  }
   252  
   253  type PublicKeyAlgorithm int
   254  
   255  const (
   256  	UnknownPublicKeyAlgorithm PublicKeyAlgorithm = iota
   257  	RSA
   258  	DSA // Only supported for parsing.
   259  	ECDSA
   260  	Ed25519
   261  )
   262  
   263  var publicKeyAlgoName = [...]string{
   264  	RSA:     "RSA",
   265  	DSA:     "DSA",
   266  	ECDSA:   "ECDSA",
   267  	Ed25519: "Ed25519",
   268  }
   269  
   270  func (algo PublicKeyAlgorithm) String() string {
   271  	if 0 < algo && int(algo) < len(publicKeyAlgoName) {
   272  		return publicKeyAlgoName[algo]
   273  	}
   274  	return strconv.Itoa(int(algo))
   275  }
   276  
   277  // OIDs for signature algorithms
   278  //
   279  //	pkcs-1 OBJECT IDENTIFIER ::= {
   280  //		iso(1) member-body(2) us(840) rsadsi(113549) pkcs(1) 1 }
   281  //
   282  // RFC 3279 2.2.1 RSA Signature Algorithms
   283  //
   284  //	md2WithRSAEncryption OBJECT IDENTIFIER ::= { pkcs-1 2 }
   285  //
   286  //	md5WithRSAEncryption OBJECT IDENTIFIER ::= { pkcs-1 4 }
   287  //
   288  //	sha-1WithRSAEncryption OBJECT IDENTIFIER ::= { pkcs-1 5 }
   289  //
   290  //	dsaWithSha1 OBJECT IDENTIFIER ::= {
   291  //		iso(1) member-body(2) us(840) x9-57(10040) x9cm(4) 3 }
   292  //
   293  // RFC 3279 2.2.3 ECDSA Signature Algorithm
   294  //
   295  //	ecdsa-with-SHA1 OBJECT IDENTIFIER ::= {
   296  //		iso(1) member-body(2) us(840) ansi-x962(10045)
   297  //		signatures(4) ecdsa-with-SHA1(1)}
   298  //
   299  // RFC 4055 5 PKCS #1 Version 1.5
   300  //
   301  //	sha256WithRSAEncryption OBJECT IDENTIFIER ::= { pkcs-1 11 }
   302  //
   303  //	sha384WithRSAEncryption OBJECT IDENTIFIER ::= { pkcs-1 12 }
   304  //
   305  //	sha512WithRSAEncryption OBJECT IDENTIFIER ::= { pkcs-1 13 }
   306  //
   307  // RFC 5758 3.1 DSA Signature Algorithms
   308  //
   309  //	dsaWithSha256 OBJECT IDENTIFIER ::= {
   310  //		joint-iso-ccitt(2) country(16) us(840) organization(1) gov(101)
   311  //		csor(3) algorithms(4) id-dsa-with-sha2(3) 2}
   312  //
   313  // RFC 5758 3.2 ECDSA Signature Algorithm
   314  //
   315  //	ecdsa-with-SHA256 OBJECT IDENTIFIER ::= { iso(1) member-body(2)
   316  //		us(840) ansi-X9-62(10045) signatures(4) ecdsa-with-SHA2(3) 2 }
   317  //
   318  //	ecdsa-with-SHA384 OBJECT IDENTIFIER ::= { iso(1) member-body(2)
   319  //		us(840) ansi-X9-62(10045) signatures(4) ecdsa-with-SHA2(3) 3 }
   320  //
   321  //	ecdsa-with-SHA512 OBJECT IDENTIFIER ::= { iso(1) member-body(2)
   322  //		us(840) ansi-X9-62(10045) signatures(4) ecdsa-with-SHA2(3) 4 }
   323  //
   324  // RFC 8410 3 Curve25519 and Curve448 Algorithm Identifiers
   325  //
   326  //	id-Ed25519   OBJECT IDENTIFIER ::= { 1 3 101 112 }
   327  var (
   328  	oidSignatureMD2WithRSA      = asn1.ObjectIdentifier{1, 2, 840, 113549, 1, 1, 2}
   329  	oidSignatureMD5WithRSA      = asn1.ObjectIdentifier{1, 2, 840, 113549, 1, 1, 4}
   330  	oidSignatureSHA1WithRSA     = asn1.ObjectIdentifier{1, 2, 840, 113549, 1, 1, 5}
   331  	oidSignatureSHA256WithRSA   = asn1.ObjectIdentifier{1, 2, 840, 113549, 1, 1, 11}
   332  	oidSignatureSHA384WithRSA   = asn1.ObjectIdentifier{1, 2, 840, 113549, 1, 1, 12}
   333  	oidSignatureSHA512WithRSA   = asn1.ObjectIdentifier{1, 2, 840, 113549, 1, 1, 13}
   334  	oidSignatureRSAPSS          = asn1.ObjectIdentifier{1, 2, 840, 113549, 1, 1, 10}
   335  	oidSignatureDSAWithSHA1     = asn1.ObjectIdentifier{1, 2, 840, 10040, 4, 3}
   336  	oidSignatureDSAWithSHA256   = asn1.ObjectIdentifier{2, 16, 840, 1, 101, 3, 4, 3, 2}
   337  	oidSignatureECDSAWithSHA1   = asn1.ObjectIdentifier{1, 2, 840, 10045, 4, 1}
   338  	oidSignatureECDSAWithSHA256 = asn1.ObjectIdentifier{1, 2, 840, 10045, 4, 3, 2}
   339  	oidSignatureECDSAWithSHA384 = asn1.ObjectIdentifier{1, 2, 840, 10045, 4, 3, 3}
   340  	oidSignatureECDSAWithSHA512 = asn1.ObjectIdentifier{1, 2, 840, 10045, 4, 3, 4}
   341  	oidSignatureEd25519         = asn1.ObjectIdentifier{1, 3, 101, 112}
   342  
   343  	oidSHA256 = asn1.ObjectIdentifier{2, 16, 840, 1, 101, 3, 4, 2, 1}
   344  	oidSHA384 = asn1.ObjectIdentifier{2, 16, 840, 1, 101, 3, 4, 2, 2}
   345  	oidSHA512 = asn1.ObjectIdentifier{2, 16, 840, 1, 101, 3, 4, 2, 3}
   346  
   347  	oidMGF1 = asn1.ObjectIdentifier{1, 2, 840, 113549, 1, 1, 8}
   348  
   349  	// oidISOSignatureSHA1WithRSA means the same as oidSignatureSHA1WithRSA
   350  	// but it's specified by ISO. Microsoft's makecert.exe has been known
   351  	// to produce certificates with this OID.
   352  	oidISOSignatureSHA1WithRSA = asn1.ObjectIdentifier{1, 3, 14, 3, 2, 29}
   353  )
   354  
   355  var signatureAlgorithmDetails = []struct {
   356  	algo       SignatureAlgorithm
   357  	name       string
   358  	oid        asn1.ObjectIdentifier
   359  	pubKeyAlgo PublicKeyAlgorithm
   360  	hash       crypto.Hash
   361  }{
   362  	{MD2WithRSA, "MD2-RSA", oidSignatureMD2WithRSA, RSA, crypto.Hash(0) /* no value for MD2 */},
   363  	{MD5WithRSA, "MD5-RSA", oidSignatureMD5WithRSA, RSA, crypto.MD5},
   364  	{SHA1WithRSA, "SHA1-RSA", oidSignatureSHA1WithRSA, RSA, crypto.SHA1},
   365  	{SHA1WithRSA, "SHA1-RSA", oidISOSignatureSHA1WithRSA, RSA, crypto.SHA1},
   366  	{SHA256WithRSA, "SHA256-RSA", oidSignatureSHA256WithRSA, RSA, crypto.SHA256},
   367  	{SHA384WithRSA, "SHA384-RSA", oidSignatureSHA384WithRSA, RSA, crypto.SHA384},
   368  	{SHA512WithRSA, "SHA512-RSA", oidSignatureSHA512WithRSA, RSA, crypto.SHA512},
   369  	{SHA256WithRSAPSS, "SHA256-RSAPSS", oidSignatureRSAPSS, RSA, crypto.SHA256},
   370  	{SHA384WithRSAPSS, "SHA384-RSAPSS", oidSignatureRSAPSS, RSA, crypto.SHA384},
   371  	{SHA512WithRSAPSS, "SHA512-RSAPSS", oidSignatureRSAPSS, RSA, crypto.SHA512},
   372  	{DSAWithSHA1, "DSA-SHA1", oidSignatureDSAWithSHA1, DSA, crypto.SHA1},
   373  	{DSAWithSHA256, "DSA-SHA256", oidSignatureDSAWithSHA256, DSA, crypto.SHA256},
   374  	{ECDSAWithSHA1, "ECDSA-SHA1", oidSignatureECDSAWithSHA1, ECDSA, crypto.SHA1},
   375  	{ECDSAWithSHA256, "ECDSA-SHA256", oidSignatureECDSAWithSHA256, ECDSA, crypto.SHA256},
   376  	{ECDSAWithSHA384, "ECDSA-SHA384", oidSignatureECDSAWithSHA384, ECDSA, crypto.SHA384},
   377  	{ECDSAWithSHA512, "ECDSA-SHA512", oidSignatureECDSAWithSHA512, ECDSA, crypto.SHA512},
   378  	{PureEd25519, "Ed25519", oidSignatureEd25519, Ed25519, crypto.Hash(0) /* no pre-hashing */},
   379  }
   380  
   381  // hashToPSSParameters contains the DER encoded RSA PSS parameters for the
   382  // SHA256, SHA384, and SHA512 hashes as defined in RFC 3447, Appendix A.2.3.
   383  // The parameters contain the following values:
   384  //   - hashAlgorithm contains the associated hash identifier with NULL parameters
   385  //   - maskGenAlgorithm always contains the default mgf1SHA1 identifier
   386  //   - saltLength contains the length of the associated hash
   387  //   - trailerField always contains the default trailerFieldBC value
   388  var hashToPSSParameters = map[crypto.Hash]asn1.RawValue{
   389  	crypto.SHA256: asn1.RawValue{FullBytes: []byte{48, 52, 160, 15, 48, 13, 6, 9, 96, 134, 72, 1, 101, 3, 4, 2, 1, 5, 0, 161, 28, 48, 26, 6, 9, 42, 134, 72, 134, 247, 13, 1, 1, 8, 48, 13, 6, 9, 96, 134, 72, 1, 101, 3, 4, 2, 1, 5, 0, 162, 3, 2, 1, 32}},
   390  	crypto.SHA384: asn1.RawValue{FullBytes: []byte{48, 52, 160, 15, 48, 13, 6, 9, 96, 134, 72, 1, 101, 3, 4, 2, 2, 5, 0, 161, 28, 48, 26, 6, 9, 42, 134, 72, 134, 247, 13, 1, 1, 8, 48, 13, 6, 9, 96, 134, 72, 1, 101, 3, 4, 2, 2, 5, 0, 162, 3, 2, 1, 48}},
   391  	crypto.SHA512: asn1.RawValue{FullBytes: []byte{48, 52, 160, 15, 48, 13, 6, 9, 96, 134, 72, 1, 101, 3, 4, 2, 3, 5, 0, 161, 28, 48, 26, 6, 9, 42, 134, 72, 134, 247, 13, 1, 1, 8, 48, 13, 6, 9, 96, 134, 72, 1, 101, 3, 4, 2, 3, 5, 0, 162, 3, 2, 1, 64}},
   392  }
   393  
   394  // pssParameters reflects the parameters in an AlgorithmIdentifier that
   395  // specifies RSA PSS. See RFC 3447, Appendix A.2.3.
   396  type pssParameters struct {
   397  	// The following three fields are not marked as
   398  	// optional because the default values specify SHA-1,
   399  	// which is no longer suitable for use in signatures.
   400  	Hash         pkix.AlgorithmIdentifier `asn1:"explicit,tag:0"`
   401  	MGF          pkix.AlgorithmIdentifier `asn1:"explicit,tag:1"`
   402  	SaltLength   int                      `asn1:"explicit,tag:2"`
   403  	TrailerField int                      `asn1:"optional,explicit,tag:3,default:1"`
   404  }
   405  
   406  func getSignatureAlgorithmFromAI(ai pkix.AlgorithmIdentifier) SignatureAlgorithm {
   407  	if ai.Algorithm.Equal(oidSignatureEd25519) {
   408  		// RFC 8410, Section 3
   409  		// > For all of the OIDs, the parameters MUST be absent.
   410  		if len(ai.Parameters.FullBytes) != 0 {
   411  			return UnknownSignatureAlgorithm
   412  		}
   413  	}
   414  
   415  	if !ai.Algorithm.Equal(oidSignatureRSAPSS) {
   416  		for _, details := range signatureAlgorithmDetails {
   417  			if ai.Algorithm.Equal(details.oid) {
   418  				return details.algo
   419  			}
   420  		}
   421  		return UnknownSignatureAlgorithm
   422  	}
   423  
   424  	// RSA PSS is special because it encodes important parameters
   425  	// in the Parameters.
   426  
   427  	var params pssParameters
   428  	if _, err := asn1.Unmarshal(ai.Parameters.FullBytes, &params); err != nil {
   429  		return UnknownSignatureAlgorithm
   430  	}
   431  
   432  	var mgf1HashFunc pkix.AlgorithmIdentifier
   433  	if _, err := asn1.Unmarshal(params.MGF.Parameters.FullBytes, &mgf1HashFunc); err != nil {
   434  		return UnknownSignatureAlgorithm
   435  	}
   436  
   437  	// PSS is greatly overburdened with options. This code forces them into
   438  	// three buckets by requiring that the MGF1 hash function always match the
   439  	// message hash function (as recommended in RFC 3447, Section 8.1), that the
   440  	// salt length matches the hash length, and that the trailer field has the
   441  	// default value.
   442  	if (len(params.Hash.Parameters.FullBytes) != 0 && !bytes.Equal(params.Hash.Parameters.FullBytes, asn1.NullBytes)) ||
   443  		!params.MGF.Algorithm.Equal(oidMGF1) ||
   444  		!mgf1HashFunc.Algorithm.Equal(params.Hash.Algorithm) ||
   445  		(len(mgf1HashFunc.Parameters.FullBytes) != 0 && !bytes.Equal(mgf1HashFunc.Parameters.FullBytes, asn1.NullBytes)) ||
   446  		params.TrailerField != 1 {
   447  		return UnknownSignatureAlgorithm
   448  	}
   449  
   450  	switch {
   451  	case params.Hash.Algorithm.Equal(oidSHA256) && params.SaltLength == 32:
   452  		return SHA256WithRSAPSS
   453  	case params.Hash.Algorithm.Equal(oidSHA384) && params.SaltLength == 48:
   454  		return SHA384WithRSAPSS
   455  	case params.Hash.Algorithm.Equal(oidSHA512) && params.SaltLength == 64:
   456  		return SHA512WithRSAPSS
   457  	}
   458  
   459  	return UnknownSignatureAlgorithm
   460  }
   461  
   462  var (
   463  	// RFC 3279, 2.3 Public Key Algorithms
   464  	//
   465  	//	pkcs-1 OBJECT IDENTIFIER ::== { iso(1) member-body(2) us(840)
   466  	//		rsadsi(113549) pkcs(1) 1 }
   467  	//
   468  	// rsaEncryption OBJECT IDENTIFIER ::== { pkcs1-1 1 }
   469  	//
   470  	//	id-dsa OBJECT IDENTIFIER ::== { iso(1) member-body(2) us(840)
   471  	//		x9-57(10040) x9cm(4) 1 }
   472  	oidPublicKeyRSA = asn1.ObjectIdentifier{1, 2, 840, 113549, 1, 1, 1}
   473  	oidPublicKeyDSA = asn1.ObjectIdentifier{1, 2, 840, 10040, 4, 1}
   474  	// RFC 5480, 2.1.1 Unrestricted Algorithm Identifier and Parameters
   475  	//
   476  	//	id-ecPublicKey OBJECT IDENTIFIER ::= {
   477  	//		iso(1) member-body(2) us(840) ansi-X9-62(10045) keyType(2) 1 }
   478  	oidPublicKeyECDSA = asn1.ObjectIdentifier{1, 2, 840, 10045, 2, 1}
   479  	// RFC 8410, Section 3
   480  	//
   481  	//	id-X25519    OBJECT IDENTIFIER ::= { 1 3 101 110 }
   482  	//	id-Ed25519   OBJECT IDENTIFIER ::= { 1 3 101 112 }
   483  	oidPublicKeyX25519  = asn1.ObjectIdentifier{1, 3, 101, 110}
   484  	oidPublicKeyEd25519 = asn1.ObjectIdentifier{1, 3, 101, 112}
   485  )
   486  
   487  // getPublicKeyAlgorithmFromOID returns the exposed PublicKeyAlgorithm
   488  // identifier for public key types supported in certificates and CSRs. Marshal
   489  // and Parse functions may support a different set of public key types.
   490  func getPublicKeyAlgorithmFromOID(oid asn1.ObjectIdentifier) PublicKeyAlgorithm {
   491  	switch {
   492  	case oid.Equal(oidPublicKeyRSA):
   493  		return RSA
   494  	case oid.Equal(oidPublicKeyDSA):
   495  		return DSA
   496  	case oid.Equal(oidPublicKeyECDSA):
   497  		return ECDSA
   498  	case oid.Equal(oidPublicKeyEd25519):
   499  		return Ed25519
   500  	}
   501  	return UnknownPublicKeyAlgorithm
   502  }
   503  
   504  // RFC 5480, 2.1.1.1. Named Curve
   505  //
   506  //	secp224r1 OBJECT IDENTIFIER ::= {
   507  //	  iso(1) identified-organization(3) certicom(132) curve(0) 33 }
   508  //
   509  //	secp256r1 OBJECT IDENTIFIER ::= {
   510  //	  iso(1) member-body(2) us(840) ansi-X9-62(10045) curves(3)
   511  //	  prime(1) 7 }
   512  //
   513  //	secp384r1 OBJECT IDENTIFIER ::= {
   514  //	  iso(1) identified-organization(3) certicom(132) curve(0) 34 }
   515  //
   516  //	secp521r1 OBJECT IDENTIFIER ::= {
   517  //	  iso(1) identified-organization(3) certicom(132) curve(0) 35 }
   518  //
   519  // NB: secp256r1 is equivalent to prime256v1
   520  var (
   521  	oidNamedCurveP224 = asn1.ObjectIdentifier{1, 3, 132, 0, 33}
   522  	oidNamedCurveP256 = asn1.ObjectIdentifier{1, 2, 840, 10045, 3, 1, 7}
   523  	oidNamedCurveP384 = asn1.ObjectIdentifier{1, 3, 132, 0, 34}
   524  	oidNamedCurveP521 = asn1.ObjectIdentifier{1, 3, 132, 0, 35}
   525  )
   526  
   527  func namedCurveFromOID(oid asn1.ObjectIdentifier) elliptic.Curve {
   528  	switch {
   529  	case oid.Equal(oidNamedCurveP224):
   530  		return elliptic.P224()
   531  	case oid.Equal(oidNamedCurveP256):
   532  		return elliptic.P256()
   533  	case oid.Equal(oidNamedCurveP384):
   534  		return elliptic.P384()
   535  	case oid.Equal(oidNamedCurveP521):
   536  		return elliptic.P521()
   537  	}
   538  	return nil
   539  }
   540  
   541  func oidFromNamedCurve(curve elliptic.Curve) (asn1.ObjectIdentifier, bool) {
   542  	switch curve {
   543  	case elliptic.P224():
   544  		return oidNamedCurveP224, true
   545  	case elliptic.P256():
   546  		return oidNamedCurveP256, true
   547  	case elliptic.P384():
   548  		return oidNamedCurveP384, true
   549  	case elliptic.P521():
   550  		return oidNamedCurveP521, true
   551  	}
   552  
   553  	return nil, false
   554  }
   555  
   556  func oidFromECDHCurve(curve ecdh.Curve) (asn1.ObjectIdentifier, bool) {
   557  	switch curve {
   558  	case ecdh.X25519():
   559  		return oidPublicKeyX25519, true
   560  	case ecdh.P256():
   561  		return oidNamedCurveP256, true
   562  	case ecdh.P384():
   563  		return oidNamedCurveP384, true
   564  	case ecdh.P521():
   565  		return oidNamedCurveP521, true
   566  	}
   567  
   568  	return nil, false
   569  }
   570  
   571  // KeyUsage represents the set of actions that are valid for a given key. It's
   572  // a bitmap of the KeyUsage* constants.
   573  type KeyUsage int
   574  
   575  const (
   576  	KeyUsageDigitalSignature KeyUsage = 1 << iota
   577  	KeyUsageContentCommitment
   578  	KeyUsageKeyEncipherment
   579  	KeyUsageDataEncipherment
   580  	KeyUsageKeyAgreement
   581  	KeyUsageCertSign
   582  	KeyUsageCRLSign
   583  	KeyUsageEncipherOnly
   584  	KeyUsageDecipherOnly
   585  )
   586  
   587  // RFC 5280, 4.2.1.12  Extended Key Usage
   588  //
   589  //	anyExtendedKeyUsage OBJECT IDENTIFIER ::= { id-ce-extKeyUsage 0 }
   590  //
   591  //	id-kp OBJECT IDENTIFIER ::= { id-pkix 3 }
   592  //
   593  //	id-kp-serverAuth             OBJECT IDENTIFIER ::= { id-kp 1 }
   594  //	id-kp-clientAuth             OBJECT IDENTIFIER ::= { id-kp 2 }
   595  //	id-kp-codeSigning            OBJECT IDENTIFIER ::= { id-kp 3 }
   596  //	id-kp-emailProtection        OBJECT IDENTIFIER ::= { id-kp 4 }
   597  //	id-kp-timeStamping           OBJECT IDENTIFIER ::= { id-kp 8 }
   598  //	id-kp-OCSPSigning            OBJECT IDENTIFIER ::= { id-kp 9 }
   599  var (
   600  	oidExtKeyUsageAny                            = asn1.ObjectIdentifier{2, 5, 29, 37, 0}
   601  	oidExtKeyUsageServerAuth                     = asn1.ObjectIdentifier{1, 3, 6, 1, 5, 5, 7, 3, 1}
   602  	oidExtKeyUsageClientAuth                     = asn1.ObjectIdentifier{1, 3, 6, 1, 5, 5, 7, 3, 2}
   603  	oidExtKeyUsageCodeSigning                    = asn1.ObjectIdentifier{1, 3, 6, 1, 5, 5, 7, 3, 3}
   604  	oidExtKeyUsageEmailProtection                = asn1.ObjectIdentifier{1, 3, 6, 1, 5, 5, 7, 3, 4}
   605  	oidExtKeyUsageIPSECEndSystem                 = asn1.ObjectIdentifier{1, 3, 6, 1, 5, 5, 7, 3, 5}
   606  	oidExtKeyUsageIPSECTunnel                    = asn1.ObjectIdentifier{1, 3, 6, 1, 5, 5, 7, 3, 6}
   607  	oidExtKeyUsageIPSECUser                      = asn1.ObjectIdentifier{1, 3, 6, 1, 5, 5, 7, 3, 7}
   608  	oidExtKeyUsageTimeStamping                   = asn1.ObjectIdentifier{1, 3, 6, 1, 5, 5, 7, 3, 8}
   609  	oidExtKeyUsageOCSPSigning                    = asn1.ObjectIdentifier{1, 3, 6, 1, 5, 5, 7, 3, 9}
   610  	oidExtKeyUsageMicrosoftServerGatedCrypto     = asn1.ObjectIdentifier{1, 3, 6, 1, 4, 1, 311, 10, 3, 3}
   611  	oidExtKeyUsageNetscapeServerGatedCrypto      = asn1.ObjectIdentifier{2, 16, 840, 1, 113730, 4, 1}
   612  	oidExtKeyUsageMicrosoftCommercialCodeSigning = asn1.ObjectIdentifier{1, 3, 6, 1, 4, 1, 311, 2, 1, 22}
   613  	oidExtKeyUsageMicrosoftKernelCodeSigning     = asn1.ObjectIdentifier{1, 3, 6, 1, 4, 1, 311, 61, 1, 1}
   614  )
   615  
   616  // ExtKeyUsage represents an extended set of actions that are valid for a given key.
   617  // Each of the ExtKeyUsage* constants define a unique action.
   618  type ExtKeyUsage int
   619  
   620  const (
   621  	ExtKeyUsageAny ExtKeyUsage = iota
   622  	ExtKeyUsageServerAuth
   623  	ExtKeyUsageClientAuth
   624  	ExtKeyUsageCodeSigning
   625  	ExtKeyUsageEmailProtection
   626  	ExtKeyUsageIPSECEndSystem
   627  	ExtKeyUsageIPSECTunnel
   628  	ExtKeyUsageIPSECUser
   629  	ExtKeyUsageTimeStamping
   630  	ExtKeyUsageOCSPSigning
   631  	ExtKeyUsageMicrosoftServerGatedCrypto
   632  	ExtKeyUsageNetscapeServerGatedCrypto
   633  	ExtKeyUsageMicrosoftCommercialCodeSigning
   634  	ExtKeyUsageMicrosoftKernelCodeSigning
   635  )
   636  
   637  // extKeyUsageOIDs contains the mapping between an ExtKeyUsage and its OID.
   638  var extKeyUsageOIDs = []struct {
   639  	extKeyUsage ExtKeyUsage
   640  	oid         asn1.ObjectIdentifier
   641  }{
   642  	{ExtKeyUsageAny, oidExtKeyUsageAny},
   643  	{ExtKeyUsageServerAuth, oidExtKeyUsageServerAuth},
   644  	{ExtKeyUsageClientAuth, oidExtKeyUsageClientAuth},
   645  	{ExtKeyUsageCodeSigning, oidExtKeyUsageCodeSigning},
   646  	{ExtKeyUsageEmailProtection, oidExtKeyUsageEmailProtection},
   647  	{ExtKeyUsageIPSECEndSystem, oidExtKeyUsageIPSECEndSystem},
   648  	{ExtKeyUsageIPSECTunnel, oidExtKeyUsageIPSECTunnel},
   649  	{ExtKeyUsageIPSECUser, oidExtKeyUsageIPSECUser},
   650  	{ExtKeyUsageTimeStamping, oidExtKeyUsageTimeStamping},
   651  	{ExtKeyUsageOCSPSigning, oidExtKeyUsageOCSPSigning},
   652  	{ExtKeyUsageMicrosoftServerGatedCrypto, oidExtKeyUsageMicrosoftServerGatedCrypto},
   653  	{ExtKeyUsageNetscapeServerGatedCrypto, oidExtKeyUsageNetscapeServerGatedCrypto},
   654  	{ExtKeyUsageMicrosoftCommercialCodeSigning, oidExtKeyUsageMicrosoftCommercialCodeSigning},
   655  	{ExtKeyUsageMicrosoftKernelCodeSigning, oidExtKeyUsageMicrosoftKernelCodeSigning},
   656  }
   657  
   658  func extKeyUsageFromOID(oid asn1.ObjectIdentifier) (eku ExtKeyUsage, ok bool) {
   659  	for _, pair := range extKeyUsageOIDs {
   660  		if oid.Equal(pair.oid) {
   661  			return pair.extKeyUsage, true
   662  		}
   663  	}
   664  	return
   665  }
   666  
   667  func oidFromExtKeyUsage(eku ExtKeyUsage) (oid asn1.ObjectIdentifier, ok bool) {
   668  	for _, pair := range extKeyUsageOIDs {
   669  		if eku == pair.extKeyUsage {
   670  			return pair.oid, true
   671  		}
   672  	}
   673  	return
   674  }
   675  
   676  // A Certificate represents an X.509 certificate.
   677  type Certificate struct {
   678  	Raw                     []byte // Complete ASN.1 DER content (certificate, signature algorithm and signature).
   679  	RawTBSCertificate       []byte // Certificate part of raw ASN.1 DER content.
   680  	RawSubjectPublicKeyInfo []byte // DER encoded SubjectPublicKeyInfo.
   681  	RawSubject              []byte // DER encoded Subject
   682  	RawIssuer               []byte // DER encoded Issuer
   683  
   684  	Signature          []byte
   685  	SignatureAlgorithm SignatureAlgorithm
   686  
   687  	PublicKeyAlgorithm PublicKeyAlgorithm
   688  	PublicKey          any
   689  
   690  	Version             int
   691  	SerialNumber        *big.Int
   692  	Issuer              pkix.Name
   693  	Subject             pkix.Name
   694  	NotBefore, NotAfter time.Time // Validity bounds.
   695  	KeyUsage            KeyUsage
   696  
   697  	// Extensions contains raw X.509 extensions. When parsing certificates,
   698  	// this can be used to extract non-critical extensions that are not
   699  	// parsed by this package. When marshaling certificates, the Extensions
   700  	// field is ignored, see ExtraExtensions.
   701  	Extensions []pkix.Extension
   702  
   703  	// ExtraExtensions contains extensions to be copied, raw, into any
   704  	// marshaled certificates. Values override any extensions that would
   705  	// otherwise be produced based on the other fields. The ExtraExtensions
   706  	// field is not populated when parsing certificates, see Extensions.
   707  	ExtraExtensions []pkix.Extension
   708  
   709  	// UnhandledCriticalExtensions contains a list of extension IDs that
   710  	// were not (fully) processed when parsing. Verify will fail if this
   711  	// slice is non-empty, unless verification is delegated to an OS
   712  	// library which understands all the critical extensions.
   713  	//
   714  	// Users can access these extensions using Extensions and can remove
   715  	// elements from this slice if they believe that they have been
   716  	// handled.
   717  	UnhandledCriticalExtensions []asn1.ObjectIdentifier
   718  
   719  	ExtKeyUsage        []ExtKeyUsage           // Sequence of extended key usages.
   720  	UnknownExtKeyUsage []asn1.ObjectIdentifier // Encountered extended key usages unknown to this package.
   721  
   722  	// BasicConstraintsValid indicates whether IsCA, MaxPathLen,
   723  	// and MaxPathLenZero are valid.
   724  	BasicConstraintsValid bool
   725  	IsCA                  bool
   726  
   727  	// MaxPathLen and MaxPathLenZero indicate the presence and
   728  	// value of the BasicConstraints' "pathLenConstraint".
   729  	//
   730  	// When parsing a certificate, a positive non-zero MaxPathLen
   731  	// means that the field was specified, -1 means it was unset,
   732  	// and MaxPathLenZero being true mean that the field was
   733  	// explicitly set to zero. The case of MaxPathLen==0 with MaxPathLenZero==false
   734  	// should be treated equivalent to -1 (unset).
   735  	//
   736  	// When generating a certificate, an unset pathLenConstraint
   737  	// can be requested with either MaxPathLen == -1 or using the
   738  	// zero value for both MaxPathLen and MaxPathLenZero.
   739  	MaxPathLen int
   740  	// MaxPathLenZero indicates that BasicConstraintsValid==true
   741  	// and MaxPathLen==0 should be interpreted as an actual
   742  	// maximum path length of zero. Otherwise, that combination is
   743  	// interpreted as MaxPathLen not being set.
   744  	MaxPathLenZero bool
   745  
   746  	SubjectKeyId   []byte
   747  	AuthorityKeyId []byte
   748  
   749  	// RFC 5280, 4.2.2.1 (Authority Information Access)
   750  	OCSPServer            []string
   751  	IssuingCertificateURL []string
   752  
   753  	// Subject Alternate Name values. (Note that these values may not be valid
   754  	// if invalid values were contained within a parsed certificate. For
   755  	// example, an element of DNSNames may not be a valid DNS domain name.)
   756  	DNSNames       []string
   757  	EmailAddresses []string
   758  	IPAddresses    []net.IP
   759  	URIs           []*url.URL
   760  
   761  	// Name constraints
   762  	PermittedDNSDomainsCritical bool // if true then the name constraints are marked critical.
   763  	PermittedDNSDomains         []string
   764  	ExcludedDNSDomains          []string
   765  	PermittedIPRanges           []*net.IPNet
   766  	ExcludedIPRanges            []*net.IPNet
   767  	PermittedEmailAddresses     []string
   768  	ExcludedEmailAddresses      []string
   769  	PermittedURIDomains         []string
   770  	ExcludedURIDomains          []string
   771  
   772  	// CRL Distribution Points
   773  	CRLDistributionPoints []string
   774  
   775  	PolicyIdentifiers []asn1.ObjectIdentifier
   776  }
   777  
   778  // ErrUnsupportedAlgorithm results from attempting to perform an operation that
   779  // involves algorithms that are not currently implemented.
   780  var ErrUnsupportedAlgorithm = errors.New("x509: cannot verify signature: algorithm unimplemented")
   781  
   782  // An InsecureAlgorithmError indicates that the SignatureAlgorithm used to
   783  // generate the signature is not secure, and the signature has been rejected.
   784  //
   785  // To temporarily restore support for SHA-1 signatures, include the value
   786  // "x509sha1=1" in the GODEBUG environment variable. Note that this option will
   787  // be removed in a future release.
   788  type InsecureAlgorithmError SignatureAlgorithm
   789  
   790  func (e InsecureAlgorithmError) Error() string {
   791  	var override string
   792  	if SignatureAlgorithm(e) == SHA1WithRSA || SignatureAlgorithm(e) == ECDSAWithSHA1 {
   793  		override = " (temporarily override with GODEBUG=x509sha1=1)"
   794  	}
   795  	return fmt.Sprintf("x509: cannot verify signature: insecure algorithm %v", SignatureAlgorithm(e)) + override
   796  }
   797  
   798  // ConstraintViolationError results when a requested usage is not permitted by
   799  // a certificate. For example: checking a signature when the public key isn't a
   800  // certificate signing key.
   801  type ConstraintViolationError struct{}
   802  
   803  func (ConstraintViolationError) Error() string {
   804  	return "x509: invalid signature: parent certificate cannot sign this kind of certificate"
   805  }
   806  
   807  func (c *Certificate) Equal(other *Certificate) bool {
   808  	if c == nil || other == nil {
   809  		return c == other
   810  	}
   811  	return bytes.Equal(c.Raw, other.Raw)
   812  }
   813  
   814  func (c *Certificate) hasSANExtension() bool {
   815  	return oidInExtensions(oidExtensionSubjectAltName, c.Extensions)
   816  }
   817  
   818  // CheckSignatureFrom verifies that the signature on c is a valid signature from parent.
   819  //
   820  // This is a low-level API that performs very limited checks, and not a full
   821  // path verifier. Most users should use [Certificate.Verify] instead.
   822  func (c *Certificate) CheckSignatureFrom(parent *Certificate) error {
   823  	// RFC 5280, 4.2.1.9:
   824  	// "If the basic constraints extension is not present in a version 3
   825  	// certificate, or the extension is present but the cA boolean is not
   826  	// asserted, then the certified public key MUST NOT be used to verify
   827  	// certificate signatures."
   828  	if parent.Version == 3 && !parent.BasicConstraintsValid ||
   829  		parent.BasicConstraintsValid && !parent.IsCA {
   830  		return ConstraintViolationError{}
   831  	}
   832  
   833  	if parent.KeyUsage != 0 && parent.KeyUsage&KeyUsageCertSign == 0 {
   834  		return ConstraintViolationError{}
   835  	}
   836  
   837  	if parent.PublicKeyAlgorithm == UnknownPublicKeyAlgorithm {
   838  		return ErrUnsupportedAlgorithm
   839  	}
   840  
   841  	return checkSignature(c.SignatureAlgorithm, c.RawTBSCertificate, c.Signature, parent.PublicKey, false)
   842  }
   843  
   844  // CheckSignature verifies that signature is a valid signature over signed from
   845  // c's public key.
   846  //
   847  // This is a low-level API that performs no validity checks on the certificate.
   848  //
   849  // [MD5WithRSA] signatures are rejected, while [SHA1WithRSA] and [ECDSAWithSHA1]
   850  // signatures are currently accepted.
   851  func (c *Certificate) CheckSignature(algo SignatureAlgorithm, signed, signature []byte) error {
   852  	return checkSignature(algo, signed, signature, c.PublicKey, true)
   853  }
   854  
   855  func (c *Certificate) hasNameConstraints() bool {
   856  	return oidInExtensions(oidExtensionNameConstraints, c.Extensions)
   857  }
   858  
   859  func (c *Certificate) getSANExtension() []byte {
   860  	for _, e := range c.Extensions {
   861  		if e.Id.Equal(oidExtensionSubjectAltName) {
   862  			return e.Value
   863  		}
   864  	}
   865  	return nil
   866  }
   867  
   868  func signaturePublicKeyAlgoMismatchError(expectedPubKeyAlgo PublicKeyAlgorithm, pubKey any) error {
   869  	return fmt.Errorf("x509: signature algorithm specifies an %s public key, but have public key of type %T", expectedPubKeyAlgo.String(), pubKey)
   870  }
   871  
   872  var x509sha1 = godebug.New("x509sha1")
   873  
   874  // checkSignature verifies that signature is a valid signature over signed from
   875  // a crypto.PublicKey.
   876  func checkSignature(algo SignatureAlgorithm, signed, signature []byte, publicKey crypto.PublicKey, allowSHA1 bool) (err error) {
   877  	var hashType crypto.Hash
   878  	var pubKeyAlgo PublicKeyAlgorithm
   879  
   880  	for _, details := range signatureAlgorithmDetails {
   881  		if details.algo == algo {
   882  			hashType = details.hash
   883  			pubKeyAlgo = details.pubKeyAlgo
   884  		}
   885  	}
   886  
   887  	switch hashType {
   888  	case crypto.Hash(0):
   889  		if pubKeyAlgo != Ed25519 {
   890  			return ErrUnsupportedAlgorithm
   891  		}
   892  	case crypto.MD5:
   893  		return InsecureAlgorithmError(algo)
   894  	case crypto.SHA1:
   895  		// SHA-1 signatures are mostly disabled. See go.dev/issue/41682.
   896  		if !allowSHA1 {
   897  			if x509sha1.Value() != "1" {
   898  				return InsecureAlgorithmError(algo)
   899  			}
   900  			x509sha1.IncNonDefault()
   901  		}
   902  		fallthrough
   903  	default:
   904  		if !hashType.Available() {
   905  			return ErrUnsupportedAlgorithm
   906  		}
   907  		h := hashType.New()
   908  		h.Write(signed)
   909  		signed = h.Sum(nil)
   910  	}
   911  
   912  	switch pub := publicKey.(type) {
   913  	case *rsa.PublicKey:
   914  		if pubKeyAlgo != RSA {
   915  			return signaturePublicKeyAlgoMismatchError(pubKeyAlgo, pub)
   916  		}
   917  		if algo.isRSAPSS() {
   918  			return rsa.VerifyPSS(pub, hashType, signed, signature, &rsa.PSSOptions{SaltLength: rsa.PSSSaltLengthEqualsHash})
   919  		} else {
   920  			return rsa.VerifyPKCS1v15(pub, hashType, signed, signature)
   921  		}
   922  	case *ecdsa.PublicKey:
   923  		if pubKeyAlgo != ECDSA {
   924  			return signaturePublicKeyAlgoMismatchError(pubKeyAlgo, pub)
   925  		}
   926  		if !ecdsa.VerifyASN1(pub, signed, signature) {
   927  			return errors.New("x509: ECDSA verification failure")
   928  		}
   929  		return
   930  	case ed25519.PublicKey:
   931  		if pubKeyAlgo != Ed25519 {
   932  			return signaturePublicKeyAlgoMismatchError(pubKeyAlgo, pub)
   933  		}
   934  		if !ed25519.Verify(pub, signed, signature) {
   935  			return errors.New("x509: Ed25519 verification failure")
   936  		}
   937  		return
   938  	}
   939  	return ErrUnsupportedAlgorithm
   940  }
   941  
   942  // CheckCRLSignature checks that the signature in crl is from c.
   943  //
   944  // Deprecated: Use RevocationList.CheckSignatureFrom instead.
   945  func (c *Certificate) CheckCRLSignature(crl *pkix.CertificateList) error {
   946  	algo := getSignatureAlgorithmFromAI(crl.SignatureAlgorithm)
   947  	return c.CheckSignature(algo, crl.TBSCertList.Raw, crl.SignatureValue.RightAlign())
   948  }
   949  
   950  type UnhandledCriticalExtension struct{}
   951  
   952  func (h UnhandledCriticalExtension) Error() string {
   953  	return "x509: unhandled critical extension"
   954  }
   955  
   956  type basicConstraints struct {
   957  	IsCA       bool `asn1:"optional"`
   958  	MaxPathLen int  `asn1:"optional,default:-1"`
   959  }
   960  
   961  // RFC 5280 4.2.1.4
   962  type policyInformation struct {
   963  	Policy asn1.ObjectIdentifier
   964  	// policyQualifiers omitted
   965  }
   966  
   967  const (
   968  	nameTypeEmail = 1
   969  	nameTypeDNS   = 2
   970  	nameTypeURI   = 6
   971  	nameTypeIP    = 7
   972  )
   973  
   974  // RFC 5280, 4.2.2.1
   975  type authorityInfoAccess struct {
   976  	Method   asn1.ObjectIdentifier
   977  	Location asn1.RawValue
   978  }
   979  
   980  // RFC 5280, 4.2.1.14
   981  type distributionPoint struct {
   982  	DistributionPoint distributionPointName `asn1:"optional,tag:0"`
   983  	Reason            asn1.BitString        `asn1:"optional,tag:1"`
   984  	CRLIssuer         asn1.RawValue         `asn1:"optional,tag:2"`
   985  }
   986  
   987  type distributionPointName struct {
   988  	FullName     []asn1.RawValue  `asn1:"optional,tag:0"`
   989  	RelativeName pkix.RDNSequence `asn1:"optional,tag:1"`
   990  }
   991  
   992  func reverseBitsInAByte(in byte) byte {
   993  	b1 := in>>4 | in<<4
   994  	b2 := b1>>2&0x33 | b1<<2&0xcc
   995  	b3 := b2>>1&0x55 | b2<<1&0xaa
   996  	return b3
   997  }
   998  
   999  // asn1BitLength returns the bit-length of bitString by considering the
  1000  // most-significant bit in a byte to be the "first" bit. This convention
  1001  // matches ASN.1, but differs from almost everything else.
  1002  func asn1BitLength(bitString []byte) int {
  1003  	bitLen := len(bitString) * 8
  1004  
  1005  	for i := range bitString {
  1006  		b := bitString[len(bitString)-i-1]
  1007  
  1008  		for bit := uint(0); bit < 8; bit++ {
  1009  			if (b>>bit)&1 == 1 {
  1010  				return bitLen
  1011  			}
  1012  			bitLen--
  1013  		}
  1014  	}
  1015  
  1016  	return 0
  1017  }
  1018  
  1019  var (
  1020  	oidExtensionSubjectKeyId          = []int{2, 5, 29, 14}
  1021  	oidExtensionKeyUsage              = []int{2, 5, 29, 15}
  1022  	oidExtensionExtendedKeyUsage      = []int{2, 5, 29, 37}
  1023  	oidExtensionAuthorityKeyId        = []int{2, 5, 29, 35}
  1024  	oidExtensionBasicConstraints      = []int{2, 5, 29, 19}
  1025  	oidExtensionSubjectAltName        = []int{2, 5, 29, 17}
  1026  	oidExtensionCertificatePolicies   = []int{2, 5, 29, 32}
  1027  	oidExtensionNameConstraints       = []int{2, 5, 29, 30}
  1028  	oidExtensionCRLDistributionPoints = []int{2, 5, 29, 31}
  1029  	oidExtensionAuthorityInfoAccess   = []int{1, 3, 6, 1, 5, 5, 7, 1, 1}
  1030  	oidExtensionCRLNumber             = []int{2, 5, 29, 20}
  1031  	oidExtensionReasonCode            = []int{2, 5, 29, 21}
  1032  )
  1033  
  1034  var (
  1035  	oidAuthorityInfoAccessOcsp    = asn1.ObjectIdentifier{1, 3, 6, 1, 5, 5, 7, 48, 1}
  1036  	oidAuthorityInfoAccessIssuers = asn1.ObjectIdentifier{1, 3, 6, 1, 5, 5, 7, 48, 2}
  1037  )
  1038  
  1039  // oidInExtensions reports whether an extension with the given oid exists in
  1040  // extensions.
  1041  func oidInExtensions(oid asn1.ObjectIdentifier, extensions []pkix.Extension) bool {
  1042  	for _, e := range extensions {
  1043  		if e.Id.Equal(oid) {
  1044  			return true
  1045  		}
  1046  	}
  1047  	return false
  1048  }
  1049  
  1050  // marshalSANs marshals a list of addresses into a the contents of an X.509
  1051  // SubjectAlternativeName extension.
  1052  func marshalSANs(dnsNames, emailAddresses []string, ipAddresses []net.IP, uris []*url.URL) (derBytes []byte, err error) {
  1053  	var rawValues []asn1.RawValue
  1054  	for _, name := range dnsNames {
  1055  		if err := isIA5String(name); err != nil {
  1056  			return nil, err
  1057  		}
  1058  		rawValues = append(rawValues, asn1.RawValue{Tag: nameTypeDNS, Class: 2, Bytes: []byte(name)})
  1059  	}
  1060  	for _, email := range emailAddresses {
  1061  		if err := isIA5String(email); err != nil {
  1062  			return nil, err
  1063  		}
  1064  		rawValues = append(rawValues, asn1.RawValue{Tag: nameTypeEmail, Class: 2, Bytes: []byte(email)})
  1065  	}
  1066  	for _, rawIP := range ipAddresses {
  1067  		// If possible, we always want to encode IPv4 addresses in 4 bytes.
  1068  		ip := rawIP.To4()
  1069  		if ip == nil {
  1070  			ip = rawIP
  1071  		}
  1072  		rawValues = append(rawValues, asn1.RawValue{Tag: nameTypeIP, Class: 2, Bytes: ip})
  1073  	}
  1074  	for _, uri := range uris {
  1075  		uriStr := uri.String()
  1076  		if err := isIA5String(uriStr); err != nil {
  1077  			return nil, err
  1078  		}
  1079  		rawValues = append(rawValues, asn1.RawValue{Tag: nameTypeURI, Class: 2, Bytes: []byte(uriStr)})
  1080  	}
  1081  	return asn1.Marshal(rawValues)
  1082  }
  1083  
  1084  func isIA5String(s string) error {
  1085  	for _, r := range s {
  1086  		// Per RFC5280 "IA5String is limited to the set of ASCII characters"
  1087  		if r > unicode.MaxASCII {
  1088  			return fmt.Errorf("x509: %q cannot be encoded as an IA5String", s)
  1089  		}
  1090  	}
  1091  
  1092  	return nil
  1093  }
  1094  
  1095  func buildCertExtensions(template *Certificate, subjectIsEmpty bool, authorityKeyId []byte, subjectKeyId []byte) (ret []pkix.Extension, err error) {
  1096  	ret = make([]pkix.Extension, 10 /* maximum number of elements. */)
  1097  	n := 0
  1098  
  1099  	if template.KeyUsage != 0 &&
  1100  		!oidInExtensions(oidExtensionKeyUsage, template.ExtraExtensions) {
  1101  		ret[n], err = marshalKeyUsage(template.KeyUsage)
  1102  		if err != nil {
  1103  			return nil, err
  1104  		}
  1105  		n++
  1106  	}
  1107  
  1108  	if (len(template.ExtKeyUsage) > 0 || len(template.UnknownExtKeyUsage) > 0) &&
  1109  		!oidInExtensions(oidExtensionExtendedKeyUsage, template.ExtraExtensions) {
  1110  		ret[n], err = marshalExtKeyUsage(template.ExtKeyUsage, template.UnknownExtKeyUsage)
  1111  		if err != nil {
  1112  			return nil, err
  1113  		}
  1114  		n++
  1115  	}
  1116  
  1117  	if template.BasicConstraintsValid && !oidInExtensions(oidExtensionBasicConstraints, template.ExtraExtensions) {
  1118  		ret[n], err = marshalBasicConstraints(template.IsCA, template.MaxPathLen, template.MaxPathLenZero)
  1119  		if err != nil {
  1120  			return nil, err
  1121  		}
  1122  		n++
  1123  	}
  1124  
  1125  	if len(subjectKeyId) > 0 && !oidInExtensions(oidExtensionSubjectKeyId, template.ExtraExtensions) {
  1126  		ret[n].Id = oidExtensionSubjectKeyId
  1127  		ret[n].Value, err = asn1.Marshal(subjectKeyId)
  1128  		if err != nil {
  1129  			return
  1130  		}
  1131  		n++
  1132  	}
  1133  
  1134  	if len(authorityKeyId) > 0 && !oidInExtensions(oidExtensionAuthorityKeyId, template.ExtraExtensions) {
  1135  		ret[n].Id = oidExtensionAuthorityKeyId
  1136  		ret[n].Value, err = asn1.Marshal(authKeyId{authorityKeyId})
  1137  		if err != nil {
  1138  			return
  1139  		}
  1140  		n++
  1141  	}
  1142  
  1143  	if (len(template.OCSPServer) > 0 || len(template.IssuingCertificateURL) > 0) &&
  1144  		!oidInExtensions(oidExtensionAuthorityInfoAccess, template.ExtraExtensions) {
  1145  		ret[n].Id = oidExtensionAuthorityInfoAccess
  1146  		var aiaValues []authorityInfoAccess
  1147  		for _, name := range template.OCSPServer {
  1148  			aiaValues = append(aiaValues, authorityInfoAccess{
  1149  				Method:   oidAuthorityInfoAccessOcsp,
  1150  				Location: asn1.RawValue{Tag: 6, Class: 2, Bytes: []byte(name)},
  1151  			})
  1152  		}
  1153  		for _, name := range template.IssuingCertificateURL {
  1154  			aiaValues = append(aiaValues, authorityInfoAccess{
  1155  				Method:   oidAuthorityInfoAccessIssuers,
  1156  				Location: asn1.RawValue{Tag: 6, Class: 2, Bytes: []byte(name)},
  1157  			})
  1158  		}
  1159  		ret[n].Value, err = asn1.Marshal(aiaValues)
  1160  		if err != nil {
  1161  			return
  1162  		}
  1163  		n++
  1164  	}
  1165  
  1166  	if (len(template.DNSNames) > 0 || len(template.EmailAddresses) > 0 || len(template.IPAddresses) > 0 || len(template.URIs) > 0) &&
  1167  		!oidInExtensions(oidExtensionSubjectAltName, template.ExtraExtensions) {
  1168  		ret[n].Id = oidExtensionSubjectAltName
  1169  		// From RFC 5280, Section 4.2.1.6:
  1170  		// “If the subject field contains an empty sequence ... then
  1171  		// subjectAltName extension ... is marked as critical”
  1172  		ret[n].Critical = subjectIsEmpty
  1173  		ret[n].Value, err = marshalSANs(template.DNSNames, template.EmailAddresses, template.IPAddresses, template.URIs)
  1174  		if err != nil {
  1175  			return
  1176  		}
  1177  		n++
  1178  	}
  1179  
  1180  	if len(template.PolicyIdentifiers) > 0 &&
  1181  		!oidInExtensions(oidExtensionCertificatePolicies, template.ExtraExtensions) {
  1182  		ret[n], err = marshalCertificatePolicies(template.PolicyIdentifiers)
  1183  		if err != nil {
  1184  			return nil, err
  1185  		}
  1186  		n++
  1187  	}
  1188  
  1189  	if (len(template.PermittedDNSDomains) > 0 || len(template.ExcludedDNSDomains) > 0 ||
  1190  		len(template.PermittedIPRanges) > 0 || len(template.ExcludedIPRanges) > 0 ||
  1191  		len(template.PermittedEmailAddresses) > 0 || len(template.ExcludedEmailAddresses) > 0 ||
  1192  		len(template.PermittedURIDomains) > 0 || len(template.ExcludedURIDomains) > 0) &&
  1193  		!oidInExtensions(oidExtensionNameConstraints, template.ExtraExtensions) {
  1194  		ret[n].Id = oidExtensionNameConstraints
  1195  		ret[n].Critical = template.PermittedDNSDomainsCritical
  1196  
  1197  		ipAndMask := func(ipNet *net.IPNet) []byte {
  1198  			maskedIP := ipNet.IP.Mask(ipNet.Mask)
  1199  			ipAndMask := make([]byte, 0, len(maskedIP)+len(ipNet.Mask))
  1200  			ipAndMask = append(ipAndMask, maskedIP...)
  1201  			ipAndMask = append(ipAndMask, ipNet.Mask...)
  1202  			return ipAndMask
  1203  		}
  1204  
  1205  		serialiseConstraints := func(dns []string, ips []*net.IPNet, emails []string, uriDomains []string) (der []byte, err error) {
  1206  			var b cryptobyte.Builder
  1207  
  1208  			for _, name := range dns {
  1209  				if err = isIA5String(name); err != nil {
  1210  					return nil, err
  1211  				}
  1212  
  1213  				b.AddASN1(cryptobyte_asn1.SEQUENCE, func(b *cryptobyte.Builder) {
  1214  					b.AddASN1(cryptobyte_asn1.Tag(2).ContextSpecific(), func(b *cryptobyte.Builder) {
  1215  						b.AddBytes([]byte(name))
  1216  					})
  1217  				})
  1218  			}
  1219  
  1220  			for _, ipNet := range ips {
  1221  				b.AddASN1(cryptobyte_asn1.SEQUENCE, func(b *cryptobyte.Builder) {
  1222  					b.AddASN1(cryptobyte_asn1.Tag(7).ContextSpecific(), func(b *cryptobyte.Builder) {
  1223  						b.AddBytes(ipAndMask(ipNet))
  1224  					})
  1225  				})
  1226  			}
  1227  
  1228  			for _, email := range emails {
  1229  				if err = isIA5String(email); err != nil {
  1230  					return nil, err
  1231  				}
  1232  
  1233  				b.AddASN1(cryptobyte_asn1.SEQUENCE, func(b *cryptobyte.Builder) {
  1234  					b.AddASN1(cryptobyte_asn1.Tag(1).ContextSpecific(), func(b *cryptobyte.Builder) {
  1235  						b.AddBytes([]byte(email))
  1236  					})
  1237  				})
  1238  			}
  1239  
  1240  			for _, uriDomain := range uriDomains {
  1241  				if err = isIA5String(uriDomain); err != nil {
  1242  					return nil, err
  1243  				}
  1244  
  1245  				b.AddASN1(cryptobyte_asn1.SEQUENCE, func(b *cryptobyte.Builder) {
  1246  					b.AddASN1(cryptobyte_asn1.Tag(6).ContextSpecific(), func(b *cryptobyte.Builder) {
  1247  						b.AddBytes([]byte(uriDomain))
  1248  					})
  1249  				})
  1250  			}
  1251  
  1252  			return b.Bytes()
  1253  		}
  1254  
  1255  		permitted, err := serialiseConstraints(template.PermittedDNSDomains, template.PermittedIPRanges, template.PermittedEmailAddresses, template.PermittedURIDomains)
  1256  		if err != nil {
  1257  			return nil, err
  1258  		}
  1259  
  1260  		excluded, err := serialiseConstraints(template.ExcludedDNSDomains, template.ExcludedIPRanges, template.ExcludedEmailAddresses, template.ExcludedURIDomains)
  1261  		if err != nil {
  1262  			return nil, err
  1263  		}
  1264  
  1265  		var b cryptobyte.Builder
  1266  		b.AddASN1(cryptobyte_asn1.SEQUENCE, func(b *cryptobyte.Builder) {
  1267  			if len(permitted) > 0 {
  1268  				b.AddASN1(cryptobyte_asn1.Tag(0).ContextSpecific().Constructed(), func(b *cryptobyte.Builder) {
  1269  					b.AddBytes(permitted)
  1270  				})
  1271  			}
  1272  
  1273  			if len(excluded) > 0 {
  1274  				b.AddASN1(cryptobyte_asn1.Tag(1).ContextSpecific().Constructed(), func(b *cryptobyte.Builder) {
  1275  					b.AddBytes(excluded)
  1276  				})
  1277  			}
  1278  		})
  1279  
  1280  		ret[n].Value, err = b.Bytes()
  1281  		if err != nil {
  1282  			return nil, err
  1283  		}
  1284  		n++
  1285  	}
  1286  
  1287  	if len(template.CRLDistributionPoints) > 0 &&
  1288  		!oidInExtensions(oidExtensionCRLDistributionPoints, template.ExtraExtensions) {
  1289  		ret[n].Id = oidExtensionCRLDistributionPoints
  1290  
  1291  		var crlDp []distributionPoint
  1292  		for _, name := range template.CRLDistributionPoints {
  1293  			dp := distributionPoint{
  1294  				DistributionPoint: distributionPointName{
  1295  					FullName: []asn1.RawValue{
  1296  						{Tag: 6, Class: 2, Bytes: []byte(name)},
  1297  					},
  1298  				},
  1299  			}
  1300  			crlDp = append(crlDp, dp)
  1301  		}
  1302  
  1303  		ret[n].Value, err = asn1.Marshal(crlDp)
  1304  		if err != nil {
  1305  			return
  1306  		}
  1307  		n++
  1308  	}
  1309  
  1310  	// Adding another extension here? Remember to update the maximum number
  1311  	// of elements in the make() at the top of the function and the list of
  1312  	// template fields used in CreateCertificate documentation.
  1313  
  1314  	return append(ret[:n], template.ExtraExtensions...), nil
  1315  }
  1316  
  1317  func marshalKeyUsage(ku KeyUsage) (pkix.Extension, error) {
  1318  	ext := pkix.Extension{Id: oidExtensionKeyUsage, Critical: true}
  1319  
  1320  	var a [2]byte
  1321  	a[0] = reverseBitsInAByte(byte(ku))
  1322  	a[1] = reverseBitsInAByte(byte(ku >> 8))
  1323  
  1324  	l := 1
  1325  	if a[1] != 0 {
  1326  		l = 2
  1327  	}
  1328  
  1329  	bitString := a[:l]
  1330  	var err error
  1331  	ext.Value, err = asn1.Marshal(asn1.BitString{Bytes: bitString, BitLength: asn1BitLength(bitString)})
  1332  	return ext, err
  1333  }
  1334  
  1335  func marshalExtKeyUsage(extUsages []ExtKeyUsage, unknownUsages []asn1.ObjectIdentifier) (pkix.Extension, error) {
  1336  	ext := pkix.Extension{Id: oidExtensionExtendedKeyUsage}
  1337  
  1338  	oids := make([]asn1.ObjectIdentifier, len(extUsages)+len(unknownUsages))
  1339  	for i, u := range extUsages {
  1340  		if oid, ok := oidFromExtKeyUsage(u); ok {
  1341  			oids[i] = oid
  1342  		} else {
  1343  			return ext, errors.New("x509: unknown extended key usage")
  1344  		}
  1345  	}
  1346  
  1347  	copy(oids[len(extUsages):], unknownUsages)
  1348  
  1349  	var err error
  1350  	ext.Value, err = asn1.Marshal(oids)
  1351  	return ext, err
  1352  }
  1353  
  1354  func marshalBasicConstraints(isCA bool, maxPathLen int, maxPathLenZero bool) (pkix.Extension, error) {
  1355  	ext := pkix.Extension{Id: oidExtensionBasicConstraints, Critical: true}
  1356  	// Leaving MaxPathLen as zero indicates that no maximum path
  1357  	// length is desired, unless MaxPathLenZero is set. A value of
  1358  	// -1 causes encoding/asn1 to omit the value as desired.
  1359  	if maxPathLen == 0 && !maxPathLenZero {
  1360  		maxPathLen = -1
  1361  	}
  1362  	var err error
  1363  	ext.Value, err = asn1.Marshal(basicConstraints{isCA, maxPathLen})
  1364  	return ext, err
  1365  }
  1366  
  1367  func marshalCertificatePolicies(policyIdentifiers []asn1.ObjectIdentifier) (pkix.Extension, error) {
  1368  	ext := pkix.Extension{Id: oidExtensionCertificatePolicies}
  1369  	policies := make([]policyInformation, len(policyIdentifiers))
  1370  	for i, policy := range policyIdentifiers {
  1371  		policies[i].Policy = policy
  1372  	}
  1373  	var err error
  1374  	ext.Value, err = asn1.Marshal(policies)
  1375  	return ext, err
  1376  }
  1377  
  1378  func buildCSRExtensions(template *CertificateRequest) ([]pkix.Extension, error) {
  1379  	var ret []pkix.Extension
  1380  
  1381  	if (len(template.DNSNames) > 0 || len(template.EmailAddresses) > 0 || len(template.IPAddresses) > 0 || len(template.URIs) > 0) &&
  1382  		!oidInExtensions(oidExtensionSubjectAltName, template.ExtraExtensions) {
  1383  		sanBytes, err := marshalSANs(template.DNSNames, template.EmailAddresses, template.IPAddresses, template.URIs)
  1384  		if err != nil {
  1385  			return nil, err
  1386  		}
  1387  
  1388  		ret = append(ret, pkix.Extension{
  1389  			Id:    oidExtensionSubjectAltName,
  1390  			Value: sanBytes,
  1391  		})
  1392  	}
  1393  
  1394  	return append(ret, template.ExtraExtensions...), nil
  1395  }
  1396  
  1397  func subjectBytes(cert *Certificate) ([]byte, error) {
  1398  	if len(cert.RawSubject) > 0 {
  1399  		return cert.RawSubject, nil
  1400  	}
  1401  
  1402  	return asn1.Marshal(cert.Subject.ToRDNSequence())
  1403  }
  1404  
  1405  // signingParamsForPublicKey returns the parameters to use for signing with
  1406  // priv. If requestedSigAlgo is not zero then it overrides the default
  1407  // signature algorithm.
  1408  func signingParamsForPublicKey(pub any, requestedSigAlgo SignatureAlgorithm) (hashFunc crypto.Hash, sigAlgo pkix.AlgorithmIdentifier, err error) {
  1409  	var pubType PublicKeyAlgorithm
  1410  
  1411  	switch pub := pub.(type) {
  1412  	case *rsa.PublicKey:
  1413  		pubType = RSA
  1414  		hashFunc = crypto.SHA256
  1415  		sigAlgo.Algorithm = oidSignatureSHA256WithRSA
  1416  		sigAlgo.Parameters = asn1.NullRawValue
  1417  
  1418  	case *ecdsa.PublicKey:
  1419  		pubType = ECDSA
  1420  
  1421  		switch pub.Curve {
  1422  		case elliptic.P224(), elliptic.P256():
  1423  			hashFunc = crypto.SHA256
  1424  			sigAlgo.Algorithm = oidSignatureECDSAWithSHA256
  1425  		case elliptic.P384():
  1426  			hashFunc = crypto.SHA384
  1427  			sigAlgo.Algorithm = oidSignatureECDSAWithSHA384
  1428  		case elliptic.P521():
  1429  			hashFunc = crypto.SHA512
  1430  			sigAlgo.Algorithm = oidSignatureECDSAWithSHA512
  1431  		default:
  1432  			err = errors.New("x509: unknown elliptic curve")
  1433  		}
  1434  
  1435  	case ed25519.PublicKey:
  1436  		pubType = Ed25519
  1437  		sigAlgo.Algorithm = oidSignatureEd25519
  1438  
  1439  	default:
  1440  		err = errors.New("x509: only RSA, ECDSA and Ed25519 keys supported")
  1441  	}
  1442  
  1443  	if err != nil {
  1444  		return
  1445  	}
  1446  
  1447  	if requestedSigAlgo == 0 {
  1448  		return
  1449  	}
  1450  
  1451  	found := false
  1452  	for _, details := range signatureAlgorithmDetails {
  1453  		if details.algo == requestedSigAlgo {
  1454  			if details.pubKeyAlgo != pubType {
  1455  				err = errors.New("x509: requested SignatureAlgorithm does not match private key type")
  1456  				return
  1457  			}
  1458  			sigAlgo.Algorithm, hashFunc = details.oid, details.hash
  1459  			if hashFunc == 0 && pubType != Ed25519 {
  1460  				err = errors.New("x509: cannot sign with hash function requested")
  1461  				return
  1462  			}
  1463  			if hashFunc == crypto.MD5 {
  1464  				err = errors.New("x509: signing with MD5 is not supported")
  1465  				return
  1466  			}
  1467  			if requestedSigAlgo.isRSAPSS() {
  1468  				sigAlgo.Parameters = hashToPSSParameters[hashFunc]
  1469  			}
  1470  			found = true
  1471  			break
  1472  		}
  1473  	}
  1474  
  1475  	if !found {
  1476  		err = errors.New("x509: unknown SignatureAlgorithm")
  1477  	}
  1478  
  1479  	return
  1480  }
  1481  
  1482  // emptyASN1Subject is the ASN.1 DER encoding of an empty Subject, which is
  1483  // just an empty SEQUENCE.
  1484  var emptyASN1Subject = []byte{0x30, 0}
  1485  
  1486  // CreateCertificate creates a new X.509 v3 certificate based on a template.
  1487  // The following members of template are currently used:
  1488  //
  1489  //   - AuthorityKeyId
  1490  //   - BasicConstraintsValid
  1491  //   - CRLDistributionPoints
  1492  //   - DNSNames
  1493  //   - EmailAddresses
  1494  //   - ExcludedDNSDomains
  1495  //   - ExcludedEmailAddresses
  1496  //   - ExcludedIPRanges
  1497  //   - ExcludedURIDomains
  1498  //   - ExtKeyUsage
  1499  //   - ExtraExtensions
  1500  //   - IPAddresses
  1501  //   - IsCA
  1502  //   - IssuingCertificateURL
  1503  //   - KeyUsage
  1504  //   - MaxPathLen
  1505  //   - MaxPathLenZero
  1506  //   - NotAfter
  1507  //   - NotBefore
  1508  //   - OCSPServer
  1509  //   - PermittedDNSDomains
  1510  //   - PermittedDNSDomainsCritical
  1511  //   - PermittedEmailAddresses
  1512  //   - PermittedIPRanges
  1513  //   - PermittedURIDomains
  1514  //   - PolicyIdentifiers
  1515  //   - SerialNumber
  1516  //   - SignatureAlgorithm
  1517  //   - Subject
  1518  //   - SubjectKeyId
  1519  //   - URIs
  1520  //   - UnknownExtKeyUsage
  1521  //
  1522  // The certificate is signed by parent. If parent is equal to template then the
  1523  // certificate is self-signed. The parameter pub is the public key of the
  1524  // certificate to be generated and priv is the private key of the signer.
  1525  //
  1526  // The returned slice is the certificate in DER encoding.
  1527  //
  1528  // The currently supported key types are *rsa.PublicKey, *ecdsa.PublicKey and
  1529  // ed25519.PublicKey. pub must be a supported key type, and priv must be a
  1530  // crypto.Signer with a supported public key.
  1531  //
  1532  // The AuthorityKeyId will be taken from the SubjectKeyId of parent, if any,
  1533  // unless the resulting certificate is self-signed. Otherwise the value from
  1534  // template will be used.
  1535  //
  1536  // If SubjectKeyId from template is empty and the template is a CA, SubjectKeyId
  1537  // will be generated from the hash of the public key.
  1538  func CreateCertificate(rand io.Reader, template, parent *Certificate, pub, priv any) ([]byte, error) {
  1539  	key, ok := priv.(crypto.Signer)
  1540  	if !ok {
  1541  		return nil, errors.New("x509: certificate private key does not implement crypto.Signer")
  1542  	}
  1543  
  1544  	if template.SerialNumber == nil {
  1545  		return nil, errors.New("x509: no SerialNumber given")
  1546  	}
  1547  
  1548  	// RFC 5280 Section 4.1.2.2: serial number must positive
  1549  	//
  1550  	// We _should_ also restrict serials to <= 20 octets, but it turns out a lot of people
  1551  	// get this wrong, in part because the encoding can itself alter the length of the
  1552  	// serial. For now we accept these non-conformant serials.
  1553  	if template.SerialNumber.Sign() == -1 {
  1554  		return nil, errors.New("x509: serial number must be positive")
  1555  	}
  1556  
  1557  	if template.BasicConstraintsValid && !template.IsCA && template.MaxPathLen != -1 && (template.MaxPathLen != 0 || template.MaxPathLenZero) {
  1558  		return nil, errors.New("x509: only CAs are allowed to specify MaxPathLen")
  1559  	}
  1560  
  1561  	hashFunc, signatureAlgorithm, err := signingParamsForPublicKey(key.Public(), template.SignatureAlgorithm)
  1562  	if err != nil {
  1563  		return nil, err
  1564  	}
  1565  
  1566  	publicKeyBytes, publicKeyAlgorithm, err := marshalPublicKey(pub)
  1567  	if err != nil {
  1568  		return nil, err
  1569  	}
  1570  	if getPublicKeyAlgorithmFromOID(publicKeyAlgorithm.Algorithm) == UnknownPublicKeyAlgorithm {
  1571  		return nil, fmt.Errorf("x509: unsupported public key type: %T", pub)
  1572  	}
  1573  
  1574  	asn1Issuer, err := subjectBytes(parent)
  1575  	if err != nil {
  1576  		return nil, err
  1577  	}
  1578  
  1579  	asn1Subject, err := subjectBytes(template)
  1580  	if err != nil {
  1581  		return nil, err
  1582  	}
  1583  
  1584  	authorityKeyId := template.AuthorityKeyId
  1585  	if !bytes.Equal(asn1Issuer, asn1Subject) && len(parent.SubjectKeyId) > 0 {
  1586  		authorityKeyId = parent.SubjectKeyId
  1587  	}
  1588  
  1589  	subjectKeyId := template.SubjectKeyId
  1590  	if len(subjectKeyId) == 0 && template.IsCA {
  1591  		// SubjectKeyId generated using method 1 in RFC 5280, Section 4.2.1.2:
  1592  		//   (1) The keyIdentifier is composed of the 160-bit SHA-1 hash of the
  1593  		//   value of the BIT STRING subjectPublicKey (excluding the tag,
  1594  		//   length, and number of unused bits).
  1595  		h := sha1.Sum(publicKeyBytes)
  1596  		subjectKeyId = h[:]
  1597  	}
  1598  
  1599  	// Check that the signer's public key matches the private key, if available.
  1600  	type privateKey interface {
  1601  		Equal(crypto.PublicKey) bool
  1602  	}
  1603  	if privPub, ok := key.Public().(privateKey); !ok {
  1604  		return nil, errors.New("x509: internal error: supported public key does not implement Equal")
  1605  	} else if parent.PublicKey != nil && !privPub.Equal(parent.PublicKey) {
  1606  		return nil, errors.New("x509: provided PrivateKey doesn't match parent's PublicKey")
  1607  	}
  1608  
  1609  	extensions, err := buildCertExtensions(template, bytes.Equal(asn1Subject, emptyASN1Subject), authorityKeyId, subjectKeyId)
  1610  	if err != nil {
  1611  		return nil, err
  1612  	}
  1613  
  1614  	encodedPublicKey := asn1.BitString{BitLength: len(publicKeyBytes) * 8, Bytes: publicKeyBytes}
  1615  	c := tbsCertificate{
  1616  		Version:            2,
  1617  		SerialNumber:       template.SerialNumber,
  1618  		SignatureAlgorithm: signatureAlgorithm,
  1619  		Issuer:             asn1.RawValue{FullBytes: asn1Issuer},
  1620  		Validity:           validity{template.NotBefore.UTC(), template.NotAfter.UTC()},
  1621  		Subject:            asn1.RawValue{FullBytes: asn1Subject},
  1622  		PublicKey:          publicKeyInfo{nil, publicKeyAlgorithm, encodedPublicKey},
  1623  		Extensions:         extensions,
  1624  	}
  1625  
  1626  	tbsCertContents, err := asn1.Marshal(c)
  1627  	if err != nil {
  1628  		return nil, err
  1629  	}
  1630  	c.Raw = tbsCertContents
  1631  
  1632  	signed := tbsCertContents
  1633  	if hashFunc != 0 {
  1634  		h := hashFunc.New()
  1635  		h.Write(signed)
  1636  		signed = h.Sum(nil)
  1637  	}
  1638  
  1639  	var signerOpts crypto.SignerOpts = hashFunc
  1640  	if template.SignatureAlgorithm != 0 && template.SignatureAlgorithm.isRSAPSS() {
  1641  		signerOpts = &rsa.PSSOptions{
  1642  			SaltLength: rsa.PSSSaltLengthEqualsHash,
  1643  			Hash:       hashFunc,
  1644  		}
  1645  	}
  1646  
  1647  	var signature []byte
  1648  	signature, err = key.Sign(rand, signed, signerOpts)
  1649  	if err != nil {
  1650  		return nil, err
  1651  	}
  1652  
  1653  	signedCert, err := asn1.Marshal(certificate{
  1654  		c,
  1655  		signatureAlgorithm,
  1656  		asn1.BitString{Bytes: signature, BitLength: len(signature) * 8},
  1657  	})
  1658  	if err != nil {
  1659  		return nil, err
  1660  	}
  1661  
  1662  	// Check the signature to ensure the crypto.Signer behaved correctly.
  1663  	if err := checkSignature(getSignatureAlgorithmFromAI(signatureAlgorithm), c.Raw, signature, key.Public(), true); err != nil {
  1664  		return nil, fmt.Errorf("x509: signature over certificate returned by signer is invalid: %w", err)
  1665  	}
  1666  
  1667  	return signedCert, nil
  1668  }
  1669  
  1670  // pemCRLPrefix is the magic string that indicates that we have a PEM encoded
  1671  // CRL.
  1672  var pemCRLPrefix = []byte("-----BEGIN X509 CRL")
  1673  
  1674  // pemType is the type of a PEM encoded CRL.
  1675  var pemType = "X509 CRL"
  1676  
  1677  // ParseCRL parses a CRL from the given bytes. It's often the case that PEM
  1678  // encoded CRLs will appear where they should be DER encoded, so this function
  1679  // will transparently handle PEM encoding as long as there isn't any leading
  1680  // garbage.
  1681  //
  1682  // Deprecated: Use ParseRevocationList instead.
  1683  func ParseCRL(crlBytes []byte) (*pkix.CertificateList, error) {
  1684  	if bytes.HasPrefix(crlBytes, pemCRLPrefix) {
  1685  		block, _ := pem.Decode(crlBytes)
  1686  		if block != nil && block.Type == pemType {
  1687  			crlBytes = block.Bytes
  1688  		}
  1689  	}
  1690  	return ParseDERCRL(crlBytes)
  1691  }
  1692  
  1693  // ParseDERCRL parses a DER encoded CRL from the given bytes.
  1694  //
  1695  // Deprecated: Use ParseRevocationList instead.
  1696  func ParseDERCRL(derBytes []byte) (*pkix.CertificateList, error) {
  1697  	certList := new(pkix.CertificateList)
  1698  	if rest, err := asn1.Unmarshal(derBytes, certList); err != nil {
  1699  		return nil, err
  1700  	} else if len(rest) != 0 {
  1701  		return nil, errors.New("x509: trailing data after CRL")
  1702  	}
  1703  	return certList, nil
  1704  }
  1705  
  1706  // CreateCRL returns a DER encoded CRL, signed by this Certificate, that
  1707  // contains the given list of revoked certificates.
  1708  //
  1709  // Deprecated: this method does not generate an RFC 5280 conformant X.509 v2 CRL.
  1710  // To generate a standards compliant CRL, use CreateRevocationList instead.
  1711  func (c *Certificate) CreateCRL(rand io.Reader, priv any, revokedCerts []pkix.RevokedCertificate, now, expiry time.Time) (crlBytes []byte, err error) {
  1712  	key, ok := priv.(crypto.Signer)
  1713  	if !ok {
  1714  		return nil, errors.New("x509: certificate private key does not implement crypto.Signer")
  1715  	}
  1716  
  1717  	hashFunc, signatureAlgorithm, err := signingParamsForPublicKey(key.Public(), 0)
  1718  	if err != nil {
  1719  		return nil, err
  1720  	}
  1721  
  1722  	// Force revocation times to UTC per RFC 5280.
  1723  	revokedCertsUTC := make([]pkix.RevokedCertificate, len(revokedCerts))
  1724  	for i, rc := range revokedCerts {
  1725  		rc.RevocationTime = rc.RevocationTime.UTC()
  1726  		revokedCertsUTC[i] = rc
  1727  	}
  1728  
  1729  	tbsCertList := pkix.TBSCertificateList{
  1730  		Version:             1,
  1731  		Signature:           signatureAlgorithm,
  1732  		Issuer:              c.Subject.ToRDNSequence(),
  1733  		ThisUpdate:          now.UTC(),
  1734  		NextUpdate:          expiry.UTC(),
  1735  		RevokedCertificates: revokedCertsUTC,
  1736  	}
  1737  
  1738  	// Authority Key Id
  1739  	if len(c.SubjectKeyId) > 0 {
  1740  		var aki pkix.Extension
  1741  		aki.Id = oidExtensionAuthorityKeyId
  1742  		aki.Value, err = asn1.Marshal(authKeyId{Id: c.SubjectKeyId})
  1743  		if err != nil {
  1744  			return
  1745  		}
  1746  		tbsCertList.Extensions = append(tbsCertList.Extensions, aki)
  1747  	}
  1748  
  1749  	tbsCertListContents, err := asn1.Marshal(tbsCertList)
  1750  	if err != nil {
  1751  		return
  1752  	}
  1753  
  1754  	signed := tbsCertListContents
  1755  	if hashFunc != 0 {
  1756  		h := hashFunc.New()
  1757  		h.Write(signed)
  1758  		signed = h.Sum(nil)
  1759  	}
  1760  
  1761  	var signature []byte
  1762  	signature, err = key.Sign(rand, signed, hashFunc)
  1763  	if err != nil {
  1764  		return
  1765  	}
  1766  
  1767  	return asn1.Marshal(pkix.CertificateList{
  1768  		TBSCertList:        tbsCertList,
  1769  		SignatureAlgorithm: signatureAlgorithm,
  1770  		SignatureValue:     asn1.BitString{Bytes: signature, BitLength: len(signature) * 8},
  1771  	})
  1772  }
  1773  
  1774  // CertificateRequest represents a PKCS #10, certificate signature request.
  1775  type CertificateRequest struct {
  1776  	Raw                      []byte // Complete ASN.1 DER content (CSR, signature algorithm and signature).
  1777  	RawTBSCertificateRequest []byte // Certificate request info part of raw ASN.1 DER content.
  1778  	RawSubjectPublicKeyInfo  []byte // DER encoded SubjectPublicKeyInfo.
  1779  	RawSubject               []byte // DER encoded Subject.
  1780  
  1781  	Version            int
  1782  	Signature          []byte
  1783  	SignatureAlgorithm SignatureAlgorithm
  1784  
  1785  	PublicKeyAlgorithm PublicKeyAlgorithm
  1786  	PublicKey          any
  1787  
  1788  	Subject pkix.Name
  1789  
  1790  	// Attributes contains the CSR attributes that can parse as
  1791  	// pkix.AttributeTypeAndValueSET.
  1792  	//
  1793  	// Deprecated: Use Extensions and ExtraExtensions instead for parsing and
  1794  	// generating the requestedExtensions attribute.
  1795  	Attributes []pkix.AttributeTypeAndValueSET
  1796  
  1797  	// Extensions contains all requested extensions, in raw form. When parsing
  1798  	// CSRs, this can be used to extract extensions that are not parsed by this
  1799  	// package.
  1800  	Extensions []pkix.Extension
  1801  
  1802  	// ExtraExtensions contains extensions to be copied, raw, into any CSR
  1803  	// marshaled by CreateCertificateRequest. Values override any extensions
  1804  	// that would otherwise be produced based on the other fields but are
  1805  	// overridden by any extensions specified in Attributes.
  1806  	//
  1807  	// The ExtraExtensions field is not populated by ParseCertificateRequest,
  1808  	// see Extensions instead.
  1809  	ExtraExtensions []pkix.Extension
  1810  
  1811  	// Subject Alternate Name values.
  1812  	DNSNames       []string
  1813  	EmailAddresses []string
  1814  	IPAddresses    []net.IP
  1815  	URIs           []*url.URL
  1816  }
  1817  
  1818  // These structures reflect the ASN.1 structure of X.509 certificate
  1819  // signature requests (see RFC 2986):
  1820  
  1821  type tbsCertificateRequest struct {
  1822  	Raw           asn1.RawContent
  1823  	Version       int
  1824  	Subject       asn1.RawValue
  1825  	PublicKey     publicKeyInfo
  1826  	RawAttributes []asn1.RawValue `asn1:"tag:0"`
  1827  }
  1828  
  1829  type certificateRequest struct {
  1830  	Raw                asn1.RawContent
  1831  	TBSCSR             tbsCertificateRequest
  1832  	SignatureAlgorithm pkix.AlgorithmIdentifier
  1833  	SignatureValue     asn1.BitString
  1834  }
  1835  
  1836  // oidExtensionRequest is a PKCS #9 OBJECT IDENTIFIER that indicates requested
  1837  // extensions in a CSR.
  1838  var oidExtensionRequest = asn1.ObjectIdentifier{1, 2, 840, 113549, 1, 9, 14}
  1839  
  1840  // newRawAttributes converts AttributeTypeAndValueSETs from a template
  1841  // CertificateRequest's Attributes into tbsCertificateRequest RawAttributes.
  1842  func newRawAttributes(attributes []pkix.AttributeTypeAndValueSET) ([]asn1.RawValue, error) {
  1843  	var rawAttributes []asn1.RawValue
  1844  	b, err := asn1.Marshal(attributes)
  1845  	if err != nil {
  1846  		return nil, err
  1847  	}
  1848  	rest, err := asn1.Unmarshal(b, &rawAttributes)
  1849  	if err != nil {
  1850  		return nil, err
  1851  	}
  1852  	if len(rest) != 0 {
  1853  		return nil, errors.New("x509: failed to unmarshal raw CSR Attributes")
  1854  	}
  1855  	return rawAttributes, nil
  1856  }
  1857  
  1858  // parseRawAttributes Unmarshals RawAttributes into AttributeTypeAndValueSETs.
  1859  func parseRawAttributes(rawAttributes []asn1.RawValue) []pkix.AttributeTypeAndValueSET {
  1860  	var attributes []pkix.AttributeTypeAndValueSET
  1861  	for _, rawAttr := range rawAttributes {
  1862  		var attr pkix.AttributeTypeAndValueSET
  1863  		rest, err := asn1.Unmarshal(rawAttr.FullBytes, &attr)
  1864  		// Ignore attributes that don't parse into pkix.AttributeTypeAndValueSET
  1865  		// (i.e.: challengePassword or unstructuredName).
  1866  		if err == nil && len(rest) == 0 {
  1867  			attributes = append(attributes, attr)
  1868  		}
  1869  	}
  1870  	return attributes
  1871  }
  1872  
  1873  // parseCSRExtensions parses the attributes from a CSR and extracts any
  1874  // requested extensions.
  1875  func parseCSRExtensions(rawAttributes []asn1.RawValue) ([]pkix.Extension, error) {
  1876  	// pkcs10Attribute reflects the Attribute structure from RFC 2986, Section 4.1.
  1877  	type pkcs10Attribute struct {
  1878  		Id     asn1.ObjectIdentifier
  1879  		Values []asn1.RawValue `asn1:"set"`
  1880  	}
  1881  
  1882  	var ret []pkix.Extension
  1883  	requestedExts := make(map[string]bool)
  1884  	for _, rawAttr := range rawAttributes {
  1885  		var attr pkcs10Attribute
  1886  		if rest, err := asn1.Unmarshal(rawAttr.FullBytes, &attr); err != nil || len(rest) != 0 || len(attr.Values) == 0 {
  1887  			// Ignore attributes that don't parse.
  1888  			continue
  1889  		}
  1890  
  1891  		if !attr.Id.Equal(oidExtensionRequest) {
  1892  			continue
  1893  		}
  1894  
  1895  		var extensions []pkix.Extension
  1896  		if _, err := asn1.Unmarshal(attr.Values[0].FullBytes, &extensions); err != nil {
  1897  			return nil, err
  1898  		}
  1899  		for _, ext := range extensions {
  1900  			oidStr := ext.Id.String()
  1901  			if requestedExts[oidStr] {
  1902  				return nil, errors.New("x509: certificate request contains duplicate requested extensions")
  1903  			}
  1904  			requestedExts[oidStr] = true
  1905  		}
  1906  		ret = append(ret, extensions...)
  1907  	}
  1908  
  1909  	return ret, nil
  1910  }
  1911  
  1912  // CreateCertificateRequest creates a new certificate request based on a
  1913  // template. The following members of template are used:
  1914  //
  1915  //   - SignatureAlgorithm
  1916  //   - Subject
  1917  //   - DNSNames
  1918  //   - EmailAddresses
  1919  //   - IPAddresses
  1920  //   - URIs
  1921  //   - ExtraExtensions
  1922  //   - Attributes (deprecated)
  1923  //
  1924  // priv is the private key to sign the CSR with, and the corresponding public
  1925  // key will be included in the CSR. It must implement crypto.Signer and its
  1926  // Public() method must return a *rsa.PublicKey or a *ecdsa.PublicKey or a
  1927  // ed25519.PublicKey. (A *rsa.PrivateKey, *ecdsa.PrivateKey or
  1928  // ed25519.PrivateKey satisfies this.)
  1929  //
  1930  // The returned slice is the certificate request in DER encoding.
  1931  func CreateCertificateRequest(rand io.Reader, template *CertificateRequest, priv any) (csr []byte, err error) {
  1932  	key, ok := priv.(crypto.Signer)
  1933  	if !ok {
  1934  		return nil, errors.New("x509: certificate private key does not implement crypto.Signer")
  1935  	}
  1936  
  1937  	var hashFunc crypto.Hash
  1938  	var sigAlgo pkix.AlgorithmIdentifier
  1939  	hashFunc, sigAlgo, err = signingParamsForPublicKey(key.Public(), template.SignatureAlgorithm)
  1940  	if err != nil {
  1941  		return nil, err
  1942  	}
  1943  
  1944  	var publicKeyBytes []byte
  1945  	var publicKeyAlgorithm pkix.AlgorithmIdentifier
  1946  	publicKeyBytes, publicKeyAlgorithm, err = marshalPublicKey(key.Public())
  1947  	if err != nil {
  1948  		return nil, err
  1949  	}
  1950  
  1951  	extensions, err := buildCSRExtensions(template)
  1952  	if err != nil {
  1953  		return nil, err
  1954  	}
  1955  
  1956  	// Make a copy of template.Attributes because we may alter it below.
  1957  	attributes := make([]pkix.AttributeTypeAndValueSET, 0, len(template.Attributes))
  1958  	for _, attr := range template.Attributes {
  1959  		values := make([][]pkix.AttributeTypeAndValue, len(attr.Value))
  1960  		copy(values, attr.Value)
  1961  		attributes = append(attributes, pkix.AttributeTypeAndValueSET{
  1962  			Type:  attr.Type,
  1963  			Value: values,
  1964  		})
  1965  	}
  1966  
  1967  	extensionsAppended := false
  1968  	if len(extensions) > 0 {
  1969  		// Append the extensions to an existing attribute if possible.
  1970  		for _, atvSet := range attributes {
  1971  			if !atvSet.Type.Equal(oidExtensionRequest) || len(atvSet.Value) == 0 {
  1972  				continue
  1973  			}
  1974  
  1975  			// specifiedExtensions contains all the extensions that we
  1976  			// found specified via template.Attributes.
  1977  			specifiedExtensions := make(map[string]bool)
  1978  
  1979  			for _, atvs := range atvSet.Value {
  1980  				for _, atv := range atvs {
  1981  					specifiedExtensions[atv.Type.String()] = true
  1982  				}
  1983  			}
  1984  
  1985  			newValue := make([]pkix.AttributeTypeAndValue, 0, len(atvSet.Value[0])+len(extensions))
  1986  			newValue = append(newValue, atvSet.Value[0]...)
  1987  
  1988  			for _, e := range extensions {
  1989  				if specifiedExtensions[e.Id.String()] {
  1990  					// Attributes already contained a value for
  1991  					// this extension and it takes priority.
  1992  					continue
  1993  				}
  1994  
  1995  				newValue = append(newValue, pkix.AttributeTypeAndValue{
  1996  					// There is no place for the critical
  1997  					// flag in an AttributeTypeAndValue.
  1998  					Type:  e.Id,
  1999  					Value: e.Value,
  2000  				})
  2001  			}
  2002  
  2003  			atvSet.Value[0] = newValue
  2004  			extensionsAppended = true
  2005  			break
  2006  		}
  2007  	}
  2008  
  2009  	rawAttributes, err := newRawAttributes(attributes)
  2010  	if err != nil {
  2011  		return
  2012  	}
  2013  
  2014  	// If not included in attributes, add a new attribute for the
  2015  	// extensions.
  2016  	if len(extensions) > 0 && !extensionsAppended {
  2017  		attr := struct {
  2018  			Type  asn1.ObjectIdentifier
  2019  			Value [][]pkix.Extension `asn1:"set"`
  2020  		}{
  2021  			Type:  oidExtensionRequest,
  2022  			Value: [][]pkix.Extension{extensions},
  2023  		}
  2024  
  2025  		b, err := asn1.Marshal(attr)
  2026  		if err != nil {
  2027  			return nil, errors.New("x509: failed to serialise extensions attribute: " + err.Error())
  2028  		}
  2029  
  2030  		var rawValue asn1.RawValue
  2031  		if _, err := asn1.Unmarshal(b, &rawValue); err != nil {
  2032  			return nil, err
  2033  		}
  2034  
  2035  		rawAttributes = append(rawAttributes, rawValue)
  2036  	}
  2037  
  2038  	asn1Subject := template.RawSubject
  2039  	if len(asn1Subject) == 0 {
  2040  		asn1Subject, err = asn1.Marshal(template.Subject.ToRDNSequence())
  2041  		if err != nil {
  2042  			return nil, err
  2043  		}
  2044  	}
  2045  
  2046  	tbsCSR := tbsCertificateRequest{
  2047  		Version: 0, // PKCS #10, RFC 2986
  2048  		Subject: asn1.RawValue{FullBytes: asn1Subject},
  2049  		PublicKey: publicKeyInfo{
  2050  			Algorithm: publicKeyAlgorithm,
  2051  			PublicKey: asn1.BitString{
  2052  				Bytes:     publicKeyBytes,
  2053  				BitLength: len(publicKeyBytes) * 8,
  2054  			},
  2055  		},
  2056  		RawAttributes: rawAttributes,
  2057  	}
  2058  
  2059  	tbsCSRContents, err := asn1.Marshal(tbsCSR)
  2060  	if err != nil {
  2061  		return
  2062  	}
  2063  	tbsCSR.Raw = tbsCSRContents
  2064  
  2065  	signed := tbsCSRContents
  2066  	if hashFunc != 0 {
  2067  		h := hashFunc.New()
  2068  		h.Write(signed)
  2069  		signed = h.Sum(nil)
  2070  	}
  2071  
  2072  	var signature []byte
  2073  	signature, err = key.Sign(rand, signed, hashFunc)
  2074  	if err != nil {
  2075  		return
  2076  	}
  2077  
  2078  	return asn1.Marshal(certificateRequest{
  2079  		TBSCSR:             tbsCSR,
  2080  		SignatureAlgorithm: sigAlgo,
  2081  		SignatureValue: asn1.BitString{
  2082  			Bytes:     signature,
  2083  			BitLength: len(signature) * 8,
  2084  		},
  2085  	})
  2086  }
  2087  
  2088  // ParseCertificateRequest parses a single certificate request from the
  2089  // given ASN.1 DER data.
  2090  func ParseCertificateRequest(asn1Data []byte) (*CertificateRequest, error) {
  2091  	var csr certificateRequest
  2092  
  2093  	rest, err := asn1.Unmarshal(asn1Data, &csr)
  2094  	if err != nil {
  2095  		return nil, err
  2096  	} else if len(rest) != 0 {
  2097  		return nil, asn1.SyntaxError{Msg: "trailing data"}
  2098  	}
  2099  
  2100  	return parseCertificateRequest(&csr)
  2101  }
  2102  
  2103  func parseCertificateRequest(in *certificateRequest) (*CertificateRequest, error) {
  2104  	out := &CertificateRequest{
  2105  		Raw:                      in.Raw,
  2106  		RawTBSCertificateRequest: in.TBSCSR.Raw,
  2107  		RawSubjectPublicKeyInfo:  in.TBSCSR.PublicKey.Raw,
  2108  		RawSubject:               in.TBSCSR.Subject.FullBytes,
  2109  
  2110  		Signature:          in.SignatureValue.RightAlign(),
  2111  		SignatureAlgorithm: getSignatureAlgorithmFromAI(in.SignatureAlgorithm),
  2112  
  2113  		PublicKeyAlgorithm: getPublicKeyAlgorithmFromOID(in.TBSCSR.PublicKey.Algorithm.Algorithm),
  2114  
  2115  		Version:    in.TBSCSR.Version,
  2116  		Attributes: parseRawAttributes(in.TBSCSR.RawAttributes),
  2117  	}
  2118  
  2119  	var err error
  2120  	if out.PublicKeyAlgorithm != UnknownPublicKeyAlgorithm {
  2121  		out.PublicKey, err = parsePublicKey(&in.TBSCSR.PublicKey)
  2122  		if err != nil {
  2123  			return nil, err
  2124  		}
  2125  	}
  2126  
  2127  	var subject pkix.RDNSequence
  2128  	if rest, err := asn1.Unmarshal(in.TBSCSR.Subject.FullBytes, &subject); err != nil {
  2129  		return nil, err
  2130  	} else if len(rest) != 0 {
  2131  		return nil, errors.New("x509: trailing data after X.509 Subject")
  2132  	}
  2133  
  2134  	out.Subject.FillFromRDNSequence(&subject)
  2135  
  2136  	if out.Extensions, err = parseCSRExtensions(in.TBSCSR.RawAttributes); err != nil {
  2137  		return nil, err
  2138  	}
  2139  
  2140  	for _, extension := range out.Extensions {
  2141  		switch {
  2142  		case extension.Id.Equal(oidExtensionSubjectAltName):
  2143  			out.DNSNames, out.EmailAddresses, out.IPAddresses, out.URIs, err = parseSANExtension(extension.Value)
  2144  			if err != nil {
  2145  				return nil, err
  2146  			}
  2147  		}
  2148  	}
  2149  
  2150  	return out, nil
  2151  }
  2152  
  2153  // CheckSignature reports whether the signature on c is valid.
  2154  func (c *CertificateRequest) CheckSignature() error {
  2155  	return checkSignature(c.SignatureAlgorithm, c.RawTBSCertificateRequest, c.Signature, c.PublicKey, true)
  2156  }
  2157  
  2158  // RevocationListEntry represents an entry in the revokedCertificates
  2159  // sequence of a CRL.
  2160  type RevocationListEntry struct {
  2161  	// Raw contains the raw bytes of the revokedCertificates entry. It is set when
  2162  	// parsing a CRL; it is ignored when generating a CRL.
  2163  	Raw []byte
  2164  
  2165  	// SerialNumber represents the serial number of a revoked certificate. It is
  2166  	// both used when creating a CRL and populated when parsing a CRL. It must not
  2167  	// be nil.
  2168  	SerialNumber *big.Int
  2169  	// RevocationTime represents the time at which the certificate was revoked. It
  2170  	// is both used when creating a CRL and populated when parsing a CRL. It must
  2171  	// not be the zero time.
  2172  	RevocationTime time.Time
  2173  	// ReasonCode represents the reason for revocation, using the integer enum
  2174  	// values specified in RFC 5280 Section 5.3.1. When creating a CRL, the zero
  2175  	// value will result in the reasonCode extension being omitted. When parsing a
  2176  	// CRL, the zero value may represent either the reasonCode extension being
  2177  	// absent (which implies the default revocation reason of 0/Unspecified), or
  2178  	// it may represent the reasonCode extension being present and explicitly
  2179  	// containing a value of 0/Unspecified (which should not happen according to
  2180  	// the DER encoding rules, but can and does happen anyway).
  2181  	ReasonCode int
  2182  
  2183  	// Extensions contains raw X.509 extensions. When parsing CRL entries,
  2184  	// this can be used to extract non-critical extensions that are not
  2185  	// parsed by this package. When marshaling CRL entries, the Extensions
  2186  	// field is ignored, see ExtraExtensions.
  2187  	Extensions []pkix.Extension
  2188  	// ExtraExtensions contains extensions to be copied, raw, into any
  2189  	// marshaled CRL entries. Values override any extensions that would
  2190  	// otherwise be produced based on the other fields. The ExtraExtensions
  2191  	// field is not populated when parsing CRL entries, see Extensions.
  2192  	ExtraExtensions []pkix.Extension
  2193  }
  2194  
  2195  // RevocationList represents a Certificate Revocation List (CRL) as specified
  2196  // by RFC 5280.
  2197  type RevocationList struct {
  2198  	// Raw contains the complete ASN.1 DER content of the CRL (tbsCertList,
  2199  	// signatureAlgorithm, and signatureValue.)
  2200  	Raw []byte
  2201  	// RawTBSRevocationList contains just the tbsCertList portion of the ASN.1
  2202  	// DER.
  2203  	RawTBSRevocationList []byte
  2204  	// RawIssuer contains the DER encoded Issuer.
  2205  	RawIssuer []byte
  2206  
  2207  	// Issuer contains the DN of the issuing certificate.
  2208  	Issuer pkix.Name
  2209  	// AuthorityKeyId is used to identify the public key associated with the
  2210  	// issuing certificate. It is populated from the authorityKeyIdentifier
  2211  	// extension when parsing a CRL. It is ignored when creating a CRL; the
  2212  	// extension is populated from the issuing certificate itself.
  2213  	AuthorityKeyId []byte
  2214  
  2215  	Signature []byte
  2216  	// SignatureAlgorithm is used to determine the signature algorithm to be
  2217  	// used when signing the CRL. If 0 the default algorithm for the signing
  2218  	// key will be used.
  2219  	SignatureAlgorithm SignatureAlgorithm
  2220  
  2221  	// RevokedCertificateEntries represents the revokedCertificates sequence in
  2222  	// the CRL. It is used when creating a CRL and also populated when parsing a
  2223  	// CRL. When creating a CRL, it may be empty or nil, in which case the
  2224  	// revokedCertificates ASN.1 sequence will be omitted from the CRL entirely.
  2225  	RevokedCertificateEntries []RevocationListEntry
  2226  
  2227  	// RevokedCertificates is used to populate the revokedCertificates
  2228  	// sequence in the CRL if RevokedCertificateEntries is empty. It may be empty
  2229  	// or nil, in which case an empty CRL will be created.
  2230  	//
  2231  	// Deprecated: Use RevokedCertificateEntries instead.
  2232  	RevokedCertificates []pkix.RevokedCertificate
  2233  
  2234  	// Number is used to populate the X.509 v2 cRLNumber extension in the CRL,
  2235  	// which should be a monotonically increasing sequence number for a given
  2236  	// CRL scope and CRL issuer. It is also populated from the cRLNumber
  2237  	// extension when parsing a CRL.
  2238  	Number *big.Int
  2239  
  2240  	// ThisUpdate is used to populate the thisUpdate field in the CRL, which
  2241  	// indicates the issuance date of the CRL.
  2242  	ThisUpdate time.Time
  2243  	// NextUpdate is used to populate the nextUpdate field in the CRL, which
  2244  	// indicates the date by which the next CRL will be issued. NextUpdate
  2245  	// must be greater than ThisUpdate.
  2246  	NextUpdate time.Time
  2247  
  2248  	// Extensions contains raw X.509 extensions. When creating a CRL,
  2249  	// the Extensions field is ignored, see ExtraExtensions.
  2250  	Extensions []pkix.Extension
  2251  
  2252  	// ExtraExtensions contains any additional extensions to add directly to
  2253  	// the CRL.
  2254  	ExtraExtensions []pkix.Extension
  2255  }
  2256  
  2257  // These structures reflect the ASN.1 structure of X.509 CRLs better than
  2258  // the existing crypto/x509/pkix variants do. These mirror the existing
  2259  // certificate structs in this file.
  2260  //
  2261  // Notably, we include issuer as an asn1.RawValue, mirroring the behavior of
  2262  // tbsCertificate and allowing raw (unparsed) subjects to be passed cleanly.
  2263  type certificateList struct {
  2264  	TBSCertList        tbsCertificateList
  2265  	SignatureAlgorithm pkix.AlgorithmIdentifier
  2266  	SignatureValue     asn1.BitString
  2267  }
  2268  
  2269  type tbsCertificateList struct {
  2270  	Raw                 asn1.RawContent
  2271  	Version             int `asn1:"optional,default:0"`
  2272  	Signature           pkix.AlgorithmIdentifier
  2273  	Issuer              asn1.RawValue
  2274  	ThisUpdate          time.Time
  2275  	NextUpdate          time.Time                 `asn1:"optional"`
  2276  	RevokedCertificates []pkix.RevokedCertificate `asn1:"optional"`
  2277  	Extensions          []pkix.Extension          `asn1:"tag:0,optional,explicit"`
  2278  }
  2279  
  2280  // CreateRevocationList creates a new X.509 v2 Certificate Revocation List,
  2281  // according to RFC 5280, based on template.
  2282  //
  2283  // The CRL is signed by priv which should be the private key associated with
  2284  // the public key in the issuer certificate.
  2285  //
  2286  // The issuer may not be nil, and the crlSign bit must be set in KeyUsage in
  2287  // order to use it as a CRL issuer.
  2288  //
  2289  // The issuer distinguished name CRL field and authority key identifier
  2290  // extension are populated using the issuer certificate. issuer must have
  2291  // SubjectKeyId set.
  2292  func CreateRevocationList(rand io.Reader, template *RevocationList, issuer *Certificate, priv crypto.Signer) ([]byte, error) {
  2293  	if template == nil {
  2294  		return nil, errors.New("x509: template can not be nil")
  2295  	}
  2296  	if issuer == nil {
  2297  		return nil, errors.New("x509: issuer can not be nil")
  2298  	}
  2299  	if (issuer.KeyUsage & KeyUsageCRLSign) == 0 {
  2300  		return nil, errors.New("x509: issuer must have the crlSign key usage bit set")
  2301  	}
  2302  	if len(issuer.SubjectKeyId) == 0 {
  2303  		return nil, errors.New("x509: issuer certificate doesn't contain a subject key identifier")
  2304  	}
  2305  	if template.NextUpdate.Before(template.ThisUpdate) {
  2306  		return nil, errors.New("x509: template.ThisUpdate is after template.NextUpdate")
  2307  	}
  2308  	if template.Number == nil {
  2309  		return nil, errors.New("x509: template contains nil Number field")
  2310  	}
  2311  
  2312  	hashFunc, signatureAlgorithm, err := signingParamsForPublicKey(priv.Public(), template.SignatureAlgorithm)
  2313  	if err != nil {
  2314  		return nil, err
  2315  	}
  2316  
  2317  	var revokedCerts []pkix.RevokedCertificate
  2318  	// Only process the deprecated RevokedCertificates field if it is populated
  2319  	// and the new RevokedCertificateEntries field is not populated.
  2320  	if len(template.RevokedCertificates) > 0 && len(template.RevokedCertificateEntries) == 0 {
  2321  		// Force revocation times to UTC per RFC 5280.
  2322  		revokedCerts = make([]pkix.RevokedCertificate, len(template.RevokedCertificates))
  2323  		for i, rc := range template.RevokedCertificates {
  2324  			rc.RevocationTime = rc.RevocationTime.UTC()
  2325  			revokedCerts[i] = rc
  2326  		}
  2327  	} else {
  2328  		// Convert the ReasonCode field to a proper extension, and force revocation
  2329  		// times to UTC per RFC 5280.
  2330  		revokedCerts = make([]pkix.RevokedCertificate, len(template.RevokedCertificateEntries))
  2331  		for i, rce := range template.RevokedCertificateEntries {
  2332  			if rce.SerialNumber == nil {
  2333  				return nil, errors.New("x509: template contains entry with nil SerialNumber field")
  2334  			}
  2335  			if rce.RevocationTime.IsZero() {
  2336  				return nil, errors.New("x509: template contains entry with zero RevocationTime field")
  2337  			}
  2338  
  2339  			rc := pkix.RevokedCertificate{
  2340  				SerialNumber:   rce.SerialNumber,
  2341  				RevocationTime: rce.RevocationTime.UTC(),
  2342  			}
  2343  
  2344  			// Copy over any extra extensions, except for a Reason Code extension,
  2345  			// because we'll synthesize that ourselves to ensure it is correct.
  2346  			exts := make([]pkix.Extension, 0, len(rce.ExtraExtensions))
  2347  			for _, ext := range rce.ExtraExtensions {
  2348  				if ext.Id.Equal(oidExtensionReasonCode) {
  2349  					return nil, errors.New("x509: template contains entry with ReasonCode ExtraExtension; use ReasonCode field instead")
  2350  				}
  2351  				exts = append(exts, ext)
  2352  			}
  2353  
  2354  			// Only add a reasonCode extension if the reason is non-zero, as per
  2355  			// RFC 5280 Section 5.3.1.
  2356  			if rce.ReasonCode != 0 {
  2357  				reasonBytes, err := asn1.Marshal(asn1.Enumerated(rce.ReasonCode))
  2358  				if err != nil {
  2359  					return nil, err
  2360  				}
  2361  
  2362  				exts = append(exts, pkix.Extension{
  2363  					Id:    oidExtensionReasonCode,
  2364  					Value: reasonBytes,
  2365  				})
  2366  			}
  2367  
  2368  			if len(exts) > 0 {
  2369  				rc.Extensions = exts
  2370  			}
  2371  			revokedCerts[i] = rc
  2372  		}
  2373  	}
  2374  
  2375  	aki, err := asn1.Marshal(authKeyId{Id: issuer.SubjectKeyId})
  2376  	if err != nil {
  2377  		return nil, err
  2378  	}
  2379  
  2380  	if numBytes := template.Number.Bytes(); len(numBytes) > 20 || (len(numBytes) == 20 && numBytes[0]&0x80 != 0) {
  2381  		return nil, errors.New("x509: CRL number exceeds 20 octets")
  2382  	}
  2383  	crlNum, err := asn1.Marshal(template.Number)
  2384  	if err != nil {
  2385  		return nil, err
  2386  	}
  2387  
  2388  	// Correctly use the issuer's subject sequence if one is specified.
  2389  	issuerSubject, err := subjectBytes(issuer)
  2390  	if err != nil {
  2391  		return nil, err
  2392  	}
  2393  
  2394  	tbsCertList := tbsCertificateList{
  2395  		Version:    1, // v2
  2396  		Signature:  signatureAlgorithm,
  2397  		Issuer:     asn1.RawValue{FullBytes: issuerSubject},
  2398  		ThisUpdate: template.ThisUpdate.UTC(),
  2399  		NextUpdate: template.NextUpdate.UTC(),
  2400  		Extensions: []pkix.Extension{
  2401  			{
  2402  				Id:    oidExtensionAuthorityKeyId,
  2403  				Value: aki,
  2404  			},
  2405  			{
  2406  				Id:    oidExtensionCRLNumber,
  2407  				Value: crlNum,
  2408  			},
  2409  		},
  2410  	}
  2411  	if len(revokedCerts) > 0 {
  2412  		tbsCertList.RevokedCertificates = revokedCerts
  2413  	}
  2414  
  2415  	if len(template.ExtraExtensions) > 0 {
  2416  		tbsCertList.Extensions = append(tbsCertList.Extensions, template.ExtraExtensions...)
  2417  	}
  2418  
  2419  	tbsCertListContents, err := asn1.Marshal(tbsCertList)
  2420  	if err != nil {
  2421  		return nil, err
  2422  	}
  2423  
  2424  	// Optimization to only marshal this struct once, when signing and
  2425  	// then embedding in certificateList below.
  2426  	tbsCertList.Raw = tbsCertListContents
  2427  
  2428  	input := tbsCertListContents
  2429  	if hashFunc != 0 {
  2430  		h := hashFunc.New()
  2431  		h.Write(tbsCertListContents)
  2432  		input = h.Sum(nil)
  2433  	}
  2434  	var signerOpts crypto.SignerOpts = hashFunc
  2435  	if template.SignatureAlgorithm.isRSAPSS() {
  2436  		signerOpts = &rsa.PSSOptions{
  2437  			SaltLength: rsa.PSSSaltLengthEqualsHash,
  2438  			Hash:       hashFunc,
  2439  		}
  2440  	}
  2441  
  2442  	signature, err := priv.Sign(rand, input, signerOpts)
  2443  	if err != nil {
  2444  		return nil, err
  2445  	}
  2446  
  2447  	return asn1.Marshal(certificateList{
  2448  		TBSCertList:        tbsCertList,
  2449  		SignatureAlgorithm: signatureAlgorithm,
  2450  		SignatureValue:     asn1.BitString{Bytes: signature, BitLength: len(signature) * 8},
  2451  	})
  2452  }
  2453  
  2454  // CheckSignatureFrom verifies that the signature on rl is a valid signature
  2455  // from issuer.
  2456  func (rl *RevocationList) CheckSignatureFrom(parent *Certificate) error {
  2457  	if parent.Version == 3 && !parent.BasicConstraintsValid ||
  2458  		parent.BasicConstraintsValid && !parent.IsCA {
  2459  		return ConstraintViolationError{}
  2460  	}
  2461  
  2462  	if parent.KeyUsage != 0 && parent.KeyUsage&KeyUsageCRLSign == 0 {
  2463  		return ConstraintViolationError{}
  2464  	}
  2465  
  2466  	if parent.PublicKeyAlgorithm == UnknownPublicKeyAlgorithm {
  2467  		return ErrUnsupportedAlgorithm
  2468  	}
  2469  
  2470  	return parent.CheckSignature(rl.SignatureAlgorithm, rl.RawTBSRevocationList, rl.Signature)
  2471  }