github.com/twelsh-aw/go/src@v0.0.0-20230516233729-a56fe86a7c81/math/big/floatconv.go (about) 1 // Copyright 2015 The Go Authors. All rights reserved. 2 // Use of this source code is governed by a BSD-style 3 // license that can be found in the LICENSE file. 4 5 // This file implements string-to-Float conversion functions. 6 7 package big 8 9 import ( 10 "fmt" 11 "io" 12 "strings" 13 ) 14 15 var floatZero Float 16 17 // SetString sets z to the value of s and returns z and a boolean indicating 18 // success. s must be a floating-point number of the same format as accepted 19 // by Parse, with base argument 0. The entire string (not just a prefix) must 20 // be valid for success. If the operation failed, the value of z is undefined 21 // but the returned value is nil. 22 func (z *Float) SetString(s string) (*Float, bool) { 23 if f, _, err := z.Parse(s, 0); err == nil { 24 return f, true 25 } 26 return nil, false 27 } 28 29 // scan is like Parse but reads the longest possible prefix representing a valid 30 // floating point number from an io.ByteScanner rather than a string. It serves 31 // as the implementation of Parse. It does not recognize ±Inf and does not expect 32 // EOF at the end. 33 func (z *Float) scan(r io.ByteScanner, base int) (f *Float, b int, err error) { 34 prec := z.prec 35 if prec == 0 { 36 prec = 64 37 } 38 39 // A reasonable value in case of an error. 40 z.form = zero 41 42 // sign 43 z.neg, err = scanSign(r) 44 if err != nil { 45 return 46 } 47 48 // mantissa 49 var fcount int // fractional digit count; valid if <= 0 50 z.mant, b, fcount, err = z.mant.scan(r, base, true) 51 if err != nil { 52 return 53 } 54 55 // exponent 56 var exp int64 57 var ebase int 58 exp, ebase, err = scanExponent(r, true, base == 0) 59 if err != nil { 60 return 61 } 62 63 // special-case 0 64 if len(z.mant) == 0 { 65 z.prec = prec 66 z.acc = Exact 67 z.form = zero 68 f = z 69 return 70 } 71 // len(z.mant) > 0 72 73 // The mantissa may have a radix point (fcount <= 0) and there 74 // may be a nonzero exponent exp. The radix point amounts to a 75 // division by b**(-fcount). An exponent means multiplication by 76 // ebase**exp. Finally, mantissa normalization (shift left) requires 77 // a correcting multiplication by 2**(-shiftcount). Multiplications 78 // are commutative, so we can apply them in any order as long as there 79 // is no loss of precision. We only have powers of 2 and 10, and 80 // we split powers of 10 into the product of the same powers of 81 // 2 and 5. This reduces the size of the multiplication factor 82 // needed for base-10 exponents. 83 84 // normalize mantissa and determine initial exponent contributions 85 exp2 := int64(len(z.mant))*_W - fnorm(z.mant) 86 exp5 := int64(0) 87 88 // determine binary or decimal exponent contribution of radix point 89 if fcount < 0 { 90 // The mantissa has a radix point ddd.dddd; and 91 // -fcount is the number of digits to the right 92 // of '.'. Adjust relevant exponent accordingly. 93 d := int64(fcount) 94 switch b { 95 case 10: 96 exp5 = d 97 fallthrough // 10**e == 5**e * 2**e 98 case 2: 99 exp2 += d 100 case 8: 101 exp2 += d * 3 // octal digits are 3 bits each 102 case 16: 103 exp2 += d * 4 // hexadecimal digits are 4 bits each 104 default: 105 panic("unexpected mantissa base") 106 } 107 // fcount consumed - not needed anymore 108 } 109 110 // take actual exponent into account 111 switch ebase { 112 case 10: 113 exp5 += exp 114 fallthrough // see fallthrough above 115 case 2: 116 exp2 += exp 117 default: 118 panic("unexpected exponent base") 119 } 120 // exp consumed - not needed anymore 121 122 // apply 2**exp2 123 if MinExp <= exp2 && exp2 <= MaxExp { 124 z.prec = prec 125 z.form = finite 126 z.exp = int32(exp2) 127 f = z 128 } else { 129 err = fmt.Errorf("exponent overflow") 130 return 131 } 132 133 if exp5 == 0 { 134 // no decimal exponent contribution 135 z.round(0) 136 return 137 } 138 // exp5 != 0 139 140 // apply 5**exp5 141 p := new(Float).SetPrec(z.Prec() + 64) // use more bits for p -- TODO(gri) what is the right number? 142 if exp5 < 0 { 143 z.Quo(z, p.pow5(uint64(-exp5))) 144 } else { 145 z.Mul(z, p.pow5(uint64(exp5))) 146 } 147 148 return 149 } 150 151 // These powers of 5 fit into a uint64. 152 // 153 // for p, q := uint64(0), uint64(1); p < q; p, q = q, q*5 { 154 // fmt.Println(q) 155 // } 156 var pow5tab = [...]uint64{ 157 1, 158 5, 159 25, 160 125, 161 625, 162 3125, 163 15625, 164 78125, 165 390625, 166 1953125, 167 9765625, 168 48828125, 169 244140625, 170 1220703125, 171 6103515625, 172 30517578125, 173 152587890625, 174 762939453125, 175 3814697265625, 176 19073486328125, 177 95367431640625, 178 476837158203125, 179 2384185791015625, 180 11920928955078125, 181 59604644775390625, 182 298023223876953125, 183 1490116119384765625, 184 7450580596923828125, 185 } 186 187 // pow5 sets z to 5**n and returns z. 188 // n must not be negative. 189 func (z *Float) pow5(n uint64) *Float { 190 const m = uint64(len(pow5tab) - 1) 191 if n <= m { 192 return z.SetUint64(pow5tab[n]) 193 } 194 // n > m 195 196 z.SetUint64(pow5tab[m]) 197 n -= m 198 199 // use more bits for f than for z 200 // TODO(gri) what is the right number? 201 f := new(Float).SetPrec(z.Prec() + 64).SetUint64(5) 202 203 for n > 0 { 204 if n&1 != 0 { 205 z.Mul(z, f) 206 } 207 f.Mul(f, f) 208 n >>= 1 209 } 210 211 return z 212 } 213 214 // Parse parses s which must contain a text representation of a floating- 215 // point number with a mantissa in the given conversion base (the exponent 216 // is always a decimal number), or a string representing an infinite value. 217 // 218 // For base 0, an underscore character “_” may appear between a base 219 // prefix and an adjacent digit, and between successive digits; such 220 // underscores do not change the value of the number, or the returned 221 // digit count. Incorrect placement of underscores is reported as an 222 // error if there are no other errors. If base != 0, underscores are 223 // not recognized and thus terminate scanning like any other character 224 // that is not a valid radix point or digit. 225 // 226 // It sets z to the (possibly rounded) value of the corresponding floating- 227 // point value, and returns z, the actual base b, and an error err, if any. 228 // The entire string (not just a prefix) must be consumed for success. 229 // If z's precision is 0, it is changed to 64 before rounding takes effect. 230 // The number must be of the form: 231 // 232 // number = [ sign ] ( float | "inf" | "Inf" ) . 233 // sign = "+" | "-" . 234 // float = ( mantissa | prefix pmantissa ) [ exponent ] . 235 // prefix = "0" [ "b" | "B" | "o" | "O" | "x" | "X" ] . 236 // mantissa = digits "." [ digits ] | digits | "." digits . 237 // pmantissa = [ "_" ] digits "." [ digits ] | [ "_" ] digits | "." digits . 238 // exponent = ( "e" | "E" | "p" | "P" ) [ sign ] digits . 239 // digits = digit { [ "_" ] digit } . 240 // digit = "0" ... "9" | "a" ... "z" | "A" ... "Z" . 241 // 242 // The base argument must be 0, 2, 8, 10, or 16. Providing an invalid base 243 // argument will lead to a run-time panic. 244 // 245 // For base 0, the number prefix determines the actual base: A prefix of 246 // “0b” or “0B” selects base 2, “0o” or “0O” selects base 8, and 247 // “0x” or “0X” selects base 16. Otherwise, the actual base is 10 and 248 // no prefix is accepted. The octal prefix "0" is not supported (a leading 249 // "0" is simply considered a "0"). 250 // 251 // A "p" or "P" exponent indicates a base 2 (rather than base 10) exponent; 252 // for instance, "0x1.fffffffffffffp1023" (using base 0) represents the 253 // maximum float64 value. For hexadecimal mantissae, the exponent character 254 // must be one of 'p' or 'P', if present (an "e" or "E" exponent indicator 255 // cannot be distinguished from a mantissa digit). 256 // 257 // The returned *Float f is nil and the value of z is valid but not 258 // defined if an error is reported. 259 func (z *Float) Parse(s string, base int) (f *Float, b int, err error) { 260 // scan doesn't handle ±Inf 261 if len(s) == 3 && (s == "Inf" || s == "inf") { 262 f = z.SetInf(false) 263 return 264 } 265 if len(s) == 4 && (s[0] == '+' || s[0] == '-') && (s[1:] == "Inf" || s[1:] == "inf") { 266 f = z.SetInf(s[0] == '-') 267 return 268 } 269 270 r := strings.NewReader(s) 271 if f, b, err = z.scan(r, base); err != nil { 272 return 273 } 274 275 // entire string must have been consumed 276 if ch, err2 := r.ReadByte(); err2 == nil { 277 err = fmt.Errorf("expected end of string, found %q", ch) 278 } else if err2 != io.EOF { 279 err = err2 280 } 281 282 return 283 } 284 285 // ParseFloat is like f.Parse(s, base) with f set to the given precision 286 // and rounding mode. 287 func ParseFloat(s string, base int, prec uint, mode RoundingMode) (f *Float, b int, err error) { 288 return new(Float).SetPrec(prec).SetMode(mode).Parse(s, base) 289 } 290 291 var _ fmt.Scanner = (*Float)(nil) // *Float must implement fmt.Scanner 292 293 // Scan is a support routine for fmt.Scanner; it sets z to the value of 294 // the scanned number. It accepts formats whose verbs are supported by 295 // fmt.Scan for floating point values, which are: 296 // 'b' (binary), 'e', 'E', 'f', 'F', 'g' and 'G'. 297 // Scan doesn't handle ±Inf. 298 func (z *Float) Scan(s fmt.ScanState, ch rune) error { 299 s.SkipSpace() 300 _, _, err := z.scan(byteReader{s}, 0) 301 return err 302 }