github.com/twelsh-aw/go/src@v0.0.0-20230516233729-a56fe86a7c81/math/remainder.go (about) 1 // Copyright 2010 The Go Authors. All rights reserved. 2 // Use of this source code is governed by a BSD-style 3 // license that can be found in the LICENSE file. 4 5 package math 6 7 // The original C code and the comment below are from 8 // FreeBSD's /usr/src/lib/msun/src/e_remainder.c and came 9 // with this notice. The go code is a simplified version of 10 // the original C. 11 // 12 // ==================================================== 13 // Copyright (C) 1993 by Sun Microsystems, Inc. All rights reserved. 14 // 15 // Developed at SunPro, a Sun Microsystems, Inc. business. 16 // Permission to use, copy, modify, and distribute this 17 // software is freely granted, provided that this notice 18 // is preserved. 19 // ==================================================== 20 // 21 // __ieee754_remainder(x,y) 22 // Return : 23 // returns x REM y = x - [x/y]*y as if in infinite 24 // precision arithmetic, where [x/y] is the (infinite bit) 25 // integer nearest x/y (in half way cases, choose the even one). 26 // Method : 27 // Based on Mod() returning x - [x/y]chopped * y exactly. 28 29 // Remainder returns the IEEE 754 floating-point remainder of x/y. 30 // 31 // Special cases are: 32 // 33 // Remainder(±Inf, y) = NaN 34 // Remainder(NaN, y) = NaN 35 // Remainder(x, 0) = NaN 36 // Remainder(x, ±Inf) = x 37 // Remainder(x, NaN) = NaN 38 func Remainder(x, y float64) float64 { 39 if haveArchRemainder { 40 return archRemainder(x, y) 41 } 42 return remainder(x, y) 43 } 44 45 func remainder(x, y float64) float64 { 46 const ( 47 Tiny = 4.45014771701440276618e-308 // 0x0020000000000000 48 HalfMax = MaxFloat64 / 2 49 ) 50 // special cases 51 switch { 52 case IsNaN(x) || IsNaN(y) || IsInf(x, 0) || y == 0: 53 return NaN() 54 case IsInf(y, 0): 55 return x 56 } 57 sign := false 58 if x < 0 { 59 x = -x 60 sign = true 61 } 62 if y < 0 { 63 y = -y 64 } 65 if x == y { 66 if sign { 67 zero := 0.0 68 return -zero 69 } 70 return 0 71 } 72 if y <= HalfMax { 73 x = Mod(x, y+y) // now x < 2y 74 } 75 if y < Tiny { 76 if x+x > y { 77 x -= y 78 if x+x >= y { 79 x -= y 80 } 81 } 82 } else { 83 yHalf := 0.5 * y 84 if x > yHalf { 85 x -= y 86 if x >= yHalf { 87 x -= y 88 } 89 } 90 } 91 if sign { 92 x = -x 93 } 94 return x 95 }