github.com/twelsh-aw/go/src@v0.0.0-20230516233729-a56fe86a7c81/image/jpeg/reader.go (about) 1 // Copyright 2009 The Go Authors. All rights reserved. 2 // Use of this source code is governed by a BSD-style 3 // license that can be found in the LICENSE file. 4 5 // Package jpeg implements a JPEG image decoder and encoder. 6 // 7 // JPEG is defined in ITU-T T.81: https://www.w3.org/Graphics/JPEG/itu-t81.pdf. 8 package jpeg 9 10 import ( 11 "image" 12 "image/color" 13 "image/internal/imageutil" 14 "io" 15 ) 16 17 // A FormatError reports that the input is not a valid JPEG. 18 type FormatError string 19 20 func (e FormatError) Error() string { return "invalid JPEG format: " + string(e) } 21 22 // An UnsupportedError reports that the input uses a valid but unimplemented JPEG feature. 23 type UnsupportedError string 24 25 func (e UnsupportedError) Error() string { return "unsupported JPEG feature: " + string(e) } 26 27 var errUnsupportedSubsamplingRatio = UnsupportedError("luma/chroma subsampling ratio") 28 29 // Component specification, specified in section B.2.2. 30 type component struct { 31 h int // Horizontal sampling factor. 32 v int // Vertical sampling factor. 33 c uint8 // Component identifier. 34 tq uint8 // Quantization table destination selector. 35 } 36 37 const ( 38 dcTable = 0 39 acTable = 1 40 maxTc = 1 41 maxTh = 3 42 maxTq = 3 43 44 maxComponents = 4 45 ) 46 47 const ( 48 sof0Marker = 0xc0 // Start Of Frame (Baseline Sequential). 49 sof1Marker = 0xc1 // Start Of Frame (Extended Sequential). 50 sof2Marker = 0xc2 // Start Of Frame (Progressive). 51 dhtMarker = 0xc4 // Define Huffman Table. 52 rst0Marker = 0xd0 // ReSTart (0). 53 rst7Marker = 0xd7 // ReSTart (7). 54 soiMarker = 0xd8 // Start Of Image. 55 eoiMarker = 0xd9 // End Of Image. 56 sosMarker = 0xda // Start Of Scan. 57 dqtMarker = 0xdb // Define Quantization Table. 58 driMarker = 0xdd // Define Restart Interval. 59 comMarker = 0xfe // COMment. 60 // "APPlication specific" markers aren't part of the JPEG spec per se, 61 // but in practice, their use is described at 62 // https://www.sno.phy.queensu.ca/~phil/exiftool/TagNames/JPEG.html 63 app0Marker = 0xe0 64 app14Marker = 0xee 65 app15Marker = 0xef 66 ) 67 68 // See https://www.sno.phy.queensu.ca/~phil/exiftool/TagNames/JPEG.html#Adobe 69 const ( 70 adobeTransformUnknown = 0 71 adobeTransformYCbCr = 1 72 adobeTransformYCbCrK = 2 73 ) 74 75 // unzig maps from the zig-zag ordering to the natural ordering. For example, 76 // unzig[3] is the column and row of the fourth element in zig-zag order. The 77 // value is 16, which means first column (16%8 == 0) and third row (16/8 == 2). 78 var unzig = [blockSize]int{ 79 0, 1, 8, 16, 9, 2, 3, 10, 80 17, 24, 32, 25, 18, 11, 4, 5, 81 12, 19, 26, 33, 40, 48, 41, 34, 82 27, 20, 13, 6, 7, 14, 21, 28, 83 35, 42, 49, 56, 57, 50, 43, 36, 84 29, 22, 15, 23, 30, 37, 44, 51, 85 58, 59, 52, 45, 38, 31, 39, 46, 86 53, 60, 61, 54, 47, 55, 62, 63, 87 } 88 89 // Deprecated: Reader is not used by the image/jpeg package and should 90 // not be used by others. It is kept for compatibility. 91 type Reader interface { 92 io.ByteReader 93 io.Reader 94 } 95 96 // bits holds the unprocessed bits that have been taken from the byte-stream. 97 // The n least significant bits of a form the unread bits, to be read in MSB to 98 // LSB order. 99 type bits struct { 100 a uint32 // accumulator. 101 m uint32 // mask. m==1<<(n-1) when n>0, with m==0 when n==0. 102 n int32 // the number of unread bits in a. 103 } 104 105 type decoder struct { 106 r io.Reader 107 bits bits 108 // bytes is a byte buffer, similar to a bufio.Reader, except that it 109 // has to be able to unread more than 1 byte, due to byte stuffing. 110 // Byte stuffing is specified in section F.1.2.3. 111 bytes struct { 112 // buf[i:j] are the buffered bytes read from the underlying 113 // io.Reader that haven't yet been passed further on. 114 buf [4096]byte 115 i, j int 116 // nUnreadable is the number of bytes to back up i after 117 // overshooting. It can be 0, 1 or 2. 118 nUnreadable int 119 } 120 width, height int 121 122 img1 *image.Gray 123 img3 *image.YCbCr 124 blackPix []byte 125 blackStride int 126 127 ri int // Restart Interval. 128 nComp int 129 130 // As per section 4.5, there are four modes of operation (selected by the 131 // SOF? markers): sequential DCT, progressive DCT, lossless and 132 // hierarchical, although this implementation does not support the latter 133 // two non-DCT modes. Sequential DCT is further split into baseline and 134 // extended, as per section 4.11. 135 baseline bool 136 progressive bool 137 138 jfif bool 139 adobeTransformValid bool 140 adobeTransform uint8 141 eobRun uint16 // End-of-Band run, specified in section G.1.2.2. 142 143 comp [maxComponents]component 144 progCoeffs [maxComponents][]block // Saved state between progressive-mode scans. 145 huff [maxTc + 1][maxTh + 1]huffman 146 quant [maxTq + 1]block // Quantization tables, in zig-zag order. 147 tmp [2 * blockSize]byte 148 } 149 150 // fill fills up the d.bytes.buf buffer from the underlying io.Reader. It 151 // should only be called when there are no unread bytes in d.bytes. 152 func (d *decoder) fill() error { 153 if d.bytes.i != d.bytes.j { 154 panic("jpeg: fill called when unread bytes exist") 155 } 156 // Move the last 2 bytes to the start of the buffer, in case we need 157 // to call unreadByteStuffedByte. 158 if d.bytes.j > 2 { 159 d.bytes.buf[0] = d.bytes.buf[d.bytes.j-2] 160 d.bytes.buf[1] = d.bytes.buf[d.bytes.j-1] 161 d.bytes.i, d.bytes.j = 2, 2 162 } 163 // Fill in the rest of the buffer. 164 n, err := d.r.Read(d.bytes.buf[d.bytes.j:]) 165 d.bytes.j += n 166 if n > 0 { 167 return nil 168 } 169 if err == io.EOF { 170 err = io.ErrUnexpectedEOF 171 } 172 return err 173 } 174 175 // unreadByteStuffedByte undoes the most recent readByteStuffedByte call, 176 // giving a byte of data back from d.bits to d.bytes. The Huffman look-up table 177 // requires at least 8 bits for look-up, which means that Huffman decoding can 178 // sometimes overshoot and read one or two too many bytes. Two-byte overshoot 179 // can happen when expecting to read a 0xff 0x00 byte-stuffed byte. 180 func (d *decoder) unreadByteStuffedByte() { 181 d.bytes.i -= d.bytes.nUnreadable 182 d.bytes.nUnreadable = 0 183 if d.bits.n >= 8 { 184 d.bits.a >>= 8 185 d.bits.n -= 8 186 d.bits.m >>= 8 187 } 188 } 189 190 // readByte returns the next byte, whether buffered or not buffered. It does 191 // not care about byte stuffing. 192 func (d *decoder) readByte() (x byte, err error) { 193 for d.bytes.i == d.bytes.j { 194 if err = d.fill(); err != nil { 195 return 0, err 196 } 197 } 198 x = d.bytes.buf[d.bytes.i] 199 d.bytes.i++ 200 d.bytes.nUnreadable = 0 201 return x, nil 202 } 203 204 // errMissingFF00 means that readByteStuffedByte encountered an 0xff byte (a 205 // marker byte) that wasn't the expected byte-stuffed sequence 0xff, 0x00. 206 var errMissingFF00 = FormatError("missing 0xff00 sequence") 207 208 // readByteStuffedByte is like readByte but is for byte-stuffed Huffman data. 209 func (d *decoder) readByteStuffedByte() (x byte, err error) { 210 // Take the fast path if d.bytes.buf contains at least two bytes. 211 if d.bytes.i+2 <= d.bytes.j { 212 x = d.bytes.buf[d.bytes.i] 213 d.bytes.i++ 214 d.bytes.nUnreadable = 1 215 if x != 0xff { 216 return x, err 217 } 218 if d.bytes.buf[d.bytes.i] != 0x00 { 219 return 0, errMissingFF00 220 } 221 d.bytes.i++ 222 d.bytes.nUnreadable = 2 223 return 0xff, nil 224 } 225 226 d.bytes.nUnreadable = 0 227 228 x, err = d.readByte() 229 if err != nil { 230 return 0, err 231 } 232 d.bytes.nUnreadable = 1 233 if x != 0xff { 234 return x, nil 235 } 236 237 x, err = d.readByte() 238 if err != nil { 239 return 0, err 240 } 241 d.bytes.nUnreadable = 2 242 if x != 0x00 { 243 return 0, errMissingFF00 244 } 245 return 0xff, nil 246 } 247 248 // readFull reads exactly len(p) bytes into p. It does not care about byte 249 // stuffing. 250 func (d *decoder) readFull(p []byte) error { 251 // Unread the overshot bytes, if any. 252 if d.bytes.nUnreadable != 0 { 253 if d.bits.n >= 8 { 254 d.unreadByteStuffedByte() 255 } 256 d.bytes.nUnreadable = 0 257 } 258 259 for { 260 n := copy(p, d.bytes.buf[d.bytes.i:d.bytes.j]) 261 p = p[n:] 262 d.bytes.i += n 263 if len(p) == 0 { 264 break 265 } 266 if err := d.fill(); err != nil { 267 return err 268 } 269 } 270 return nil 271 } 272 273 // ignore ignores the next n bytes. 274 func (d *decoder) ignore(n int) error { 275 // Unread the overshot bytes, if any. 276 if d.bytes.nUnreadable != 0 { 277 if d.bits.n >= 8 { 278 d.unreadByteStuffedByte() 279 } 280 d.bytes.nUnreadable = 0 281 } 282 283 for { 284 m := d.bytes.j - d.bytes.i 285 if m > n { 286 m = n 287 } 288 d.bytes.i += m 289 n -= m 290 if n == 0 { 291 break 292 } 293 if err := d.fill(); err != nil { 294 return err 295 } 296 } 297 return nil 298 } 299 300 // Specified in section B.2.2. 301 func (d *decoder) processSOF(n int) error { 302 if d.nComp != 0 { 303 return FormatError("multiple SOF markers") 304 } 305 switch n { 306 case 6 + 3*1: // Grayscale image. 307 d.nComp = 1 308 case 6 + 3*3: // YCbCr or RGB image. 309 d.nComp = 3 310 case 6 + 3*4: // YCbCrK or CMYK image. 311 d.nComp = 4 312 default: 313 return UnsupportedError("number of components") 314 } 315 if err := d.readFull(d.tmp[:n]); err != nil { 316 return err 317 } 318 // We only support 8-bit precision. 319 if d.tmp[0] != 8 { 320 return UnsupportedError("precision") 321 } 322 d.height = int(d.tmp[1])<<8 + int(d.tmp[2]) 323 d.width = int(d.tmp[3])<<8 + int(d.tmp[4]) 324 if int(d.tmp[5]) != d.nComp { 325 return FormatError("SOF has wrong length") 326 } 327 328 for i := 0; i < d.nComp; i++ { 329 d.comp[i].c = d.tmp[6+3*i] 330 // Section B.2.2 states that "the value of C_i shall be different from 331 // the values of C_1 through C_(i-1)". 332 for j := 0; j < i; j++ { 333 if d.comp[i].c == d.comp[j].c { 334 return FormatError("repeated component identifier") 335 } 336 } 337 338 d.comp[i].tq = d.tmp[8+3*i] 339 if d.comp[i].tq > maxTq { 340 return FormatError("bad Tq value") 341 } 342 343 hv := d.tmp[7+3*i] 344 h, v := int(hv>>4), int(hv&0x0f) 345 if h < 1 || 4 < h || v < 1 || 4 < v { 346 return FormatError("luma/chroma subsampling ratio") 347 } 348 if h == 3 || v == 3 { 349 return errUnsupportedSubsamplingRatio 350 } 351 switch d.nComp { 352 case 1: 353 // If a JPEG image has only one component, section A.2 says "this data 354 // is non-interleaved by definition" and section A.2.2 says "[in this 355 // case...] the order of data units within a scan shall be left-to-right 356 // and top-to-bottom... regardless of the values of H_1 and V_1". Section 357 // 4.8.2 also says "[for non-interleaved data], the MCU is defined to be 358 // one data unit". Similarly, section A.1.1 explains that it is the ratio 359 // of H_i to max_j(H_j) that matters, and similarly for V. For grayscale 360 // images, H_1 is the maximum H_j for all components j, so that ratio is 361 // always 1. The component's (h, v) is effectively always (1, 1): even if 362 // the nominal (h, v) is (2, 1), a 20x5 image is encoded in three 8x8 363 // MCUs, not two 16x8 MCUs. 364 h, v = 1, 1 365 366 case 3: 367 // For YCbCr images, we only support 4:4:4, 4:4:0, 4:2:2, 4:2:0, 368 // 4:1:1 or 4:1:0 chroma subsampling ratios. This implies that the 369 // (h, v) values for the Y component are either (1, 1), (1, 2), 370 // (2, 1), (2, 2), (4, 1) or (4, 2), and the Y component's values 371 // must be a multiple of the Cb and Cr component's values. We also 372 // assume that the two chroma components have the same subsampling 373 // ratio. 374 switch i { 375 case 0: // Y. 376 // We have already verified, above, that h and v are both 377 // either 1, 2 or 4, so invalid (h, v) combinations are those 378 // with v == 4. 379 if v == 4 { 380 return errUnsupportedSubsamplingRatio 381 } 382 case 1: // Cb. 383 if d.comp[0].h%h != 0 || d.comp[0].v%v != 0 { 384 return errUnsupportedSubsamplingRatio 385 } 386 case 2: // Cr. 387 if d.comp[1].h != h || d.comp[1].v != v { 388 return errUnsupportedSubsamplingRatio 389 } 390 } 391 392 case 4: 393 // For 4-component images (either CMYK or YCbCrK), we only support two 394 // hv vectors: [0x11 0x11 0x11 0x11] and [0x22 0x11 0x11 0x22]. 395 // Theoretically, 4-component JPEG images could mix and match hv values 396 // but in practice, those two combinations are the only ones in use, 397 // and it simplifies the applyBlack code below if we can assume that: 398 // - for CMYK, the C and K channels have full samples, and if the M 399 // and Y channels subsample, they subsample both horizontally and 400 // vertically. 401 // - for YCbCrK, the Y and K channels have full samples. 402 switch i { 403 case 0: 404 if hv != 0x11 && hv != 0x22 { 405 return errUnsupportedSubsamplingRatio 406 } 407 case 1, 2: 408 if hv != 0x11 { 409 return errUnsupportedSubsamplingRatio 410 } 411 case 3: 412 if d.comp[0].h != h || d.comp[0].v != v { 413 return errUnsupportedSubsamplingRatio 414 } 415 } 416 } 417 418 d.comp[i].h = h 419 d.comp[i].v = v 420 } 421 return nil 422 } 423 424 // Specified in section B.2.4.1. 425 func (d *decoder) processDQT(n int) error { 426 loop: 427 for n > 0 { 428 n-- 429 x, err := d.readByte() 430 if err != nil { 431 return err 432 } 433 tq := x & 0x0f 434 if tq > maxTq { 435 return FormatError("bad Tq value") 436 } 437 switch x >> 4 { 438 default: 439 return FormatError("bad Pq value") 440 case 0: 441 if n < blockSize { 442 break loop 443 } 444 n -= blockSize 445 if err := d.readFull(d.tmp[:blockSize]); err != nil { 446 return err 447 } 448 for i := range d.quant[tq] { 449 d.quant[tq][i] = int32(d.tmp[i]) 450 } 451 case 1: 452 if n < 2*blockSize { 453 break loop 454 } 455 n -= 2 * blockSize 456 if err := d.readFull(d.tmp[:2*blockSize]); err != nil { 457 return err 458 } 459 for i := range d.quant[tq] { 460 d.quant[tq][i] = int32(d.tmp[2*i])<<8 | int32(d.tmp[2*i+1]) 461 } 462 } 463 } 464 if n != 0 { 465 return FormatError("DQT has wrong length") 466 } 467 return nil 468 } 469 470 // Specified in section B.2.4.4. 471 func (d *decoder) processDRI(n int) error { 472 if n != 2 { 473 return FormatError("DRI has wrong length") 474 } 475 if err := d.readFull(d.tmp[:2]); err != nil { 476 return err 477 } 478 d.ri = int(d.tmp[0])<<8 + int(d.tmp[1]) 479 return nil 480 } 481 482 func (d *decoder) processApp0Marker(n int) error { 483 if n < 5 { 484 return d.ignore(n) 485 } 486 if err := d.readFull(d.tmp[:5]); err != nil { 487 return err 488 } 489 n -= 5 490 491 d.jfif = d.tmp[0] == 'J' && d.tmp[1] == 'F' && d.tmp[2] == 'I' && d.tmp[3] == 'F' && d.tmp[4] == '\x00' 492 493 if n > 0 { 494 return d.ignore(n) 495 } 496 return nil 497 } 498 499 func (d *decoder) processApp14Marker(n int) error { 500 if n < 12 { 501 return d.ignore(n) 502 } 503 if err := d.readFull(d.tmp[:12]); err != nil { 504 return err 505 } 506 n -= 12 507 508 if d.tmp[0] == 'A' && d.tmp[1] == 'd' && d.tmp[2] == 'o' && d.tmp[3] == 'b' && d.tmp[4] == 'e' { 509 d.adobeTransformValid = true 510 d.adobeTransform = d.tmp[11] 511 } 512 513 if n > 0 { 514 return d.ignore(n) 515 } 516 return nil 517 } 518 519 // decode reads a JPEG image from r and returns it as an image.Image. 520 func (d *decoder) decode(r io.Reader, configOnly bool) (image.Image, error) { 521 d.r = r 522 523 // Check for the Start Of Image marker. 524 if err := d.readFull(d.tmp[:2]); err != nil { 525 return nil, err 526 } 527 if d.tmp[0] != 0xff || d.tmp[1] != soiMarker { 528 return nil, FormatError("missing SOI marker") 529 } 530 531 // Process the remaining segments until the End Of Image marker. 532 for { 533 err := d.readFull(d.tmp[:2]) 534 if err != nil { 535 return nil, err 536 } 537 for d.tmp[0] != 0xff { 538 // Strictly speaking, this is a format error. However, libjpeg is 539 // liberal in what it accepts. As of version 9, next_marker in 540 // jdmarker.c treats this as a warning (JWRN_EXTRANEOUS_DATA) and 541 // continues to decode the stream. Even before next_marker sees 542 // extraneous data, jpeg_fill_bit_buffer in jdhuff.c reads as many 543 // bytes as it can, possibly past the end of a scan's data. It 544 // effectively puts back any markers that it overscanned (e.g. an 545 // "\xff\xd9" EOI marker), but it does not put back non-marker data, 546 // and thus it can silently ignore a small number of extraneous 547 // non-marker bytes before next_marker has a chance to see them (and 548 // print a warning). 549 // 550 // We are therefore also liberal in what we accept. Extraneous data 551 // is silently ignored. 552 // 553 // This is similar to, but not exactly the same as, the restart 554 // mechanism within a scan (the RST[0-7] markers). 555 // 556 // Note that extraneous 0xff bytes in e.g. SOS data are escaped as 557 // "\xff\x00", and so are detected a little further down below. 558 d.tmp[0] = d.tmp[1] 559 d.tmp[1], err = d.readByte() 560 if err != nil { 561 return nil, err 562 } 563 } 564 marker := d.tmp[1] 565 if marker == 0 { 566 // Treat "\xff\x00" as extraneous data. 567 continue 568 } 569 for marker == 0xff { 570 // Section B.1.1.2 says, "Any marker may optionally be preceded by any 571 // number of fill bytes, which are bytes assigned code X'FF'". 572 marker, err = d.readByte() 573 if err != nil { 574 return nil, err 575 } 576 } 577 if marker == eoiMarker { // End Of Image. 578 break 579 } 580 if rst0Marker <= marker && marker <= rst7Marker { 581 // Figures B.2 and B.16 of the specification suggest that restart markers should 582 // only occur between Entropy Coded Segments and not after the final ECS. 583 // However, some encoders may generate incorrect JPEGs with a final restart 584 // marker. That restart marker will be seen here instead of inside the processSOS 585 // method, and is ignored as a harmless error. Restart markers have no extra data, 586 // so we check for this before we read the 16-bit length of the segment. 587 continue 588 } 589 590 // Read the 16-bit length of the segment. The value includes the 2 bytes for the 591 // length itself, so we subtract 2 to get the number of remaining bytes. 592 if err = d.readFull(d.tmp[:2]); err != nil { 593 return nil, err 594 } 595 n := int(d.tmp[0])<<8 + int(d.tmp[1]) - 2 596 if n < 0 { 597 return nil, FormatError("short segment length") 598 } 599 600 switch marker { 601 case sof0Marker, sof1Marker, sof2Marker: 602 d.baseline = marker == sof0Marker 603 d.progressive = marker == sof2Marker 604 err = d.processSOF(n) 605 if configOnly && d.jfif { 606 return nil, err 607 } 608 case dhtMarker: 609 if configOnly { 610 err = d.ignore(n) 611 } else { 612 err = d.processDHT(n) 613 } 614 case dqtMarker: 615 if configOnly { 616 err = d.ignore(n) 617 } else { 618 err = d.processDQT(n) 619 } 620 case sosMarker: 621 if configOnly { 622 return nil, nil 623 } 624 err = d.processSOS(n) 625 case driMarker: 626 if configOnly { 627 err = d.ignore(n) 628 } else { 629 err = d.processDRI(n) 630 } 631 case app0Marker: 632 err = d.processApp0Marker(n) 633 case app14Marker: 634 err = d.processApp14Marker(n) 635 default: 636 if app0Marker <= marker && marker <= app15Marker || marker == comMarker { 637 err = d.ignore(n) 638 } else if marker < 0xc0 { // See Table B.1 "Marker code assignments". 639 err = FormatError("unknown marker") 640 } else { 641 err = UnsupportedError("unknown marker") 642 } 643 } 644 if err != nil { 645 return nil, err 646 } 647 } 648 649 if d.progressive { 650 if err := d.reconstructProgressiveImage(); err != nil { 651 return nil, err 652 } 653 } 654 if d.img1 != nil { 655 return d.img1, nil 656 } 657 if d.img3 != nil { 658 if d.blackPix != nil { 659 return d.applyBlack() 660 } else if d.isRGB() { 661 return d.convertToRGB() 662 } 663 return d.img3, nil 664 } 665 return nil, FormatError("missing SOS marker") 666 } 667 668 // applyBlack combines d.img3 and d.blackPix into a CMYK image. The formula 669 // used depends on whether the JPEG image is stored as CMYK or YCbCrK, 670 // indicated by the APP14 (Adobe) metadata. 671 // 672 // Adobe CMYK JPEG images are inverted, where 255 means no ink instead of full 673 // ink, so we apply "v = 255 - v" at various points. Note that a double 674 // inversion is a no-op, so inversions might be implicit in the code below. 675 func (d *decoder) applyBlack() (image.Image, error) { 676 if !d.adobeTransformValid { 677 return nil, UnsupportedError("unknown color model: 4-component JPEG doesn't have Adobe APP14 metadata") 678 } 679 680 // If the 4-component JPEG image isn't explicitly marked as "Unknown (RGB 681 // or CMYK)" as per 682 // https://www.sno.phy.queensu.ca/~phil/exiftool/TagNames/JPEG.html#Adobe 683 // we assume that it is YCbCrK. This matches libjpeg's jdapimin.c. 684 if d.adobeTransform != adobeTransformUnknown { 685 // Convert the YCbCr part of the YCbCrK to RGB, invert the RGB to get 686 // CMY, and patch in the original K. The RGB to CMY inversion cancels 687 // out the 'Adobe inversion' described in the applyBlack doc comment 688 // above, so in practice, only the fourth channel (black) is inverted. 689 bounds := d.img3.Bounds() 690 img := image.NewRGBA(bounds) 691 imageutil.DrawYCbCr(img, bounds, d.img3, bounds.Min) 692 for iBase, y := 0, bounds.Min.Y; y < bounds.Max.Y; iBase, y = iBase+img.Stride, y+1 { 693 for i, x := iBase+3, bounds.Min.X; x < bounds.Max.X; i, x = i+4, x+1 { 694 img.Pix[i] = 255 - d.blackPix[(y-bounds.Min.Y)*d.blackStride+(x-bounds.Min.X)] 695 } 696 } 697 return &image.CMYK{ 698 Pix: img.Pix, 699 Stride: img.Stride, 700 Rect: img.Rect, 701 }, nil 702 } 703 704 // The first three channels (cyan, magenta, yellow) of the CMYK 705 // were decoded into d.img3, but each channel was decoded into a separate 706 // []byte slice, and some channels may be subsampled. We interleave the 707 // separate channels into an image.CMYK's single []byte slice containing 4 708 // contiguous bytes per pixel. 709 bounds := d.img3.Bounds() 710 img := image.NewCMYK(bounds) 711 712 translations := [4]struct { 713 src []byte 714 stride int 715 }{ 716 {d.img3.Y, d.img3.YStride}, 717 {d.img3.Cb, d.img3.CStride}, 718 {d.img3.Cr, d.img3.CStride}, 719 {d.blackPix, d.blackStride}, 720 } 721 for t, translation := range translations { 722 subsample := d.comp[t].h != d.comp[0].h || d.comp[t].v != d.comp[0].v 723 for iBase, y := 0, bounds.Min.Y; y < bounds.Max.Y; iBase, y = iBase+img.Stride, y+1 { 724 sy := y - bounds.Min.Y 725 if subsample { 726 sy /= 2 727 } 728 for i, x := iBase+t, bounds.Min.X; x < bounds.Max.X; i, x = i+4, x+1 { 729 sx := x - bounds.Min.X 730 if subsample { 731 sx /= 2 732 } 733 img.Pix[i] = 255 - translation.src[sy*translation.stride+sx] 734 } 735 } 736 } 737 return img, nil 738 } 739 740 func (d *decoder) isRGB() bool { 741 if d.jfif { 742 return false 743 } 744 if d.adobeTransformValid && d.adobeTransform == adobeTransformUnknown { 745 // https://www.sno.phy.queensu.ca/~phil/exiftool/TagNames/JPEG.html#Adobe 746 // says that 0 means Unknown (and in practice RGB) and 1 means YCbCr. 747 return true 748 } 749 return d.comp[0].c == 'R' && d.comp[1].c == 'G' && d.comp[2].c == 'B' 750 } 751 752 func (d *decoder) convertToRGB() (image.Image, error) { 753 cScale := d.comp[0].h / d.comp[1].h 754 bounds := d.img3.Bounds() 755 img := image.NewRGBA(bounds) 756 for y := bounds.Min.Y; y < bounds.Max.Y; y++ { 757 po := img.PixOffset(bounds.Min.X, y) 758 yo := d.img3.YOffset(bounds.Min.X, y) 759 co := d.img3.COffset(bounds.Min.X, y) 760 for i, iMax := 0, bounds.Max.X-bounds.Min.X; i < iMax; i++ { 761 img.Pix[po+4*i+0] = d.img3.Y[yo+i] 762 img.Pix[po+4*i+1] = d.img3.Cb[co+i/cScale] 763 img.Pix[po+4*i+2] = d.img3.Cr[co+i/cScale] 764 img.Pix[po+4*i+3] = 255 765 } 766 } 767 return img, nil 768 } 769 770 // Decode reads a JPEG image from r and returns it as an image.Image. 771 func Decode(r io.Reader) (image.Image, error) { 772 var d decoder 773 return d.decode(r, false) 774 } 775 776 // DecodeConfig returns the color model and dimensions of a JPEG image without 777 // decoding the entire image. 778 func DecodeConfig(r io.Reader) (image.Config, error) { 779 var d decoder 780 if _, err := d.decode(r, true); err != nil { 781 return image.Config{}, err 782 } 783 switch d.nComp { 784 case 1: 785 return image.Config{ 786 ColorModel: color.GrayModel, 787 Width: d.width, 788 Height: d.height, 789 }, nil 790 case 3: 791 cm := color.YCbCrModel 792 if d.isRGB() { 793 cm = color.RGBAModel 794 } 795 return image.Config{ 796 ColorModel: cm, 797 Width: d.width, 798 Height: d.height, 799 }, nil 800 case 4: 801 return image.Config{ 802 ColorModel: color.CMYKModel, 803 Width: d.width, 804 Height: d.height, 805 }, nil 806 } 807 return image.Config{}, FormatError("missing SOF marker") 808 } 809 810 func init() { 811 image.RegisterFormat("jpeg", "\xff\xd8", Decode, DecodeConfig) 812 }