github.com/twelsh-aw/go/src@v0.0.0-20230516233729-a56fe86a7c81/math/j1.go (about) 1 // Copyright 2010 The Go Authors. All rights reserved. 2 // Use of this source code is governed by a BSD-style 3 // license that can be found in the LICENSE file. 4 5 package math 6 7 /* 8 Bessel function of the first and second kinds of order one. 9 */ 10 11 // The original C code and the long comment below are 12 // from FreeBSD's /usr/src/lib/msun/src/e_j1.c and 13 // came with this notice. The go code is a simplified 14 // version of the original C. 15 // 16 // ==================================================== 17 // Copyright (C) 1993 by Sun Microsystems, Inc. All rights reserved. 18 // 19 // Developed at SunPro, a Sun Microsystems, Inc. business. 20 // Permission to use, copy, modify, and distribute this 21 // software is freely granted, provided that this notice 22 // is preserved. 23 // ==================================================== 24 // 25 // __ieee754_j1(x), __ieee754_y1(x) 26 // Bessel function of the first and second kinds of order one. 27 // Method -- j1(x): 28 // 1. For tiny x, we use j1(x) = x/2 - x**3/16 + x**5/384 - ... 29 // 2. Reduce x to |x| since j1(x)=-j1(-x), and 30 // for x in (0,2) 31 // j1(x) = x/2 + x*z*R0/S0, where z = x*x; 32 // (precision: |j1/x - 1/2 - R0/S0 |<2**-61.51 ) 33 // for x in (2,inf) 34 // j1(x) = sqrt(2/(pi*x))*(p1(x)*cos(x1)-q1(x)*sin(x1)) 35 // y1(x) = sqrt(2/(pi*x))*(p1(x)*sin(x1)+q1(x)*cos(x1)) 36 // where x1 = x-3*pi/4. It is better to compute sin(x1),cos(x1) 37 // as follow: 38 // cos(x1) = cos(x)cos(3pi/4)+sin(x)sin(3pi/4) 39 // = 1/sqrt(2) * (sin(x) - cos(x)) 40 // sin(x1) = sin(x)cos(3pi/4)-cos(x)sin(3pi/4) 41 // = -1/sqrt(2) * (sin(x) + cos(x)) 42 // (To avoid cancellation, use 43 // sin(x) +- cos(x) = -cos(2x)/(sin(x) -+ cos(x)) 44 // to compute the worse one.) 45 // 46 // 3 Special cases 47 // j1(nan)= nan 48 // j1(0) = 0 49 // j1(inf) = 0 50 // 51 // Method -- y1(x): 52 // 1. screen out x<=0 cases: y1(0)=-inf, y1(x<0)=NaN 53 // 2. For x<2. 54 // Since 55 // y1(x) = 2/pi*(j1(x)*(ln(x/2)+Euler)-1/x-x/2+5/64*x**3-...) 56 // therefore y1(x)-2/pi*j1(x)*ln(x)-1/x is an odd function. 57 // We use the following function to approximate y1, 58 // y1(x) = x*U(z)/V(z) + (2/pi)*(j1(x)*ln(x)-1/x), z= x**2 59 // where for x in [0,2] (abs err less than 2**-65.89) 60 // U(z) = U0[0] + U0[1]*z + ... + U0[4]*z**4 61 // V(z) = 1 + v0[0]*z + ... + v0[4]*z**5 62 // Note: For tiny x, 1/x dominate y1 and hence 63 // y1(tiny) = -2/pi/tiny, (choose tiny<2**-54) 64 // 3. For x>=2. 65 // y1(x) = sqrt(2/(pi*x))*(p1(x)*sin(x1)+q1(x)*cos(x1)) 66 // where x1 = x-3*pi/4. It is better to compute sin(x1),cos(x1) 67 // by method mentioned above. 68 69 // J1 returns the order-one Bessel function of the first kind. 70 // 71 // Special cases are: 72 // 73 // J1(±Inf) = 0 74 // J1(NaN) = NaN 75 func J1(x float64) float64 { 76 const ( 77 TwoM27 = 1.0 / (1 << 27) // 2**-27 0x3e40000000000000 78 Two129 = 1 << 129 // 2**129 0x4800000000000000 79 // R0/S0 on [0, 2] 80 R00 = -6.25000000000000000000e-02 // 0xBFB0000000000000 81 R01 = 1.40705666955189706048e-03 // 0x3F570D9F98472C61 82 R02 = -1.59955631084035597520e-05 // 0xBEF0C5C6BA169668 83 R03 = 4.96727999609584448412e-08 // 0x3E6AAAFA46CA0BD9 84 S01 = 1.91537599538363460805e-02 // 0x3F939D0B12637E53 85 S02 = 1.85946785588630915560e-04 // 0x3F285F56B9CDF664 86 S03 = 1.17718464042623683263e-06 // 0x3EB3BFF8333F8498 87 S04 = 5.04636257076217042715e-09 // 0x3E35AC88C97DFF2C 88 S05 = 1.23542274426137913908e-11 // 0x3DAB2ACFCFB97ED8 89 ) 90 // special cases 91 switch { 92 case IsNaN(x): 93 return x 94 case IsInf(x, 0) || x == 0: 95 return 0 96 } 97 98 sign := false 99 if x < 0 { 100 x = -x 101 sign = true 102 } 103 if x >= 2 { 104 s, c := Sincos(x) 105 ss := -s - c 106 cc := s - c 107 108 // make sure x+x does not overflow 109 if x < MaxFloat64/2 { 110 z := Cos(x + x) 111 if s*c > 0 { 112 cc = z / ss 113 } else { 114 ss = z / cc 115 } 116 } 117 118 // j1(x) = 1/sqrt(pi) * (P(1,x)*cc - Q(1,x)*ss) / sqrt(x) 119 // y1(x) = 1/sqrt(pi) * (P(1,x)*ss + Q(1,x)*cc) / sqrt(x) 120 121 var z float64 122 if x > Two129 { 123 z = (1 / SqrtPi) * cc / Sqrt(x) 124 } else { 125 u := pone(x) 126 v := qone(x) 127 z = (1 / SqrtPi) * (u*cc - v*ss) / Sqrt(x) 128 } 129 if sign { 130 return -z 131 } 132 return z 133 } 134 if x < TwoM27 { // |x|<2**-27 135 return 0.5 * x // inexact if x!=0 necessary 136 } 137 z := x * x 138 r := z * (R00 + z*(R01+z*(R02+z*R03))) 139 s := 1.0 + z*(S01+z*(S02+z*(S03+z*(S04+z*S05)))) 140 r *= x 141 z = 0.5*x + r/s 142 if sign { 143 return -z 144 } 145 return z 146 } 147 148 // Y1 returns the order-one Bessel function of the second kind. 149 // 150 // Special cases are: 151 // 152 // Y1(+Inf) = 0 153 // Y1(0) = -Inf 154 // Y1(x < 0) = NaN 155 // Y1(NaN) = NaN 156 func Y1(x float64) float64 { 157 const ( 158 TwoM54 = 1.0 / (1 << 54) // 2**-54 0x3c90000000000000 159 Two129 = 1 << 129 // 2**129 0x4800000000000000 160 U00 = -1.96057090646238940668e-01 // 0xBFC91866143CBC8A 161 U01 = 5.04438716639811282616e-02 // 0x3FA9D3C776292CD1 162 U02 = -1.91256895875763547298e-03 // 0xBF5F55E54844F50F 163 U03 = 2.35252600561610495928e-05 // 0x3EF8AB038FA6B88E 164 U04 = -9.19099158039878874504e-08 // 0xBE78AC00569105B8 165 V00 = 1.99167318236649903973e-02 // 0x3F94650D3F4DA9F0 166 V01 = 2.02552581025135171496e-04 // 0x3F2A8C896C257764 167 V02 = 1.35608801097516229404e-06 // 0x3EB6C05A894E8CA6 168 V03 = 6.22741452364621501295e-09 // 0x3E3ABF1D5BA69A86 169 V04 = 1.66559246207992079114e-11 // 0x3DB25039DACA772A 170 ) 171 // special cases 172 switch { 173 case x < 0 || IsNaN(x): 174 return NaN() 175 case IsInf(x, 1): 176 return 0 177 case x == 0: 178 return Inf(-1) 179 } 180 181 if x >= 2 { 182 s, c := Sincos(x) 183 ss := -s - c 184 cc := s - c 185 186 // make sure x+x does not overflow 187 if x < MaxFloat64/2 { 188 z := Cos(x + x) 189 if s*c > 0 { 190 cc = z / ss 191 } else { 192 ss = z / cc 193 } 194 } 195 // y1(x) = sqrt(2/(pi*x))*(p1(x)*sin(x0)+q1(x)*cos(x0)) 196 // where x0 = x-3pi/4 197 // Better formula: 198 // cos(x0) = cos(x)cos(3pi/4)+sin(x)sin(3pi/4) 199 // = 1/sqrt(2) * (sin(x) - cos(x)) 200 // sin(x0) = sin(x)cos(3pi/4)-cos(x)sin(3pi/4) 201 // = -1/sqrt(2) * (cos(x) + sin(x)) 202 // To avoid cancellation, use 203 // sin(x) +- cos(x) = -cos(2x)/(sin(x) -+ cos(x)) 204 // to compute the worse one. 205 206 var z float64 207 if x > Two129 { 208 z = (1 / SqrtPi) * ss / Sqrt(x) 209 } else { 210 u := pone(x) 211 v := qone(x) 212 z = (1 / SqrtPi) * (u*ss + v*cc) / Sqrt(x) 213 } 214 return z 215 } 216 if x <= TwoM54 { // x < 2**-54 217 return -(2 / Pi) / x 218 } 219 z := x * x 220 u := U00 + z*(U01+z*(U02+z*(U03+z*U04))) 221 v := 1 + z*(V00+z*(V01+z*(V02+z*(V03+z*V04)))) 222 return x*(u/v) + (2/Pi)*(J1(x)*Log(x)-1/x) 223 } 224 225 // For x >= 8, the asymptotic expansions of pone is 226 // 1 + 15/128 s**2 - 4725/2**15 s**4 - ..., where s = 1/x. 227 // We approximate pone by 228 // pone(x) = 1 + (R/S) 229 // where R = pr0 + pr1*s**2 + pr2*s**4 + ... + pr5*s**10 230 // S = 1 + ps0*s**2 + ... + ps4*s**10 231 // and 232 // | pone(x)-1-R/S | <= 2**(-60.06) 233 234 // for x in [inf, 8]=1/[0,0.125] 235 var p1R8 = [6]float64{ 236 0.00000000000000000000e+00, // 0x0000000000000000 237 1.17187499999988647970e-01, // 0x3FBDFFFFFFFFFCCE 238 1.32394806593073575129e+01, // 0x402A7A9D357F7FCE 239 4.12051854307378562225e+02, // 0x4079C0D4652EA590 240 3.87474538913960532227e+03, // 0x40AE457DA3A532CC 241 7.91447954031891731574e+03, // 0x40BEEA7AC32782DD 242 } 243 var p1S8 = [5]float64{ 244 1.14207370375678408436e+02, // 0x405C8D458E656CAC 245 3.65093083420853463394e+03, // 0x40AC85DC964D274F 246 3.69562060269033463555e+04, // 0x40E20B8697C5BB7F 247 9.76027935934950801311e+04, // 0x40F7D42CB28F17BB 248 3.08042720627888811578e+04, // 0x40DE1511697A0B2D 249 } 250 251 // for x in [8,4.5454] = 1/[0.125,0.22001] 252 var p1R5 = [6]float64{ 253 1.31990519556243522749e-11, // 0x3DAD0667DAE1CA7D 254 1.17187493190614097638e-01, // 0x3FBDFFFFE2C10043 255 6.80275127868432871736e+00, // 0x401B36046E6315E3 256 1.08308182990189109773e+02, // 0x405B13B9452602ED 257 5.17636139533199752805e+02, // 0x40802D16D052D649 258 5.28715201363337541807e+02, // 0x408085B8BB7E0CB7 259 } 260 var p1S5 = [5]float64{ 261 5.92805987221131331921e+01, // 0x404DA3EAA8AF633D 262 9.91401418733614377743e+02, // 0x408EFB361B066701 263 5.35326695291487976647e+03, // 0x40B4E9445706B6FB 264 7.84469031749551231769e+03, // 0x40BEA4B0B8A5BB15 265 1.50404688810361062679e+03, // 0x40978030036F5E51 266 } 267 268 // for x in[4.5453,2.8571] = 1/[0.2199,0.35001] 269 var p1R3 = [6]float64{ 270 3.02503916137373618024e-09, // 0x3E29FC21A7AD9EDD 271 1.17186865567253592491e-01, // 0x3FBDFFF55B21D17B 272 3.93297750033315640650e+00, // 0x400F76BCE85EAD8A 273 3.51194035591636932736e+01, // 0x40418F489DA6D129 274 9.10550110750781271918e+01, // 0x4056C3854D2C1837 275 4.85590685197364919645e+01, // 0x4048478F8EA83EE5 276 } 277 var p1S3 = [5]float64{ 278 3.47913095001251519989e+01, // 0x40416549A134069C 279 3.36762458747825746741e+02, // 0x40750C3307F1A75F 280 1.04687139975775130551e+03, // 0x40905B7C5037D523 281 8.90811346398256432622e+02, // 0x408BD67DA32E31E9 282 1.03787932439639277504e+02, // 0x4059F26D7C2EED53 283 } 284 285 // for x in [2.8570,2] = 1/[0.3499,0.5] 286 var p1R2 = [6]float64{ 287 1.07710830106873743082e-07, // 0x3E7CE9D4F65544F4 288 1.17176219462683348094e-01, // 0x3FBDFF42BE760D83 289 2.36851496667608785174e+00, // 0x4002F2B7F98FAEC0 290 1.22426109148261232917e+01, // 0x40287C377F71A964 291 1.76939711271687727390e+01, // 0x4031B1A8177F8EE2 292 5.07352312588818499250e+00, // 0x40144B49A574C1FE 293 } 294 var p1S2 = [5]float64{ 295 2.14364859363821409488e+01, // 0x40356FBD8AD5ECDC 296 1.25290227168402751090e+02, // 0x405F529314F92CD5 297 2.32276469057162813669e+02, // 0x406D08D8D5A2DBD9 298 1.17679373287147100768e+02, // 0x405D6B7ADA1884A9 299 8.36463893371618283368e+00, // 0x4020BAB1F44E5192 300 } 301 302 func pone(x float64) float64 { 303 var p *[6]float64 304 var q *[5]float64 305 if x >= 8 { 306 p = &p1R8 307 q = &p1S8 308 } else if x >= 4.5454 { 309 p = &p1R5 310 q = &p1S5 311 } else if x >= 2.8571 { 312 p = &p1R3 313 q = &p1S3 314 } else if x >= 2 { 315 p = &p1R2 316 q = &p1S2 317 } 318 z := 1 / (x * x) 319 r := p[0] + z*(p[1]+z*(p[2]+z*(p[3]+z*(p[4]+z*p[5])))) 320 s := 1.0 + z*(q[0]+z*(q[1]+z*(q[2]+z*(q[3]+z*q[4])))) 321 return 1 + r/s 322 } 323 324 // For x >= 8, the asymptotic expansions of qone is 325 // 3/8 s - 105/1024 s**3 - ..., where s = 1/x. 326 // We approximate qone by 327 // qone(x) = s*(0.375 + (R/S)) 328 // where R = qr1*s**2 + qr2*s**4 + ... + qr5*s**10 329 // S = 1 + qs1*s**2 + ... + qs6*s**12 330 // and 331 // | qone(x)/s -0.375-R/S | <= 2**(-61.13) 332 333 // for x in [inf, 8] = 1/[0,0.125] 334 var q1R8 = [6]float64{ 335 0.00000000000000000000e+00, // 0x0000000000000000 336 -1.02539062499992714161e-01, // 0xBFBA3FFFFFFFFDF3 337 -1.62717534544589987888e+01, // 0xC0304591A26779F7 338 -7.59601722513950107896e+02, // 0xC087BCD053E4B576 339 -1.18498066702429587167e+04, // 0xC0C724E740F87415 340 -4.84385124285750353010e+04, // 0xC0E7A6D065D09C6A 341 } 342 var q1S8 = [6]float64{ 343 1.61395369700722909556e+02, // 0x40642CA6DE5BCDE5 344 7.82538599923348465381e+03, // 0x40BE9162D0D88419 345 1.33875336287249578163e+05, // 0x4100579AB0B75E98 346 7.19657723683240939863e+05, // 0x4125F65372869C19 347 6.66601232617776375264e+05, // 0x412457D27719AD5C 348 -2.94490264303834643215e+05, // 0xC111F9690EA5AA18 349 } 350 351 // for x in [8,4.5454] = 1/[0.125,0.22001] 352 var q1R5 = [6]float64{ 353 -2.08979931141764104297e-11, // 0xBDB6FA431AA1A098 354 -1.02539050241375426231e-01, // 0xBFBA3FFFCB597FEF 355 -8.05644828123936029840e+00, // 0xC0201CE6CA03AD4B 356 -1.83669607474888380239e+02, // 0xC066F56D6CA7B9B0 357 -1.37319376065508163265e+03, // 0xC09574C66931734F 358 -2.61244440453215656817e+03, // 0xC0A468E388FDA79D 359 } 360 var q1S5 = [6]float64{ 361 8.12765501384335777857e+01, // 0x405451B2FF5A11B2 362 1.99179873460485964642e+03, // 0x409F1F31E77BF839 363 1.74684851924908907677e+04, // 0x40D10F1F0D64CE29 364 4.98514270910352279316e+04, // 0x40E8576DAABAD197 365 2.79480751638918118260e+04, // 0x40DB4B04CF7C364B 366 -4.71918354795128470869e+03, // 0xC0B26F2EFCFFA004 367 } 368 369 // for x in [4.5454,2.8571] = 1/[0.2199,0.35001] ??? 370 var q1R3 = [6]float64{ 371 -5.07831226461766561369e-09, // 0xBE35CFA9D38FC84F 372 -1.02537829820837089745e-01, // 0xBFBA3FEB51AEED54 373 -4.61011581139473403113e+00, // 0xC01270C23302D9FF 374 -5.78472216562783643212e+01, // 0xC04CEC71C25D16DA 375 -2.28244540737631695038e+02, // 0xC06C87D34718D55F 376 -2.19210128478909325622e+02, // 0xC06B66B95F5C1BF6 377 } 378 var q1S3 = [6]float64{ 379 4.76651550323729509273e+01, // 0x4047D523CCD367E4 380 6.73865112676699709482e+02, // 0x40850EEBC031EE3E 381 3.38015286679526343505e+03, // 0x40AA684E448E7C9A 382 5.54772909720722782367e+03, // 0x40B5ABBAA61D54A6 383 1.90311919338810798763e+03, // 0x409DBC7A0DD4DF4B 384 -1.35201191444307340817e+02, // 0xC060E670290A311F 385 } 386 387 // for x in [2.8570,2] = 1/[0.3499,0.5] 388 var q1R2 = [6]float64{ 389 -1.78381727510958865572e-07, // 0xBE87F12644C626D2 390 -1.02517042607985553460e-01, // 0xBFBA3E8E9148B010 391 -2.75220568278187460720e+00, // 0xC006048469BB4EDA 392 -1.96636162643703720221e+01, // 0xC033A9E2C168907F 393 -4.23253133372830490089e+01, // 0xC04529A3DE104AAA 394 -2.13719211703704061733e+01, // 0xC0355F3639CF6E52 395 } 396 var q1S2 = [6]float64{ 397 2.95333629060523854548e+01, // 0x403D888A78AE64FF 398 2.52981549982190529136e+02, // 0x406F9F68DB821CBA 399 7.57502834868645436472e+02, // 0x4087AC05CE49A0F7 400 7.39393205320467245656e+02, // 0x40871B2548D4C029 401 1.55949003336666123687e+02, // 0x40637E5E3C3ED8D4 402 -4.95949898822628210127e+00, // 0xC013D686E71BE86B 403 } 404 405 func qone(x float64) float64 { 406 var p, q *[6]float64 407 if x >= 8 { 408 p = &q1R8 409 q = &q1S8 410 } else if x >= 4.5454 { 411 p = &q1R5 412 q = &q1S5 413 } else if x >= 2.8571 { 414 p = &q1R3 415 q = &q1S3 416 } else if x >= 2 { 417 p = &q1R2 418 q = &q1S2 419 } 420 z := 1 / (x * x) 421 r := p[0] + z*(p[1]+z*(p[2]+z*(p[3]+z*(p[4]+z*p[5])))) 422 s := 1 + z*(q[0]+z*(q[1]+z*(q[2]+z*(q[3]+z*(q[4]+z*q[5]))))) 423 return (0.375 + r/s) / x 424 }