github.com/twelsh-aw/go/src@v0.0.0-20230516233729-a56fe86a7c81/math/rand/rand_test.go (about)

     1  // Copyright 2009 The Go Authors. All rights reserved.
     2  // Use of this source code is governed by a BSD-style
     3  // license that can be found in the LICENSE file.
     4  
     5  package rand_test
     6  
     7  import (
     8  	"bytes"
     9  	"errors"
    10  	"fmt"
    11  	"internal/testenv"
    12  	"io"
    13  	"math"
    14  	. "math/rand"
    15  	"os"
    16  	"runtime"
    17  	"sync"
    18  	"testing"
    19  	"testing/iotest"
    20  )
    21  
    22  const (
    23  	numTestSamples = 10000
    24  )
    25  
    26  var rn, kn, wn, fn = GetNormalDistributionParameters()
    27  var re, ke, we, fe = GetExponentialDistributionParameters()
    28  
    29  type statsResults struct {
    30  	mean        float64
    31  	stddev      float64
    32  	closeEnough float64
    33  	maxError    float64
    34  }
    35  
    36  func max(a, b float64) float64 {
    37  	if a > b {
    38  		return a
    39  	}
    40  	return b
    41  }
    42  
    43  func nearEqual(a, b, closeEnough, maxError float64) bool {
    44  	absDiff := math.Abs(a - b)
    45  	if absDiff < closeEnough { // Necessary when one value is zero and one value is close to zero.
    46  		return true
    47  	}
    48  	return absDiff/max(math.Abs(a), math.Abs(b)) < maxError
    49  }
    50  
    51  var testSeeds = []int64{1, 1754801282, 1698661970, 1550503961}
    52  
    53  // checkSimilarDistribution returns success if the mean and stddev of the
    54  // two statsResults are similar.
    55  func (this *statsResults) checkSimilarDistribution(expected *statsResults) error {
    56  	if !nearEqual(this.mean, expected.mean, expected.closeEnough, expected.maxError) {
    57  		s := fmt.Sprintf("mean %v != %v (allowed error %v, %v)", this.mean, expected.mean, expected.closeEnough, expected.maxError)
    58  		fmt.Println(s)
    59  		return errors.New(s)
    60  	}
    61  	if !nearEqual(this.stddev, expected.stddev, expected.closeEnough, expected.maxError) {
    62  		s := fmt.Sprintf("stddev %v != %v (allowed error %v, %v)", this.stddev, expected.stddev, expected.closeEnough, expected.maxError)
    63  		fmt.Println(s)
    64  		return errors.New(s)
    65  	}
    66  	return nil
    67  }
    68  
    69  func getStatsResults(samples []float64) *statsResults {
    70  	res := new(statsResults)
    71  	var sum, squaresum float64
    72  	for _, s := range samples {
    73  		sum += s
    74  		squaresum += s * s
    75  	}
    76  	res.mean = sum / float64(len(samples))
    77  	res.stddev = math.Sqrt(squaresum/float64(len(samples)) - res.mean*res.mean)
    78  	return res
    79  }
    80  
    81  func checkSampleDistribution(t *testing.T, samples []float64, expected *statsResults) {
    82  	t.Helper()
    83  	actual := getStatsResults(samples)
    84  	err := actual.checkSimilarDistribution(expected)
    85  	if err != nil {
    86  		t.Errorf(err.Error())
    87  	}
    88  }
    89  
    90  func checkSampleSliceDistributions(t *testing.T, samples []float64, nslices int, expected *statsResults) {
    91  	t.Helper()
    92  	chunk := len(samples) / nslices
    93  	for i := 0; i < nslices; i++ {
    94  		low := i * chunk
    95  		var high int
    96  		if i == nslices-1 {
    97  			high = len(samples) - 1
    98  		} else {
    99  			high = (i + 1) * chunk
   100  		}
   101  		checkSampleDistribution(t, samples[low:high], expected)
   102  	}
   103  }
   104  
   105  //
   106  // Normal distribution tests
   107  //
   108  
   109  func generateNormalSamples(nsamples int, mean, stddev float64, seed int64) []float64 {
   110  	r := New(NewSource(seed))
   111  	samples := make([]float64, nsamples)
   112  	for i := range samples {
   113  		samples[i] = r.NormFloat64()*stddev + mean
   114  	}
   115  	return samples
   116  }
   117  
   118  func testNormalDistribution(t *testing.T, nsamples int, mean, stddev float64, seed int64) {
   119  	//fmt.Printf("testing nsamples=%v mean=%v stddev=%v seed=%v\n", nsamples, mean, stddev, seed);
   120  
   121  	samples := generateNormalSamples(nsamples, mean, stddev, seed)
   122  	errorScale := max(1.0, stddev) // Error scales with stddev
   123  	expected := &statsResults{mean, stddev, 0.10 * errorScale, 0.08 * errorScale}
   124  
   125  	// Make sure that the entire set matches the expected distribution.
   126  	checkSampleDistribution(t, samples, expected)
   127  
   128  	// Make sure that each half of the set matches the expected distribution.
   129  	checkSampleSliceDistributions(t, samples, 2, expected)
   130  
   131  	// Make sure that each 7th of the set matches the expected distribution.
   132  	checkSampleSliceDistributions(t, samples, 7, expected)
   133  }
   134  
   135  // Actual tests
   136  
   137  func TestStandardNormalValues(t *testing.T) {
   138  	for _, seed := range testSeeds {
   139  		testNormalDistribution(t, numTestSamples, 0, 1, seed)
   140  	}
   141  }
   142  
   143  func TestNonStandardNormalValues(t *testing.T) {
   144  	sdmax := 1000.0
   145  	mmax := 1000.0
   146  	if testing.Short() {
   147  		sdmax = 5
   148  		mmax = 5
   149  	}
   150  	for sd := 0.5; sd < sdmax; sd *= 2 {
   151  		for m := 0.5; m < mmax; m *= 2 {
   152  			for _, seed := range testSeeds {
   153  				testNormalDistribution(t, numTestSamples, m, sd, seed)
   154  				if testing.Short() {
   155  					break
   156  				}
   157  			}
   158  		}
   159  	}
   160  }
   161  
   162  //
   163  // Exponential distribution tests
   164  //
   165  
   166  func generateExponentialSamples(nsamples int, rate float64, seed int64) []float64 {
   167  	r := New(NewSource(seed))
   168  	samples := make([]float64, nsamples)
   169  	for i := range samples {
   170  		samples[i] = r.ExpFloat64() / rate
   171  	}
   172  	return samples
   173  }
   174  
   175  func testExponentialDistribution(t *testing.T, nsamples int, rate float64, seed int64) {
   176  	//fmt.Printf("testing nsamples=%v rate=%v seed=%v\n", nsamples, rate, seed);
   177  
   178  	mean := 1 / rate
   179  	stddev := mean
   180  
   181  	samples := generateExponentialSamples(nsamples, rate, seed)
   182  	errorScale := max(1.0, 1/rate) // Error scales with the inverse of the rate
   183  	expected := &statsResults{mean, stddev, 0.10 * errorScale, 0.20 * errorScale}
   184  
   185  	// Make sure that the entire set matches the expected distribution.
   186  	checkSampleDistribution(t, samples, expected)
   187  
   188  	// Make sure that each half of the set matches the expected distribution.
   189  	checkSampleSliceDistributions(t, samples, 2, expected)
   190  
   191  	// Make sure that each 7th of the set matches the expected distribution.
   192  	checkSampleSliceDistributions(t, samples, 7, expected)
   193  }
   194  
   195  // Actual tests
   196  
   197  func TestStandardExponentialValues(t *testing.T) {
   198  	for _, seed := range testSeeds {
   199  		testExponentialDistribution(t, numTestSamples, 1, seed)
   200  	}
   201  }
   202  
   203  func TestNonStandardExponentialValues(t *testing.T) {
   204  	for rate := 0.05; rate < 10; rate *= 2 {
   205  		for _, seed := range testSeeds {
   206  			testExponentialDistribution(t, numTestSamples, rate, seed)
   207  			if testing.Short() {
   208  				break
   209  			}
   210  		}
   211  	}
   212  }
   213  
   214  //
   215  // Table generation tests
   216  //
   217  
   218  func initNorm() (testKn []uint32, testWn, testFn []float32) {
   219  	const m1 = 1 << 31
   220  	var (
   221  		dn float64 = rn
   222  		tn         = dn
   223  		vn float64 = 9.91256303526217e-3
   224  	)
   225  
   226  	testKn = make([]uint32, 128)
   227  	testWn = make([]float32, 128)
   228  	testFn = make([]float32, 128)
   229  
   230  	q := vn / math.Exp(-0.5*dn*dn)
   231  	testKn[0] = uint32((dn / q) * m1)
   232  	testKn[1] = 0
   233  	testWn[0] = float32(q / m1)
   234  	testWn[127] = float32(dn / m1)
   235  	testFn[0] = 1.0
   236  	testFn[127] = float32(math.Exp(-0.5 * dn * dn))
   237  	for i := 126; i >= 1; i-- {
   238  		dn = math.Sqrt(-2.0 * math.Log(vn/dn+math.Exp(-0.5*dn*dn)))
   239  		testKn[i+1] = uint32((dn / tn) * m1)
   240  		tn = dn
   241  		testFn[i] = float32(math.Exp(-0.5 * dn * dn))
   242  		testWn[i] = float32(dn / m1)
   243  	}
   244  	return
   245  }
   246  
   247  func initExp() (testKe []uint32, testWe, testFe []float32) {
   248  	const m2 = 1 << 32
   249  	var (
   250  		de float64 = re
   251  		te         = de
   252  		ve float64 = 3.9496598225815571993e-3
   253  	)
   254  
   255  	testKe = make([]uint32, 256)
   256  	testWe = make([]float32, 256)
   257  	testFe = make([]float32, 256)
   258  
   259  	q := ve / math.Exp(-de)
   260  	testKe[0] = uint32((de / q) * m2)
   261  	testKe[1] = 0
   262  	testWe[0] = float32(q / m2)
   263  	testWe[255] = float32(de / m2)
   264  	testFe[0] = 1.0
   265  	testFe[255] = float32(math.Exp(-de))
   266  	for i := 254; i >= 1; i-- {
   267  		de = -math.Log(ve/de + math.Exp(-de))
   268  		testKe[i+1] = uint32((de / te) * m2)
   269  		te = de
   270  		testFe[i] = float32(math.Exp(-de))
   271  		testWe[i] = float32(de / m2)
   272  	}
   273  	return
   274  }
   275  
   276  // compareUint32Slices returns the first index where the two slices
   277  // disagree, or <0 if the lengths are the same and all elements
   278  // are identical.
   279  func compareUint32Slices(s1, s2 []uint32) int {
   280  	if len(s1) != len(s2) {
   281  		if len(s1) > len(s2) {
   282  			return len(s2) + 1
   283  		}
   284  		return len(s1) + 1
   285  	}
   286  	for i := range s1 {
   287  		if s1[i] != s2[i] {
   288  			return i
   289  		}
   290  	}
   291  	return -1
   292  }
   293  
   294  // compareFloat32Slices returns the first index where the two slices
   295  // disagree, or <0 if the lengths are the same and all elements
   296  // are identical.
   297  func compareFloat32Slices(s1, s2 []float32) int {
   298  	if len(s1) != len(s2) {
   299  		if len(s1) > len(s2) {
   300  			return len(s2) + 1
   301  		}
   302  		return len(s1) + 1
   303  	}
   304  	for i := range s1 {
   305  		if !nearEqual(float64(s1[i]), float64(s2[i]), 0, 1e-7) {
   306  			return i
   307  		}
   308  	}
   309  	return -1
   310  }
   311  
   312  func TestNormTables(t *testing.T) {
   313  	testKn, testWn, testFn := initNorm()
   314  	if i := compareUint32Slices(kn[0:], testKn); i >= 0 {
   315  		t.Errorf("kn disagrees at index %v; %v != %v", i, kn[i], testKn[i])
   316  	}
   317  	if i := compareFloat32Slices(wn[0:], testWn); i >= 0 {
   318  		t.Errorf("wn disagrees at index %v; %v != %v", i, wn[i], testWn[i])
   319  	}
   320  	if i := compareFloat32Slices(fn[0:], testFn); i >= 0 {
   321  		t.Errorf("fn disagrees at index %v; %v != %v", i, fn[i], testFn[i])
   322  	}
   323  }
   324  
   325  func TestExpTables(t *testing.T) {
   326  	testKe, testWe, testFe := initExp()
   327  	if i := compareUint32Slices(ke[0:], testKe); i >= 0 {
   328  		t.Errorf("ke disagrees at index %v; %v != %v", i, ke[i], testKe[i])
   329  	}
   330  	if i := compareFloat32Slices(we[0:], testWe); i >= 0 {
   331  		t.Errorf("we disagrees at index %v; %v != %v", i, we[i], testWe[i])
   332  	}
   333  	if i := compareFloat32Slices(fe[0:], testFe); i >= 0 {
   334  		t.Errorf("fe disagrees at index %v; %v != %v", i, fe[i], testFe[i])
   335  	}
   336  }
   337  
   338  func hasSlowFloatingPoint() bool {
   339  	switch runtime.GOARCH {
   340  	case "arm":
   341  		return os.Getenv("GOARM") == "5"
   342  	case "mips", "mipsle", "mips64", "mips64le":
   343  		// Be conservative and assume that all mips boards
   344  		// have emulated floating point.
   345  		// TODO: detect what it actually has.
   346  		return true
   347  	}
   348  	return false
   349  }
   350  
   351  func TestFloat32(t *testing.T) {
   352  	// For issue 6721, the problem came after 7533753 calls, so check 10e6.
   353  	num := int(10e6)
   354  	// But do the full amount only on builders (not locally).
   355  	// But ARM5 floating point emulation is slow (Issue 10749), so
   356  	// do less for that builder:
   357  	if testing.Short() && (testenv.Builder() == "" || hasSlowFloatingPoint()) {
   358  		num /= 100 // 1.72 seconds instead of 172 seconds
   359  	}
   360  
   361  	r := New(NewSource(1))
   362  	for ct := 0; ct < num; ct++ {
   363  		f := r.Float32()
   364  		if f >= 1 {
   365  			t.Fatal("Float32() should be in range [0,1). ct:", ct, "f:", f)
   366  		}
   367  	}
   368  }
   369  
   370  func testReadUniformity(t *testing.T, n int, seed int64) {
   371  	r := New(NewSource(seed))
   372  	buf := make([]byte, n)
   373  	nRead, err := r.Read(buf)
   374  	if err != nil {
   375  		t.Errorf("Read err %v", err)
   376  	}
   377  	if nRead != n {
   378  		t.Errorf("Read returned unexpected n; %d != %d", nRead, n)
   379  	}
   380  
   381  	// Expect a uniform distribution of byte values, which lie in [0, 255].
   382  	var (
   383  		mean       = 255.0 / 2
   384  		stddev     = 256.0 / math.Sqrt(12.0)
   385  		errorScale = stddev / math.Sqrt(float64(n))
   386  	)
   387  
   388  	expected := &statsResults{mean, stddev, 0.10 * errorScale, 0.08 * errorScale}
   389  
   390  	// Cast bytes as floats to use the common distribution-validity checks.
   391  	samples := make([]float64, n)
   392  	for i, val := range buf {
   393  		samples[i] = float64(val)
   394  	}
   395  	// Make sure that the entire set matches the expected distribution.
   396  	checkSampleDistribution(t, samples, expected)
   397  }
   398  
   399  func TestReadUniformity(t *testing.T) {
   400  	testBufferSizes := []int{
   401  		2, 4, 7, 64, 1024, 1 << 16, 1 << 20,
   402  	}
   403  	for _, seed := range testSeeds {
   404  		for _, n := range testBufferSizes {
   405  			testReadUniformity(t, n, seed)
   406  		}
   407  	}
   408  }
   409  
   410  func TestReadEmpty(t *testing.T) {
   411  	r := New(NewSource(1))
   412  	buf := make([]byte, 0)
   413  	n, err := r.Read(buf)
   414  	if err != nil {
   415  		t.Errorf("Read err into empty buffer; %v", err)
   416  	}
   417  	if n != 0 {
   418  		t.Errorf("Read into empty buffer returned unexpected n of %d", n)
   419  	}
   420  }
   421  
   422  func TestReadByOneByte(t *testing.T) {
   423  	r := New(NewSource(1))
   424  	b1 := make([]byte, 100)
   425  	_, err := io.ReadFull(iotest.OneByteReader(r), b1)
   426  	if err != nil {
   427  		t.Errorf("read by one byte: %v", err)
   428  	}
   429  	r = New(NewSource(1))
   430  	b2 := make([]byte, 100)
   431  	_, err = r.Read(b2)
   432  	if err != nil {
   433  		t.Errorf("read: %v", err)
   434  	}
   435  	if !bytes.Equal(b1, b2) {
   436  		t.Errorf("read by one byte vs single read:\n%x\n%x", b1, b2)
   437  	}
   438  }
   439  
   440  func TestReadSeedReset(t *testing.T) {
   441  	r := New(NewSource(42))
   442  	b1 := make([]byte, 128)
   443  	_, err := r.Read(b1)
   444  	if err != nil {
   445  		t.Errorf("read: %v", err)
   446  	}
   447  	r.Seed(42)
   448  	b2 := make([]byte, 128)
   449  	_, err = r.Read(b2)
   450  	if err != nil {
   451  		t.Errorf("read: %v", err)
   452  	}
   453  	if !bytes.Equal(b1, b2) {
   454  		t.Errorf("mismatch after re-seed:\n%x\n%x", b1, b2)
   455  	}
   456  }
   457  
   458  func TestShuffleSmall(t *testing.T) {
   459  	// Check that Shuffle allows n=0 and n=1, but that swap is never called for them.
   460  	r := New(NewSource(1))
   461  	for n := 0; n <= 1; n++ {
   462  		r.Shuffle(n, func(i, j int) { t.Fatalf("swap called, n=%d i=%d j=%d", n, i, j) })
   463  	}
   464  }
   465  
   466  // encodePerm converts from a permuted slice of length n, such as Perm generates, to an int in [0, n!).
   467  // See https://en.wikipedia.org/wiki/Lehmer_code.
   468  // encodePerm modifies the input slice.
   469  func encodePerm(s []int) int {
   470  	// Convert to Lehmer code.
   471  	for i, x := range s {
   472  		r := s[i+1:]
   473  		for j, y := range r {
   474  			if y > x {
   475  				r[j]--
   476  			}
   477  		}
   478  	}
   479  	// Convert to int in [0, n!).
   480  	m := 0
   481  	fact := 1
   482  	for i := len(s) - 1; i >= 0; i-- {
   483  		m += s[i] * fact
   484  		fact *= len(s) - i
   485  	}
   486  	return m
   487  }
   488  
   489  // TestUniformFactorial tests several ways of generating a uniform value in [0, n!).
   490  func TestUniformFactorial(t *testing.T) {
   491  	r := New(NewSource(testSeeds[0]))
   492  	top := 6
   493  	if testing.Short() {
   494  		top = 3
   495  	}
   496  	for n := 3; n <= top; n++ {
   497  		t.Run(fmt.Sprintf("n=%d", n), func(t *testing.T) {
   498  			// Calculate n!.
   499  			nfact := 1
   500  			for i := 2; i <= n; i++ {
   501  				nfact *= i
   502  			}
   503  
   504  			// Test a few different ways to generate a uniform distribution.
   505  			p := make([]int, n) // re-usable slice for Shuffle generator
   506  			tests := [...]struct {
   507  				name string
   508  				fn   func() int
   509  			}{
   510  				{name: "Int31n", fn: func() int { return int(r.Int31n(int32(nfact))) }},
   511  				{name: "int31n", fn: func() int { return int(Int31nForTest(r, int32(nfact))) }},
   512  				{name: "Perm", fn: func() int { return encodePerm(r.Perm(n)) }},
   513  				{name: "Shuffle", fn: func() int {
   514  					// Generate permutation using Shuffle.
   515  					for i := range p {
   516  						p[i] = i
   517  					}
   518  					r.Shuffle(n, func(i, j int) { p[i], p[j] = p[j], p[i] })
   519  					return encodePerm(p)
   520  				}},
   521  			}
   522  
   523  			for _, test := range tests {
   524  				t.Run(test.name, func(t *testing.T) {
   525  					// Gather chi-squared values and check that they follow
   526  					// the expected normal distribution given n!-1 degrees of freedom.
   527  					// See https://en.wikipedia.org/wiki/Pearson%27s_chi-squared_test and
   528  					// https://www.johndcook.com/Beautiful_Testing_ch10.pdf.
   529  					nsamples := 10 * nfact
   530  					if nsamples < 200 {
   531  						nsamples = 200
   532  					}
   533  					samples := make([]float64, nsamples)
   534  					for i := range samples {
   535  						// Generate some uniformly distributed values and count their occurrences.
   536  						const iters = 1000
   537  						counts := make([]int, nfact)
   538  						for i := 0; i < iters; i++ {
   539  							counts[test.fn()]++
   540  						}
   541  						// Calculate chi-squared and add to samples.
   542  						want := iters / float64(nfact)
   543  						var χ2 float64
   544  						for _, have := range counts {
   545  							err := float64(have) - want
   546  							χ2 += err * err
   547  						}
   548  						χ2 /= want
   549  						samples[i] = χ2
   550  					}
   551  
   552  					// Check that our samples approximate the appropriate normal distribution.
   553  					dof := float64(nfact - 1)
   554  					expected := &statsResults{mean: dof, stddev: math.Sqrt(2 * dof)}
   555  					errorScale := max(1.0, expected.stddev)
   556  					expected.closeEnough = 0.10 * errorScale
   557  					expected.maxError = 0.08 // TODO: What is the right value here? See issue 21211.
   558  					checkSampleDistribution(t, samples, expected)
   559  				})
   560  			}
   561  		})
   562  	}
   563  }
   564  
   565  // Benchmarks
   566  
   567  func BenchmarkInt63Threadsafe(b *testing.B) {
   568  	for n := b.N; n > 0; n-- {
   569  		Int63()
   570  	}
   571  }
   572  
   573  func BenchmarkInt63ThreadsafeParallel(b *testing.B) {
   574  	b.RunParallel(func(pb *testing.PB) {
   575  		for pb.Next() {
   576  			Int63()
   577  		}
   578  	})
   579  }
   580  
   581  func BenchmarkInt63Unthreadsafe(b *testing.B) {
   582  	r := New(NewSource(1))
   583  	for n := b.N; n > 0; n-- {
   584  		r.Int63()
   585  	}
   586  }
   587  
   588  func BenchmarkIntn1000(b *testing.B) {
   589  	r := New(NewSource(1))
   590  	for n := b.N; n > 0; n-- {
   591  		r.Intn(1000)
   592  	}
   593  }
   594  
   595  func BenchmarkInt63n1000(b *testing.B) {
   596  	r := New(NewSource(1))
   597  	for n := b.N; n > 0; n-- {
   598  		r.Int63n(1000)
   599  	}
   600  }
   601  
   602  func BenchmarkInt31n1000(b *testing.B) {
   603  	r := New(NewSource(1))
   604  	for n := b.N; n > 0; n-- {
   605  		r.Int31n(1000)
   606  	}
   607  }
   608  
   609  func BenchmarkFloat32(b *testing.B) {
   610  	r := New(NewSource(1))
   611  	for n := b.N; n > 0; n-- {
   612  		r.Float32()
   613  	}
   614  }
   615  
   616  func BenchmarkFloat64(b *testing.B) {
   617  	r := New(NewSource(1))
   618  	for n := b.N; n > 0; n-- {
   619  		r.Float64()
   620  	}
   621  }
   622  
   623  func BenchmarkPerm3(b *testing.B) {
   624  	r := New(NewSource(1))
   625  	for n := b.N; n > 0; n-- {
   626  		r.Perm(3)
   627  	}
   628  }
   629  
   630  func BenchmarkPerm30(b *testing.B) {
   631  	r := New(NewSource(1))
   632  	for n := b.N; n > 0; n-- {
   633  		r.Perm(30)
   634  	}
   635  }
   636  
   637  func BenchmarkPerm30ViaShuffle(b *testing.B) {
   638  	r := New(NewSource(1))
   639  	for n := b.N; n > 0; n-- {
   640  		p := make([]int, 30)
   641  		for i := range p {
   642  			p[i] = i
   643  		}
   644  		r.Shuffle(30, func(i, j int) { p[i], p[j] = p[j], p[i] })
   645  	}
   646  }
   647  
   648  // BenchmarkShuffleOverhead uses a minimal swap function
   649  // to measure just the shuffling overhead.
   650  func BenchmarkShuffleOverhead(b *testing.B) {
   651  	r := New(NewSource(1))
   652  	for n := b.N; n > 0; n-- {
   653  		r.Shuffle(52, func(i, j int) {
   654  			if i < 0 || i >= 52 || j < 0 || j >= 52 {
   655  				b.Fatalf("bad swap(%d, %d)", i, j)
   656  			}
   657  		})
   658  	}
   659  }
   660  
   661  func BenchmarkRead3(b *testing.B) {
   662  	r := New(NewSource(1))
   663  	buf := make([]byte, 3)
   664  	b.ResetTimer()
   665  	for n := b.N; n > 0; n-- {
   666  		r.Read(buf)
   667  	}
   668  }
   669  
   670  func BenchmarkRead64(b *testing.B) {
   671  	r := New(NewSource(1))
   672  	buf := make([]byte, 64)
   673  	b.ResetTimer()
   674  	for n := b.N; n > 0; n-- {
   675  		r.Read(buf)
   676  	}
   677  }
   678  
   679  func BenchmarkRead1000(b *testing.B) {
   680  	r := New(NewSource(1))
   681  	buf := make([]byte, 1000)
   682  	b.ResetTimer()
   683  	for n := b.N; n > 0; n-- {
   684  		r.Read(buf)
   685  	}
   686  }
   687  
   688  func BenchmarkConcurrent(b *testing.B) {
   689  	const goroutines = 4
   690  	var wg sync.WaitGroup
   691  	wg.Add(goroutines)
   692  	for i := 0; i < goroutines; i++ {
   693  		go func() {
   694  			defer wg.Done()
   695  			for n := b.N; n > 0; n-- {
   696  				Int63()
   697  			}
   698  		}()
   699  	}
   700  	wg.Wait()
   701  }