github.com/twelsh-aw/go/src@v0.0.0-20230516233729-a56fe86a7c81/image/jpeg/scan.go (about) 1 // Copyright 2012 The Go Authors. All rights reserved. 2 // Use of this source code is governed by a BSD-style 3 // license that can be found in the LICENSE file. 4 5 package jpeg 6 7 import ( 8 "image" 9 ) 10 11 // makeImg allocates and initializes the destination image. 12 func (d *decoder) makeImg(mxx, myy int) { 13 if d.nComp == 1 { 14 m := image.NewGray(image.Rect(0, 0, 8*mxx, 8*myy)) 15 d.img1 = m.SubImage(image.Rect(0, 0, d.width, d.height)).(*image.Gray) 16 return 17 } 18 19 h0 := d.comp[0].h 20 v0 := d.comp[0].v 21 hRatio := h0 / d.comp[1].h 22 vRatio := v0 / d.comp[1].v 23 var subsampleRatio image.YCbCrSubsampleRatio 24 switch hRatio<<4 | vRatio { 25 case 0x11: 26 subsampleRatio = image.YCbCrSubsampleRatio444 27 case 0x12: 28 subsampleRatio = image.YCbCrSubsampleRatio440 29 case 0x21: 30 subsampleRatio = image.YCbCrSubsampleRatio422 31 case 0x22: 32 subsampleRatio = image.YCbCrSubsampleRatio420 33 case 0x41: 34 subsampleRatio = image.YCbCrSubsampleRatio411 35 case 0x42: 36 subsampleRatio = image.YCbCrSubsampleRatio410 37 default: 38 panic("unreachable") 39 } 40 m := image.NewYCbCr(image.Rect(0, 0, 8*h0*mxx, 8*v0*myy), subsampleRatio) 41 d.img3 = m.SubImage(image.Rect(0, 0, d.width, d.height)).(*image.YCbCr) 42 43 if d.nComp == 4 { 44 h3, v3 := d.comp[3].h, d.comp[3].v 45 d.blackPix = make([]byte, 8*h3*mxx*8*v3*myy) 46 d.blackStride = 8 * h3 * mxx 47 } 48 } 49 50 // Specified in section B.2.3. 51 func (d *decoder) processSOS(n int) error { 52 if d.nComp == 0 { 53 return FormatError("missing SOF marker") 54 } 55 if n < 6 || 4+2*d.nComp < n || n%2 != 0 { 56 return FormatError("SOS has wrong length") 57 } 58 if err := d.readFull(d.tmp[:n]); err != nil { 59 return err 60 } 61 nComp := int(d.tmp[0]) 62 if n != 4+2*nComp { 63 return FormatError("SOS length inconsistent with number of components") 64 } 65 var scan [maxComponents]struct { 66 compIndex uint8 67 td uint8 // DC table selector. 68 ta uint8 // AC table selector. 69 } 70 totalHV := 0 71 for i := 0; i < nComp; i++ { 72 cs := d.tmp[1+2*i] // Component selector. 73 compIndex := -1 74 for j, comp := range d.comp[:d.nComp] { 75 if cs == comp.c { 76 compIndex = j 77 } 78 } 79 if compIndex < 0 { 80 return FormatError("unknown component selector") 81 } 82 scan[i].compIndex = uint8(compIndex) 83 // Section B.2.3 states that "the value of Cs_j shall be different from 84 // the values of Cs_1 through Cs_(j-1)". Since we have previously 85 // verified that a frame's component identifiers (C_i values in section 86 // B.2.2) are unique, it suffices to check that the implicit indexes 87 // into d.comp are unique. 88 for j := 0; j < i; j++ { 89 if scan[i].compIndex == scan[j].compIndex { 90 return FormatError("repeated component selector") 91 } 92 } 93 totalHV += d.comp[compIndex].h * d.comp[compIndex].v 94 95 // The baseline t <= 1 restriction is specified in table B.3. 96 scan[i].td = d.tmp[2+2*i] >> 4 97 if t := scan[i].td; t > maxTh || (d.baseline && t > 1) { 98 return FormatError("bad Td value") 99 } 100 scan[i].ta = d.tmp[2+2*i] & 0x0f 101 if t := scan[i].ta; t > maxTh || (d.baseline && t > 1) { 102 return FormatError("bad Ta value") 103 } 104 } 105 // Section B.2.3 states that if there is more than one component then the 106 // total H*V values in a scan must be <= 10. 107 if d.nComp > 1 && totalHV > 10 { 108 return FormatError("total sampling factors too large") 109 } 110 111 // zigStart and zigEnd are the spectral selection bounds. 112 // ah and al are the successive approximation high and low values. 113 // The spec calls these values Ss, Se, Ah and Al. 114 // 115 // For progressive JPEGs, these are the two more-or-less independent 116 // aspects of progression. Spectral selection progression is when not 117 // all of a block's 64 DCT coefficients are transmitted in one pass. 118 // For example, three passes could transmit coefficient 0 (the DC 119 // component), coefficients 1-5, and coefficients 6-63, in zig-zag 120 // order. Successive approximation is when not all of the bits of a 121 // band of coefficients are transmitted in one pass. For example, 122 // three passes could transmit the 6 most significant bits, followed 123 // by the second-least significant bit, followed by the least 124 // significant bit. 125 // 126 // For sequential JPEGs, these parameters are hard-coded to 0/63/0/0, as 127 // per table B.3. 128 zigStart, zigEnd, ah, al := int32(0), int32(blockSize-1), uint32(0), uint32(0) 129 if d.progressive { 130 zigStart = int32(d.tmp[1+2*nComp]) 131 zigEnd = int32(d.tmp[2+2*nComp]) 132 ah = uint32(d.tmp[3+2*nComp] >> 4) 133 al = uint32(d.tmp[3+2*nComp] & 0x0f) 134 if (zigStart == 0 && zigEnd != 0) || zigStart > zigEnd || blockSize <= zigEnd { 135 return FormatError("bad spectral selection bounds") 136 } 137 if zigStart != 0 && nComp != 1 { 138 return FormatError("progressive AC coefficients for more than one component") 139 } 140 if ah != 0 && ah != al+1 { 141 return FormatError("bad successive approximation values") 142 } 143 } 144 145 // mxx and myy are the number of MCUs (Minimum Coded Units) in the image. 146 h0, v0 := d.comp[0].h, d.comp[0].v // The h and v values from the Y components. 147 mxx := (d.width + 8*h0 - 1) / (8 * h0) 148 myy := (d.height + 8*v0 - 1) / (8 * v0) 149 if d.img1 == nil && d.img3 == nil { 150 d.makeImg(mxx, myy) 151 } 152 if d.progressive { 153 for i := 0; i < nComp; i++ { 154 compIndex := scan[i].compIndex 155 if d.progCoeffs[compIndex] == nil { 156 d.progCoeffs[compIndex] = make([]block, mxx*myy*d.comp[compIndex].h*d.comp[compIndex].v) 157 } 158 } 159 } 160 161 d.bits = bits{} 162 mcu, expectedRST := 0, uint8(rst0Marker) 163 var ( 164 // b is the decoded coefficients, in natural (not zig-zag) order. 165 b block 166 dc [maxComponents]int32 167 // bx and by are the location of the current block, in units of 8x8 168 // blocks: the third block in the first row has (bx, by) = (2, 0). 169 bx, by int 170 blockCount int 171 ) 172 for my := 0; my < myy; my++ { 173 for mx := 0; mx < mxx; mx++ { 174 for i := 0; i < nComp; i++ { 175 compIndex := scan[i].compIndex 176 hi := d.comp[compIndex].h 177 vi := d.comp[compIndex].v 178 for j := 0; j < hi*vi; j++ { 179 // The blocks are traversed one MCU at a time. For 4:2:0 chroma 180 // subsampling, there are four Y 8x8 blocks in every 16x16 MCU. 181 // 182 // For a sequential 32x16 pixel image, the Y blocks visiting order is: 183 // 0 1 4 5 184 // 2 3 6 7 185 // 186 // For progressive images, the interleaved scans (those with nComp > 1) 187 // are traversed as above, but non-interleaved scans are traversed left 188 // to right, top to bottom: 189 // 0 1 2 3 190 // 4 5 6 7 191 // Only DC scans (zigStart == 0) can be interleaved. AC scans must have 192 // only one component. 193 // 194 // To further complicate matters, for non-interleaved scans, there is no 195 // data for any blocks that are inside the image at the MCU level but 196 // outside the image at the pixel level. For example, a 24x16 pixel 4:2:0 197 // progressive image consists of two 16x16 MCUs. The interleaved scans 198 // will process 8 Y blocks: 199 // 0 1 4 5 200 // 2 3 6 7 201 // The non-interleaved scans will process only 6 Y blocks: 202 // 0 1 2 203 // 3 4 5 204 if nComp != 1 { 205 bx = hi*mx + j%hi 206 by = vi*my + j/hi 207 } else { 208 q := mxx * hi 209 bx = blockCount % q 210 by = blockCount / q 211 blockCount++ 212 if bx*8 >= d.width || by*8 >= d.height { 213 continue 214 } 215 } 216 217 // Load the previous partially decoded coefficients, if applicable. 218 if d.progressive { 219 b = d.progCoeffs[compIndex][by*mxx*hi+bx] 220 } else { 221 b = block{} 222 } 223 224 if ah != 0 { 225 if err := d.refine(&b, &d.huff[acTable][scan[i].ta], zigStart, zigEnd, 1<<al); err != nil { 226 return err 227 } 228 } else { 229 zig := zigStart 230 if zig == 0 { 231 zig++ 232 // Decode the DC coefficient, as specified in section F.2.2.1. 233 value, err := d.decodeHuffman(&d.huff[dcTable][scan[i].td]) 234 if err != nil { 235 return err 236 } 237 if value > 16 { 238 return UnsupportedError("excessive DC component") 239 } 240 dcDelta, err := d.receiveExtend(value) 241 if err != nil { 242 return err 243 } 244 dc[compIndex] += dcDelta 245 b[0] = dc[compIndex] << al 246 } 247 248 if zig <= zigEnd && d.eobRun > 0 { 249 d.eobRun-- 250 } else { 251 // Decode the AC coefficients, as specified in section F.2.2.2. 252 huff := &d.huff[acTable][scan[i].ta] 253 for ; zig <= zigEnd; zig++ { 254 value, err := d.decodeHuffman(huff) 255 if err != nil { 256 return err 257 } 258 val0 := value >> 4 259 val1 := value & 0x0f 260 if val1 != 0 { 261 zig += int32(val0) 262 if zig > zigEnd { 263 break 264 } 265 ac, err := d.receiveExtend(val1) 266 if err != nil { 267 return err 268 } 269 b[unzig[zig]] = ac << al 270 } else { 271 if val0 != 0x0f { 272 d.eobRun = uint16(1 << val0) 273 if val0 != 0 { 274 bits, err := d.decodeBits(int32(val0)) 275 if err != nil { 276 return err 277 } 278 d.eobRun |= uint16(bits) 279 } 280 d.eobRun-- 281 break 282 } 283 zig += 0x0f 284 } 285 } 286 } 287 } 288 289 if d.progressive { 290 // Save the coefficients. 291 d.progCoeffs[compIndex][by*mxx*hi+bx] = b 292 // At this point, we could call reconstructBlock to dequantize and perform the 293 // inverse DCT, to save early stages of a progressive image to the *image.YCbCr 294 // buffers (the whole point of progressive encoding), but in Go, the jpeg.Decode 295 // function does not return until the entire image is decoded, so we "continue" 296 // here to avoid wasted computation. Instead, reconstructBlock is called on each 297 // accumulated block by the reconstructProgressiveImage method after all of the 298 // SOS markers are processed. 299 continue 300 } 301 if err := d.reconstructBlock(&b, bx, by, int(compIndex)); err != nil { 302 return err 303 } 304 } // for j 305 } // for i 306 mcu++ 307 if d.ri > 0 && mcu%d.ri == 0 && mcu < mxx*myy { 308 // A more sophisticated decoder could use RST[0-7] markers to resynchronize from corrupt input, 309 // but this one assumes well-formed input, and hence the restart marker follows immediately. 310 if err := d.readFull(d.tmp[:2]); err != nil { 311 return err 312 } 313 314 // Section F.1.2.3 says that "Byte alignment of markers is 315 // achieved by padding incomplete bytes with 1-bits. If padding 316 // with 1-bits creates a X’FF’ value, a zero byte is stuffed 317 // before adding the marker." 318 // 319 // Seeing "\xff\x00" here is not spec compliant, as we are not 320 // expecting an *incomplete* byte (that needed padding). Still, 321 // some real world encoders (see golang.org/issue/28717) insert 322 // it, so we accept it and re-try the 2 byte read. 323 // 324 // libjpeg issues a warning (but not an error) for this: 325 // https://github.com/LuaDist/libjpeg/blob/6c0fcb8ddee365e7abc4d332662b06900612e923/jdmarker.c#L1041-L1046 326 if d.tmp[0] == 0xff && d.tmp[1] == 0x00 { 327 if err := d.readFull(d.tmp[:2]); err != nil { 328 return err 329 } 330 } 331 332 if d.tmp[0] != 0xff || d.tmp[1] != expectedRST { 333 return FormatError("bad RST marker") 334 } 335 expectedRST++ 336 if expectedRST == rst7Marker+1 { 337 expectedRST = rst0Marker 338 } 339 // Reset the Huffman decoder. 340 d.bits = bits{} 341 // Reset the DC components, as per section F.2.1.3.1. 342 dc = [maxComponents]int32{} 343 // Reset the progressive decoder state, as per section G.1.2.2. 344 d.eobRun = 0 345 } 346 } // for mx 347 } // for my 348 349 return nil 350 } 351 352 // refine decodes a successive approximation refinement block, as specified in 353 // section G.1.2. 354 func (d *decoder) refine(b *block, h *huffman, zigStart, zigEnd, delta int32) error { 355 // Refining a DC component is trivial. 356 if zigStart == 0 { 357 if zigEnd != 0 { 358 panic("unreachable") 359 } 360 bit, err := d.decodeBit() 361 if err != nil { 362 return err 363 } 364 if bit { 365 b[0] |= delta 366 } 367 return nil 368 } 369 370 // Refining AC components is more complicated; see sections G.1.2.2 and G.1.2.3. 371 zig := zigStart 372 if d.eobRun == 0 { 373 loop: 374 for ; zig <= zigEnd; zig++ { 375 z := int32(0) 376 value, err := d.decodeHuffman(h) 377 if err != nil { 378 return err 379 } 380 val0 := value >> 4 381 val1 := value & 0x0f 382 383 switch val1 { 384 case 0: 385 if val0 != 0x0f { 386 d.eobRun = uint16(1 << val0) 387 if val0 != 0 { 388 bits, err := d.decodeBits(int32(val0)) 389 if err != nil { 390 return err 391 } 392 d.eobRun |= uint16(bits) 393 } 394 break loop 395 } 396 case 1: 397 z = delta 398 bit, err := d.decodeBit() 399 if err != nil { 400 return err 401 } 402 if !bit { 403 z = -z 404 } 405 default: 406 return FormatError("unexpected Huffman code") 407 } 408 409 zig, err = d.refineNonZeroes(b, zig, zigEnd, int32(val0), delta) 410 if err != nil { 411 return err 412 } 413 if zig > zigEnd { 414 return FormatError("too many coefficients") 415 } 416 if z != 0 { 417 b[unzig[zig]] = z 418 } 419 } 420 } 421 if d.eobRun > 0 { 422 d.eobRun-- 423 if _, err := d.refineNonZeroes(b, zig, zigEnd, -1, delta); err != nil { 424 return err 425 } 426 } 427 return nil 428 } 429 430 // refineNonZeroes refines non-zero entries of b in zig-zag order. If nz >= 0, 431 // the first nz zero entries are skipped over. 432 func (d *decoder) refineNonZeroes(b *block, zig, zigEnd, nz, delta int32) (int32, error) { 433 for ; zig <= zigEnd; zig++ { 434 u := unzig[zig] 435 if b[u] == 0 { 436 if nz == 0 { 437 break 438 } 439 nz-- 440 continue 441 } 442 bit, err := d.decodeBit() 443 if err != nil { 444 return 0, err 445 } 446 if !bit { 447 continue 448 } 449 if b[u] >= 0 { 450 b[u] += delta 451 } else { 452 b[u] -= delta 453 } 454 } 455 return zig, nil 456 } 457 458 func (d *decoder) reconstructProgressiveImage() error { 459 // The h0, mxx, by and bx variables have the same meaning as in the 460 // processSOS method. 461 h0 := d.comp[0].h 462 mxx := (d.width + 8*h0 - 1) / (8 * h0) 463 for i := 0; i < d.nComp; i++ { 464 if d.progCoeffs[i] == nil { 465 continue 466 } 467 v := 8 * d.comp[0].v / d.comp[i].v 468 h := 8 * d.comp[0].h / d.comp[i].h 469 stride := mxx * d.comp[i].h 470 for by := 0; by*v < d.height; by++ { 471 for bx := 0; bx*h < d.width; bx++ { 472 if err := d.reconstructBlock(&d.progCoeffs[i][by*stride+bx], bx, by, i); err != nil { 473 return err 474 } 475 } 476 } 477 } 478 return nil 479 } 480 481 // reconstructBlock dequantizes, performs the inverse DCT and stores the block 482 // to the image. 483 func (d *decoder) reconstructBlock(b *block, bx, by, compIndex int) error { 484 qt := &d.quant[d.comp[compIndex].tq] 485 for zig := 0; zig < blockSize; zig++ { 486 b[unzig[zig]] *= qt[zig] 487 } 488 idct(b) 489 dst, stride := []byte(nil), 0 490 if d.nComp == 1 { 491 dst, stride = d.img1.Pix[8*(by*d.img1.Stride+bx):], d.img1.Stride 492 } else { 493 switch compIndex { 494 case 0: 495 dst, stride = d.img3.Y[8*(by*d.img3.YStride+bx):], d.img3.YStride 496 case 1: 497 dst, stride = d.img3.Cb[8*(by*d.img3.CStride+bx):], d.img3.CStride 498 case 2: 499 dst, stride = d.img3.Cr[8*(by*d.img3.CStride+bx):], d.img3.CStride 500 case 3: 501 dst, stride = d.blackPix[8*(by*d.blackStride+bx):], d.blackStride 502 default: 503 return UnsupportedError("too many components") 504 } 505 } 506 // Level shift by +128, clip to [0, 255], and write to dst. 507 for y := 0; y < 8; y++ { 508 y8 := y * 8 509 yStride := y * stride 510 for x := 0; x < 8; x++ { 511 c := b[y8+x] 512 if c < -128 { 513 c = 0 514 } else if c > 127 { 515 c = 255 516 } else { 517 c += 128 518 } 519 dst[yStride+x] = uint8(c) 520 } 521 } 522 return nil 523 }