github.com/twelsh-aw/go/src@v0.0.0-20230516233729-a56fe86a7c81/math/fma.go (about)

     1  // Copyright 2019 The Go Authors. All rights reserved.
     2  // Use of this source code is governed by a BSD-style
     3  // license that can be found in the LICENSE file.
     4  
     5  package math
     6  
     7  import "math/bits"
     8  
     9  func zero(x uint64) uint64 {
    10  	if x == 0 {
    11  		return 1
    12  	}
    13  	return 0
    14  	// branchless:
    15  	// return ((x>>1 | x&1) - 1) >> 63
    16  }
    17  
    18  func nonzero(x uint64) uint64 {
    19  	if x != 0 {
    20  		return 1
    21  	}
    22  	return 0
    23  	// branchless:
    24  	// return 1 - ((x>>1|x&1)-1)>>63
    25  }
    26  
    27  func shl(u1, u2 uint64, n uint) (r1, r2 uint64) {
    28  	r1 = u1<<n | u2>>(64-n) | u2<<(n-64)
    29  	r2 = u2 << n
    30  	return
    31  }
    32  
    33  func shr(u1, u2 uint64, n uint) (r1, r2 uint64) {
    34  	r2 = u2>>n | u1<<(64-n) | u1>>(n-64)
    35  	r1 = u1 >> n
    36  	return
    37  }
    38  
    39  // shrcompress compresses the bottom n+1 bits of the two-word
    40  // value into a single bit. the result is equal to the value
    41  // shifted to the right by n, except the result's 0th bit is
    42  // set to the bitwise OR of the bottom n+1 bits.
    43  func shrcompress(u1, u2 uint64, n uint) (r1, r2 uint64) {
    44  	// TODO: Performance here is really sensitive to the
    45  	// order/placement of these branches. n == 0 is common
    46  	// enough to be in the fast path. Perhaps more measurement
    47  	// needs to be done to find the optimal order/placement?
    48  	switch {
    49  	case n == 0:
    50  		return u1, u2
    51  	case n == 64:
    52  		return 0, u1 | nonzero(u2)
    53  	case n >= 128:
    54  		return 0, nonzero(u1 | u2)
    55  	case n < 64:
    56  		r1, r2 = shr(u1, u2, n)
    57  		r2 |= nonzero(u2 & (1<<n - 1))
    58  	case n < 128:
    59  		r1, r2 = shr(u1, u2, n)
    60  		r2 |= nonzero(u1&(1<<(n-64)-1) | u2)
    61  	}
    62  	return
    63  }
    64  
    65  func lz(u1, u2 uint64) (l int32) {
    66  	l = int32(bits.LeadingZeros64(u1))
    67  	if l == 64 {
    68  		l += int32(bits.LeadingZeros64(u2))
    69  	}
    70  	return l
    71  }
    72  
    73  // split splits b into sign, biased exponent, and mantissa.
    74  // It adds the implicit 1 bit to the mantissa for normal values,
    75  // and normalizes subnormal values.
    76  func split(b uint64) (sign uint32, exp int32, mantissa uint64) {
    77  	sign = uint32(b >> 63)
    78  	exp = int32(b>>52) & mask
    79  	mantissa = b & fracMask
    80  
    81  	if exp == 0 {
    82  		// Normalize value if subnormal.
    83  		shift := uint(bits.LeadingZeros64(mantissa) - 11)
    84  		mantissa <<= shift
    85  		exp = 1 - int32(shift)
    86  	} else {
    87  		// Add implicit 1 bit
    88  		mantissa |= 1 << 52
    89  	}
    90  	return
    91  }
    92  
    93  // FMA returns x * y + z, computed with only one rounding.
    94  // (That is, FMA returns the fused multiply-add of x, y, and z.)
    95  func FMA(x, y, z float64) float64 {
    96  	bx, by, bz := Float64bits(x), Float64bits(y), Float64bits(z)
    97  
    98  	// Inf or NaN or zero involved. At most one rounding will occur.
    99  	if x == 0.0 || y == 0.0 || z == 0.0 || bx&uvinf == uvinf || by&uvinf == uvinf {
   100  		return x*y + z
   101  	}
   102  	// Handle non-finite z separately. Evaluating x*y+z where
   103  	// x and y are finite, but z is infinite, should always result in z.
   104  	if bz&uvinf == uvinf {
   105  		return z
   106  	}
   107  
   108  	// Inputs are (sub)normal.
   109  	// Split x, y, z into sign, exponent, mantissa.
   110  	xs, xe, xm := split(bx)
   111  	ys, ye, ym := split(by)
   112  	zs, ze, zm := split(bz)
   113  
   114  	// Compute product p = x*y as sign, exponent, two-word mantissa.
   115  	// Start with exponent. "is normal" bit isn't subtracted yet.
   116  	pe := xe + ye - bias + 1
   117  
   118  	// pm1:pm2 is the double-word mantissa for the product p.
   119  	// Shift left to leave top bit in product. Effectively
   120  	// shifts the 106-bit product to the left by 21.
   121  	pm1, pm2 := bits.Mul64(xm<<10, ym<<11)
   122  	zm1, zm2 := zm<<10, uint64(0)
   123  	ps := xs ^ ys // product sign
   124  
   125  	// normalize to 62nd bit
   126  	is62zero := uint((^pm1 >> 62) & 1)
   127  	pm1, pm2 = shl(pm1, pm2, is62zero)
   128  	pe -= int32(is62zero)
   129  
   130  	// Swap addition operands so |p| >= |z|
   131  	if pe < ze || pe == ze && pm1 < zm1 {
   132  		ps, pe, pm1, pm2, zs, ze, zm1, zm2 = zs, ze, zm1, zm2, ps, pe, pm1, pm2
   133  	}
   134  
   135  	// Align significands
   136  	zm1, zm2 = shrcompress(zm1, zm2, uint(pe-ze))
   137  
   138  	// Compute resulting significands, normalizing if necessary.
   139  	var m, c uint64
   140  	if ps == zs {
   141  		// Adding (pm1:pm2) + (zm1:zm2)
   142  		pm2, c = bits.Add64(pm2, zm2, 0)
   143  		pm1, _ = bits.Add64(pm1, zm1, c)
   144  		pe -= int32(^pm1 >> 63)
   145  		pm1, m = shrcompress(pm1, pm2, uint(64+pm1>>63))
   146  	} else {
   147  		// Subtracting (pm1:pm2) - (zm1:zm2)
   148  		// TODO: should we special-case cancellation?
   149  		pm2, c = bits.Sub64(pm2, zm2, 0)
   150  		pm1, _ = bits.Sub64(pm1, zm1, c)
   151  		nz := lz(pm1, pm2)
   152  		pe -= nz
   153  		m, pm2 = shl(pm1, pm2, uint(nz-1))
   154  		m |= nonzero(pm2)
   155  	}
   156  
   157  	// Round and break ties to even
   158  	if pe > 1022+bias || pe == 1022+bias && (m+1<<9)>>63 == 1 {
   159  		// rounded value overflows exponent range
   160  		return Float64frombits(uint64(ps)<<63 | uvinf)
   161  	}
   162  	if pe < 0 {
   163  		n := uint(-pe)
   164  		m = m>>n | nonzero(m&(1<<n-1))
   165  		pe = 0
   166  	}
   167  	m = ((m + 1<<9) >> 10) & ^zero((m&(1<<10-1))^1<<9)
   168  	pe &= -int32(nonzero(m))
   169  	return Float64frombits(uint64(ps)<<63 + uint64(pe)<<52 + m)
   170  }