github.com/twelsh-aw/go/src@v0.0.0-20230516233729-a56fe86a7c81/net/http/server.go (about) 1 // Copyright 2009 The Go Authors. All rights reserved. 2 // Use of this source code is governed by a BSD-style 3 // license that can be found in the LICENSE file. 4 5 // HTTP server. See RFC 7230 through 7235. 6 7 package http 8 9 import ( 10 "bufio" 11 "bytes" 12 "context" 13 "crypto/tls" 14 "errors" 15 "fmt" 16 "internal/godebug" 17 "io" 18 "log" 19 "math/rand" 20 "net" 21 "net/textproto" 22 "net/url" 23 urlpkg "net/url" 24 "path" 25 "runtime" 26 "sort" 27 "strconv" 28 "strings" 29 "sync" 30 "sync/atomic" 31 "time" 32 33 "golang.org/x/net/http/httpguts" 34 ) 35 36 // Errors used by the HTTP server. 37 var ( 38 // ErrBodyNotAllowed is returned by ResponseWriter.Write calls 39 // when the HTTP method or response code does not permit a 40 // body. 41 ErrBodyNotAllowed = errors.New("http: request method or response status code does not allow body") 42 43 // ErrHijacked is returned by ResponseWriter.Write calls when 44 // the underlying connection has been hijacked using the 45 // Hijacker interface. A zero-byte write on a hijacked 46 // connection will return ErrHijacked without any other side 47 // effects. 48 ErrHijacked = errors.New("http: connection has been hijacked") 49 50 // ErrContentLength is returned by ResponseWriter.Write calls 51 // when a Handler set a Content-Length response header with a 52 // declared size and then attempted to write more bytes than 53 // declared. 54 ErrContentLength = errors.New("http: wrote more than the declared Content-Length") 55 56 // Deprecated: ErrWriteAfterFlush is no longer returned by 57 // anything in the net/http package. Callers should not 58 // compare errors against this variable. 59 ErrWriteAfterFlush = errors.New("unused") 60 ) 61 62 // A Handler responds to an HTTP request. 63 // 64 // ServeHTTP should write reply headers and data to the ResponseWriter 65 // and then return. Returning signals that the request is finished; it 66 // is not valid to use the ResponseWriter or read from the 67 // Request.Body after or concurrently with the completion of the 68 // ServeHTTP call. 69 // 70 // Depending on the HTTP client software, HTTP protocol version, and 71 // any intermediaries between the client and the Go server, it may not 72 // be possible to read from the Request.Body after writing to the 73 // ResponseWriter. Cautious handlers should read the Request.Body 74 // first, and then reply. 75 // 76 // Except for reading the body, handlers should not modify the 77 // provided Request. 78 // 79 // If ServeHTTP panics, the server (the caller of ServeHTTP) assumes 80 // that the effect of the panic was isolated to the active request. 81 // It recovers the panic, logs a stack trace to the server error log, 82 // and either closes the network connection or sends an HTTP/2 83 // RST_STREAM, depending on the HTTP protocol. To abort a handler so 84 // the client sees an interrupted response but the server doesn't log 85 // an error, panic with the value ErrAbortHandler. 86 type Handler interface { 87 ServeHTTP(ResponseWriter, *Request) 88 } 89 90 // A ResponseWriter interface is used by an HTTP handler to 91 // construct an HTTP response. 92 // 93 // A ResponseWriter may not be used after the Handler.ServeHTTP method 94 // has returned. 95 type ResponseWriter interface { 96 // Header returns the header map that will be sent by 97 // WriteHeader. The Header map also is the mechanism with which 98 // Handlers can set HTTP trailers. 99 // 100 // Changing the header map after a call to WriteHeader (or 101 // Write) has no effect unless the HTTP status code was of the 102 // 1xx class or the modified headers are trailers. 103 // 104 // There are two ways to set Trailers. The preferred way is to 105 // predeclare in the headers which trailers you will later 106 // send by setting the "Trailer" header to the names of the 107 // trailer keys which will come later. In this case, those 108 // keys of the Header map are treated as if they were 109 // trailers. See the example. The second way, for trailer 110 // keys not known to the Handler until after the first Write, 111 // is to prefix the Header map keys with the TrailerPrefix 112 // constant value. See TrailerPrefix. 113 // 114 // To suppress automatic response headers (such as "Date"), set 115 // their value to nil. 116 Header() Header 117 118 // Write writes the data to the connection as part of an HTTP reply. 119 // 120 // If WriteHeader has not yet been called, Write calls 121 // WriteHeader(http.StatusOK) before writing the data. If the Header 122 // does not contain a Content-Type line, Write adds a Content-Type set 123 // to the result of passing the initial 512 bytes of written data to 124 // DetectContentType. Additionally, if the total size of all written 125 // data is under a few KB and there are no Flush calls, the 126 // Content-Length header is added automatically. 127 // 128 // Depending on the HTTP protocol version and the client, calling 129 // Write or WriteHeader may prevent future reads on the 130 // Request.Body. For HTTP/1.x requests, handlers should read any 131 // needed request body data before writing the response. Once the 132 // headers have been flushed (due to either an explicit Flusher.Flush 133 // call or writing enough data to trigger a flush), the request body 134 // may be unavailable. For HTTP/2 requests, the Go HTTP server permits 135 // handlers to continue to read the request body while concurrently 136 // writing the response. However, such behavior may not be supported 137 // by all HTTP/2 clients. Handlers should read before writing if 138 // possible to maximize compatibility. 139 Write([]byte) (int, error) 140 141 // WriteHeader sends an HTTP response header with the provided 142 // status code. 143 // 144 // If WriteHeader is not called explicitly, the first call to Write 145 // will trigger an implicit WriteHeader(http.StatusOK). 146 // Thus explicit calls to WriteHeader are mainly used to 147 // send error codes or 1xx informational responses. 148 // 149 // The provided code must be a valid HTTP 1xx-5xx status code. 150 // Any number of 1xx headers may be written, followed by at most 151 // one 2xx-5xx header. 1xx headers are sent immediately, but 2xx-5xx 152 // headers may be buffered. Use the Flusher interface to send 153 // buffered data. The header map is cleared when 2xx-5xx headers are 154 // sent, but not with 1xx headers. 155 // 156 // The server will automatically send a 100 (Continue) header 157 // on the first read from the request body if the request has 158 // an "Expect: 100-continue" header. 159 WriteHeader(statusCode int) 160 } 161 162 // The Flusher interface is implemented by ResponseWriters that allow 163 // an HTTP handler to flush buffered data to the client. 164 // 165 // The default HTTP/1.x and HTTP/2 ResponseWriter implementations 166 // support Flusher, but ResponseWriter wrappers may not. Handlers 167 // should always test for this ability at runtime. 168 // 169 // Note that even for ResponseWriters that support Flush, 170 // if the client is connected through an HTTP proxy, 171 // the buffered data may not reach the client until the response 172 // completes. 173 type Flusher interface { 174 // Flush sends any buffered data to the client. 175 Flush() 176 } 177 178 // The Hijacker interface is implemented by ResponseWriters that allow 179 // an HTTP handler to take over the connection. 180 // 181 // The default ResponseWriter for HTTP/1.x connections supports 182 // Hijacker, but HTTP/2 connections intentionally do not. 183 // ResponseWriter wrappers may also not support Hijacker. Handlers 184 // should always test for this ability at runtime. 185 type Hijacker interface { 186 // Hijack lets the caller take over the connection. 187 // After a call to Hijack the HTTP server library 188 // will not do anything else with the connection. 189 // 190 // It becomes the caller's responsibility to manage 191 // and close the connection. 192 // 193 // The returned net.Conn may have read or write deadlines 194 // already set, depending on the configuration of the 195 // Server. It is the caller's responsibility to set 196 // or clear those deadlines as needed. 197 // 198 // The returned bufio.Reader may contain unprocessed buffered 199 // data from the client. 200 // 201 // After a call to Hijack, the original Request.Body must not 202 // be used. The original Request's Context remains valid and 203 // is not canceled until the Request's ServeHTTP method 204 // returns. 205 Hijack() (net.Conn, *bufio.ReadWriter, error) 206 } 207 208 // The CloseNotifier interface is implemented by ResponseWriters which 209 // allow detecting when the underlying connection has gone away. 210 // 211 // This mechanism can be used to cancel long operations on the server 212 // if the client has disconnected before the response is ready. 213 // 214 // Deprecated: the CloseNotifier interface predates Go's context package. 215 // New code should use Request.Context instead. 216 type CloseNotifier interface { 217 // CloseNotify returns a channel that receives at most a 218 // single value (true) when the client connection has gone 219 // away. 220 // 221 // CloseNotify may wait to notify until Request.Body has been 222 // fully read. 223 // 224 // After the Handler has returned, there is no guarantee 225 // that the channel receives a value. 226 // 227 // If the protocol is HTTP/1.1 and CloseNotify is called while 228 // processing an idempotent request (such a GET) while 229 // HTTP/1.1 pipelining is in use, the arrival of a subsequent 230 // pipelined request may cause a value to be sent on the 231 // returned channel. In practice HTTP/1.1 pipelining is not 232 // enabled in browsers and not seen often in the wild. If this 233 // is a problem, use HTTP/2 or only use CloseNotify on methods 234 // such as POST. 235 CloseNotify() <-chan bool 236 } 237 238 var ( 239 // ServerContextKey is a context key. It can be used in HTTP 240 // handlers with Context.Value to access the server that 241 // started the handler. The associated value will be of 242 // type *Server. 243 ServerContextKey = &contextKey{"http-server"} 244 245 // LocalAddrContextKey is a context key. It can be used in 246 // HTTP handlers with Context.Value to access the local 247 // address the connection arrived on. 248 // The associated value will be of type net.Addr. 249 LocalAddrContextKey = &contextKey{"local-addr"} 250 ) 251 252 // A conn represents the server side of an HTTP connection. 253 type conn struct { 254 // server is the server on which the connection arrived. 255 // Immutable; never nil. 256 server *Server 257 258 // cancelCtx cancels the connection-level context. 259 cancelCtx context.CancelFunc 260 261 // rwc is the underlying network connection. 262 // This is never wrapped by other types and is the value given out 263 // to CloseNotifier callers. It is usually of type *net.TCPConn or 264 // *tls.Conn. 265 rwc net.Conn 266 267 // remoteAddr is rwc.RemoteAddr().String(). It is not populated synchronously 268 // inside the Listener's Accept goroutine, as some implementations block. 269 // It is populated immediately inside the (*conn).serve goroutine. 270 // This is the value of a Handler's (*Request).RemoteAddr. 271 remoteAddr string 272 273 // tlsState is the TLS connection state when using TLS. 274 // nil means not TLS. 275 tlsState *tls.ConnectionState 276 277 // werr is set to the first write error to rwc. 278 // It is set via checkConnErrorWriter{w}, where bufw writes. 279 werr error 280 281 // r is bufr's read source. It's a wrapper around rwc that provides 282 // io.LimitedReader-style limiting (while reading request headers) 283 // and functionality to support CloseNotifier. See *connReader docs. 284 r *connReader 285 286 // bufr reads from r. 287 bufr *bufio.Reader 288 289 // bufw writes to checkConnErrorWriter{c}, which populates werr on error. 290 bufw *bufio.Writer 291 292 // lastMethod is the method of the most recent request 293 // on this connection, if any. 294 lastMethod string 295 296 curReq atomic.Pointer[response] // (which has a Request in it) 297 298 curState atomic.Uint64 // packed (unixtime<<8|uint8(ConnState)) 299 300 // mu guards hijackedv 301 mu sync.Mutex 302 303 // hijackedv is whether this connection has been hijacked 304 // by a Handler with the Hijacker interface. 305 // It is guarded by mu. 306 hijackedv bool 307 } 308 309 func (c *conn) hijacked() bool { 310 c.mu.Lock() 311 defer c.mu.Unlock() 312 return c.hijackedv 313 } 314 315 // c.mu must be held. 316 func (c *conn) hijackLocked() (rwc net.Conn, buf *bufio.ReadWriter, err error) { 317 if c.hijackedv { 318 return nil, nil, ErrHijacked 319 } 320 c.r.abortPendingRead() 321 322 c.hijackedv = true 323 rwc = c.rwc 324 rwc.SetDeadline(time.Time{}) 325 326 buf = bufio.NewReadWriter(c.bufr, bufio.NewWriter(rwc)) 327 if c.r.hasByte { 328 if _, err := c.bufr.Peek(c.bufr.Buffered() + 1); err != nil { 329 return nil, nil, fmt.Errorf("unexpected Peek failure reading buffered byte: %v", err) 330 } 331 } 332 c.setState(rwc, StateHijacked, runHooks) 333 return 334 } 335 336 // This should be >= 512 bytes for DetectContentType, 337 // but otherwise it's somewhat arbitrary. 338 const bufferBeforeChunkingSize = 2048 339 340 // chunkWriter writes to a response's conn buffer, and is the writer 341 // wrapped by the response.w buffered writer. 342 // 343 // chunkWriter also is responsible for finalizing the Header, including 344 // conditionally setting the Content-Type and setting a Content-Length 345 // in cases where the handler's final output is smaller than the buffer 346 // size. It also conditionally adds chunk headers, when in chunking mode. 347 // 348 // See the comment above (*response).Write for the entire write flow. 349 type chunkWriter struct { 350 res *response 351 352 // header is either nil or a deep clone of res.handlerHeader 353 // at the time of res.writeHeader, if res.writeHeader is 354 // called and extra buffering is being done to calculate 355 // Content-Type and/or Content-Length. 356 header Header 357 358 // wroteHeader tells whether the header's been written to "the 359 // wire" (or rather: w.conn.buf). this is unlike 360 // (*response).wroteHeader, which tells only whether it was 361 // logically written. 362 wroteHeader bool 363 364 // set by the writeHeader method: 365 chunking bool // using chunked transfer encoding for reply body 366 } 367 368 var ( 369 crlf = []byte("\r\n") 370 colonSpace = []byte(": ") 371 ) 372 373 func (cw *chunkWriter) Write(p []byte) (n int, err error) { 374 if !cw.wroteHeader { 375 cw.writeHeader(p) 376 } 377 if cw.res.req.Method == "HEAD" { 378 // Eat writes. 379 return len(p), nil 380 } 381 if cw.chunking { 382 _, err = fmt.Fprintf(cw.res.conn.bufw, "%x\r\n", len(p)) 383 if err != nil { 384 cw.res.conn.rwc.Close() 385 return 386 } 387 } 388 n, err = cw.res.conn.bufw.Write(p) 389 if cw.chunking && err == nil { 390 _, err = cw.res.conn.bufw.Write(crlf) 391 } 392 if err != nil { 393 cw.res.conn.rwc.Close() 394 } 395 return 396 } 397 398 func (cw *chunkWriter) flush() error { 399 if !cw.wroteHeader { 400 cw.writeHeader(nil) 401 } 402 return cw.res.conn.bufw.Flush() 403 } 404 405 func (cw *chunkWriter) close() { 406 if !cw.wroteHeader { 407 cw.writeHeader(nil) 408 } 409 if cw.chunking { 410 bw := cw.res.conn.bufw // conn's bufio writer 411 // zero chunk to mark EOF 412 bw.WriteString("0\r\n") 413 if trailers := cw.res.finalTrailers(); trailers != nil { 414 trailers.Write(bw) // the writer handles noting errors 415 } 416 // final blank line after the trailers (whether 417 // present or not) 418 bw.WriteString("\r\n") 419 } 420 } 421 422 // A response represents the server side of an HTTP response. 423 type response struct { 424 conn *conn 425 req *Request // request for this response 426 reqBody io.ReadCloser 427 cancelCtx context.CancelFunc // when ServeHTTP exits 428 wroteHeader bool // a non-1xx header has been (logically) written 429 wroteContinue bool // 100 Continue response was written 430 wants10KeepAlive bool // HTTP/1.0 w/ Connection "keep-alive" 431 wantsClose bool // HTTP request has Connection "close" 432 433 // canWriteContinue is an atomic boolean that says whether or 434 // not a 100 Continue header can be written to the 435 // connection. 436 // writeContinueMu must be held while writing the header. 437 // These two fields together synchronize the body reader (the 438 // expectContinueReader, which wants to write 100 Continue) 439 // against the main writer. 440 canWriteContinue atomic.Bool 441 writeContinueMu sync.Mutex 442 443 w *bufio.Writer // buffers output in chunks to chunkWriter 444 cw chunkWriter 445 446 // handlerHeader is the Header that Handlers get access to, 447 // which may be retained and mutated even after WriteHeader. 448 // handlerHeader is copied into cw.header at WriteHeader 449 // time, and privately mutated thereafter. 450 handlerHeader Header 451 calledHeader bool // handler accessed handlerHeader via Header 452 453 written int64 // number of bytes written in body 454 contentLength int64 // explicitly-declared Content-Length; or -1 455 status int // status code passed to WriteHeader 456 457 // close connection after this reply. set on request and 458 // updated after response from handler if there's a 459 // "Connection: keep-alive" response header and a 460 // Content-Length. 461 closeAfterReply bool 462 463 // When fullDuplex is false (the default), we consume any remaining 464 // request body before starting to write a response. 465 fullDuplex bool 466 467 // requestBodyLimitHit is set by requestTooLarge when 468 // maxBytesReader hits its max size. It is checked in 469 // WriteHeader, to make sure we don't consume the 470 // remaining request body to try to advance to the next HTTP 471 // request. Instead, when this is set, we stop reading 472 // subsequent requests on this connection and stop reading 473 // input from it. 474 requestBodyLimitHit bool 475 476 // trailers are the headers to be sent after the handler 477 // finishes writing the body. This field is initialized from 478 // the Trailer response header when the response header is 479 // written. 480 trailers []string 481 482 handlerDone atomic.Bool // set true when the handler exits 483 484 // Buffers for Date, Content-Length, and status code 485 dateBuf [len(TimeFormat)]byte 486 clenBuf [10]byte 487 statusBuf [3]byte 488 489 // closeNotifyCh is the channel returned by CloseNotify. 490 // TODO(bradfitz): this is currently (for Go 1.8) always 491 // non-nil. Make this lazily-created again as it used to be? 492 closeNotifyCh chan bool 493 didCloseNotify atomic.Bool // atomic (only false->true winner should send) 494 } 495 496 func (c *response) SetReadDeadline(deadline time.Time) error { 497 return c.conn.rwc.SetReadDeadline(deadline) 498 } 499 500 func (c *response) SetWriteDeadline(deadline time.Time) error { 501 return c.conn.rwc.SetWriteDeadline(deadline) 502 } 503 504 func (c *response) EnableFullDuplex() error { 505 c.fullDuplex = true 506 return nil 507 } 508 509 // TrailerPrefix is a magic prefix for ResponseWriter.Header map keys 510 // that, if present, signals that the map entry is actually for 511 // the response trailers, and not the response headers. The prefix 512 // is stripped after the ServeHTTP call finishes and the values are 513 // sent in the trailers. 514 // 515 // This mechanism is intended only for trailers that are not known 516 // prior to the headers being written. If the set of trailers is fixed 517 // or known before the header is written, the normal Go trailers mechanism 518 // is preferred: 519 // 520 // https://pkg.go.dev/net/http#ResponseWriter 521 // https://pkg.go.dev/net/http#example-ResponseWriter-Trailers 522 const TrailerPrefix = "Trailer:" 523 524 // finalTrailers is called after the Handler exits and returns a non-nil 525 // value if the Handler set any trailers. 526 func (w *response) finalTrailers() Header { 527 var t Header 528 for k, vv := range w.handlerHeader { 529 if kk, found := strings.CutPrefix(k, TrailerPrefix); found { 530 if t == nil { 531 t = make(Header) 532 } 533 t[kk] = vv 534 } 535 } 536 for _, k := range w.trailers { 537 if t == nil { 538 t = make(Header) 539 } 540 for _, v := range w.handlerHeader[k] { 541 t.Add(k, v) 542 } 543 } 544 return t 545 } 546 547 // declareTrailer is called for each Trailer header when the 548 // response header is written. It notes that a header will need to be 549 // written in the trailers at the end of the response. 550 func (w *response) declareTrailer(k string) { 551 k = CanonicalHeaderKey(k) 552 if !httpguts.ValidTrailerHeader(k) { 553 // Forbidden by RFC 7230, section 4.1.2 554 return 555 } 556 w.trailers = append(w.trailers, k) 557 } 558 559 // requestTooLarge is called by maxBytesReader when too much input has 560 // been read from the client. 561 func (w *response) requestTooLarge() { 562 w.closeAfterReply = true 563 w.requestBodyLimitHit = true 564 if !w.wroteHeader { 565 w.Header().Set("Connection", "close") 566 } 567 } 568 569 // writerOnly hides an io.Writer value's optional ReadFrom method 570 // from io.Copy. 571 type writerOnly struct { 572 io.Writer 573 } 574 575 // ReadFrom is here to optimize copying from an *os.File regular file 576 // to a *net.TCPConn with sendfile, or from a supported src type such 577 // as a *net.TCPConn on Linux with splice. 578 func (w *response) ReadFrom(src io.Reader) (n int64, err error) { 579 bufp := copyBufPool.Get().(*[]byte) 580 buf := *bufp 581 defer copyBufPool.Put(bufp) 582 583 // Our underlying w.conn.rwc is usually a *TCPConn (with its 584 // own ReadFrom method). If not, just fall back to the normal 585 // copy method. 586 rf, ok := w.conn.rwc.(io.ReaderFrom) 587 if !ok { 588 return io.CopyBuffer(writerOnly{w}, src, buf) 589 } 590 591 // Copy the first sniffLen bytes before switching to ReadFrom. 592 // This ensures we don't start writing the response before the 593 // source is available (see golang.org/issue/5660) and provides 594 // enough bytes to perform Content-Type sniffing when required. 595 if !w.cw.wroteHeader { 596 n0, err := io.CopyBuffer(writerOnly{w}, io.LimitReader(src, sniffLen), buf) 597 n += n0 598 if err != nil || n0 < sniffLen { 599 return n, err 600 } 601 } 602 603 w.w.Flush() // get rid of any previous writes 604 w.cw.flush() // make sure Header is written; flush data to rwc 605 606 // Now that cw has been flushed, its chunking field is guaranteed initialized. 607 if !w.cw.chunking && w.bodyAllowed() { 608 n0, err := rf.ReadFrom(src) 609 n += n0 610 w.written += n0 611 return n, err 612 } 613 614 n0, err := io.CopyBuffer(writerOnly{w}, src, buf) 615 n += n0 616 return n, err 617 } 618 619 // debugServerConnections controls whether all server connections are wrapped 620 // with a verbose logging wrapper. 621 const debugServerConnections = false 622 623 // Create new connection from rwc. 624 func (srv *Server) newConn(rwc net.Conn) *conn { 625 c := &conn{ 626 server: srv, 627 rwc: rwc, 628 } 629 if debugServerConnections { 630 c.rwc = newLoggingConn("server", c.rwc) 631 } 632 return c 633 } 634 635 type readResult struct { 636 _ incomparable 637 n int 638 err error 639 b byte // byte read, if n == 1 640 } 641 642 // connReader is the io.Reader wrapper used by *conn. It combines a 643 // selectively-activated io.LimitedReader (to bound request header 644 // read sizes) with support for selectively keeping an io.Reader.Read 645 // call blocked in a background goroutine to wait for activity and 646 // trigger a CloseNotifier channel. 647 type connReader struct { 648 conn *conn 649 650 mu sync.Mutex // guards following 651 hasByte bool 652 byteBuf [1]byte 653 cond *sync.Cond 654 inRead bool 655 aborted bool // set true before conn.rwc deadline is set to past 656 remain int64 // bytes remaining 657 } 658 659 func (cr *connReader) lock() { 660 cr.mu.Lock() 661 if cr.cond == nil { 662 cr.cond = sync.NewCond(&cr.mu) 663 } 664 } 665 666 func (cr *connReader) unlock() { cr.mu.Unlock() } 667 668 func (cr *connReader) startBackgroundRead() { 669 cr.lock() 670 defer cr.unlock() 671 if cr.inRead { 672 panic("invalid concurrent Body.Read call") 673 } 674 if cr.hasByte { 675 return 676 } 677 cr.inRead = true 678 cr.conn.rwc.SetReadDeadline(time.Time{}) 679 go cr.backgroundRead() 680 } 681 682 func (cr *connReader) backgroundRead() { 683 n, err := cr.conn.rwc.Read(cr.byteBuf[:]) 684 cr.lock() 685 if n == 1 { 686 cr.hasByte = true 687 // We were past the end of the previous request's body already 688 // (since we wouldn't be in a background read otherwise), so 689 // this is a pipelined HTTP request. Prior to Go 1.11 we used to 690 // send on the CloseNotify channel and cancel the context here, 691 // but the behavior was documented as only "may", and we only 692 // did that because that's how CloseNotify accidentally behaved 693 // in very early Go releases prior to context support. Once we 694 // added context support, people used a Handler's 695 // Request.Context() and passed it along. Having that context 696 // cancel on pipelined HTTP requests caused problems. 697 // Fortunately, almost nothing uses HTTP/1.x pipelining. 698 // Unfortunately, apt-get does, or sometimes does. 699 // New Go 1.11 behavior: don't fire CloseNotify or cancel 700 // contexts on pipelined requests. Shouldn't affect people, but 701 // fixes cases like Issue 23921. This does mean that a client 702 // closing their TCP connection after sending a pipelined 703 // request won't cancel the context, but we'll catch that on any 704 // write failure (in checkConnErrorWriter.Write). 705 // If the server never writes, yes, there are still contrived 706 // server & client behaviors where this fails to ever cancel the 707 // context, but that's kinda why HTTP/1.x pipelining died 708 // anyway. 709 } 710 if ne, ok := err.(net.Error); ok && cr.aborted && ne.Timeout() { 711 // Ignore this error. It's the expected error from 712 // another goroutine calling abortPendingRead. 713 } else if err != nil { 714 cr.handleReadError(err) 715 } 716 cr.aborted = false 717 cr.inRead = false 718 cr.unlock() 719 cr.cond.Broadcast() 720 } 721 722 func (cr *connReader) abortPendingRead() { 723 cr.lock() 724 defer cr.unlock() 725 if !cr.inRead { 726 return 727 } 728 cr.aborted = true 729 cr.conn.rwc.SetReadDeadline(aLongTimeAgo) 730 for cr.inRead { 731 cr.cond.Wait() 732 } 733 cr.conn.rwc.SetReadDeadline(time.Time{}) 734 } 735 736 func (cr *connReader) setReadLimit(remain int64) { cr.remain = remain } 737 func (cr *connReader) setInfiniteReadLimit() { cr.remain = maxInt64 } 738 func (cr *connReader) hitReadLimit() bool { return cr.remain <= 0 } 739 740 // handleReadError is called whenever a Read from the client returns a 741 // non-nil error. 742 // 743 // The provided non-nil err is almost always io.EOF or a "use of 744 // closed network connection". In any case, the error is not 745 // particularly interesting, except perhaps for debugging during 746 // development. Any error means the connection is dead and we should 747 // down its context. 748 // 749 // It may be called from multiple goroutines. 750 func (cr *connReader) handleReadError(_ error) { 751 cr.conn.cancelCtx() 752 cr.closeNotify() 753 } 754 755 // may be called from multiple goroutines. 756 func (cr *connReader) closeNotify() { 757 res := cr.conn.curReq.Load() 758 if res != nil && !res.didCloseNotify.Swap(true) { 759 res.closeNotifyCh <- true 760 } 761 } 762 763 func (cr *connReader) Read(p []byte) (n int, err error) { 764 cr.lock() 765 if cr.inRead { 766 cr.unlock() 767 if cr.conn.hijacked() { 768 panic("invalid Body.Read call. After hijacked, the original Request must not be used") 769 } 770 panic("invalid concurrent Body.Read call") 771 } 772 if cr.hitReadLimit() { 773 cr.unlock() 774 return 0, io.EOF 775 } 776 if len(p) == 0 { 777 cr.unlock() 778 return 0, nil 779 } 780 if int64(len(p)) > cr.remain { 781 p = p[:cr.remain] 782 } 783 if cr.hasByte { 784 p[0] = cr.byteBuf[0] 785 cr.hasByte = false 786 cr.unlock() 787 return 1, nil 788 } 789 cr.inRead = true 790 cr.unlock() 791 n, err = cr.conn.rwc.Read(p) 792 793 cr.lock() 794 cr.inRead = false 795 if err != nil { 796 cr.handleReadError(err) 797 } 798 cr.remain -= int64(n) 799 cr.unlock() 800 801 cr.cond.Broadcast() 802 return n, err 803 } 804 805 var ( 806 bufioReaderPool sync.Pool 807 bufioWriter2kPool sync.Pool 808 bufioWriter4kPool sync.Pool 809 ) 810 811 var copyBufPool = sync.Pool{ 812 New: func() any { 813 b := make([]byte, 32*1024) 814 return &b 815 }, 816 } 817 818 func bufioWriterPool(size int) *sync.Pool { 819 switch size { 820 case 2 << 10: 821 return &bufioWriter2kPool 822 case 4 << 10: 823 return &bufioWriter4kPool 824 } 825 return nil 826 } 827 828 func newBufioReader(r io.Reader) *bufio.Reader { 829 if v := bufioReaderPool.Get(); v != nil { 830 br := v.(*bufio.Reader) 831 br.Reset(r) 832 return br 833 } 834 // Note: if this reader size is ever changed, update 835 // TestHandlerBodyClose's assumptions. 836 return bufio.NewReader(r) 837 } 838 839 func putBufioReader(br *bufio.Reader) { 840 br.Reset(nil) 841 bufioReaderPool.Put(br) 842 } 843 844 func newBufioWriterSize(w io.Writer, size int) *bufio.Writer { 845 pool := bufioWriterPool(size) 846 if pool != nil { 847 if v := pool.Get(); v != nil { 848 bw := v.(*bufio.Writer) 849 bw.Reset(w) 850 return bw 851 } 852 } 853 return bufio.NewWriterSize(w, size) 854 } 855 856 func putBufioWriter(bw *bufio.Writer) { 857 bw.Reset(nil) 858 if pool := bufioWriterPool(bw.Available()); pool != nil { 859 pool.Put(bw) 860 } 861 } 862 863 // DefaultMaxHeaderBytes is the maximum permitted size of the headers 864 // in an HTTP request. 865 // This can be overridden by setting Server.MaxHeaderBytes. 866 const DefaultMaxHeaderBytes = 1 << 20 // 1 MB 867 868 func (srv *Server) maxHeaderBytes() int { 869 if srv.MaxHeaderBytes > 0 { 870 return srv.MaxHeaderBytes 871 } 872 return DefaultMaxHeaderBytes 873 } 874 875 func (srv *Server) initialReadLimitSize() int64 { 876 return int64(srv.maxHeaderBytes()) + 4096 // bufio slop 877 } 878 879 // tlsHandshakeTimeout returns the time limit permitted for the TLS 880 // handshake, or zero for unlimited. 881 // 882 // It returns the minimum of any positive ReadHeaderTimeout, 883 // ReadTimeout, or WriteTimeout. 884 func (srv *Server) tlsHandshakeTimeout() time.Duration { 885 var ret time.Duration 886 for _, v := range [...]time.Duration{ 887 srv.ReadHeaderTimeout, 888 srv.ReadTimeout, 889 srv.WriteTimeout, 890 } { 891 if v <= 0 { 892 continue 893 } 894 if ret == 0 || v < ret { 895 ret = v 896 } 897 } 898 return ret 899 } 900 901 // wrapper around io.ReadCloser which on first read, sends an 902 // HTTP/1.1 100 Continue header 903 type expectContinueReader struct { 904 resp *response 905 readCloser io.ReadCloser 906 closed atomic.Bool 907 sawEOF atomic.Bool 908 } 909 910 func (ecr *expectContinueReader) Read(p []byte) (n int, err error) { 911 if ecr.closed.Load() { 912 return 0, ErrBodyReadAfterClose 913 } 914 w := ecr.resp 915 if !w.wroteContinue && w.canWriteContinue.Load() && !w.conn.hijacked() { 916 w.wroteContinue = true 917 w.writeContinueMu.Lock() 918 if w.canWriteContinue.Load() { 919 w.conn.bufw.WriteString("HTTP/1.1 100 Continue\r\n\r\n") 920 w.conn.bufw.Flush() 921 w.canWriteContinue.Store(false) 922 } 923 w.writeContinueMu.Unlock() 924 } 925 n, err = ecr.readCloser.Read(p) 926 if err == io.EOF { 927 ecr.sawEOF.Store(true) 928 } 929 return 930 } 931 932 func (ecr *expectContinueReader) Close() error { 933 ecr.closed.Store(true) 934 return ecr.readCloser.Close() 935 } 936 937 // TimeFormat is the time format to use when generating times in HTTP 938 // headers. It is like time.RFC1123 but hard-codes GMT as the time 939 // zone. The time being formatted must be in UTC for Format to 940 // generate the correct format. 941 // 942 // For parsing this time format, see ParseTime. 943 const TimeFormat = "Mon, 02 Jan 2006 15:04:05 GMT" 944 945 // appendTime is a non-allocating version of []byte(t.UTC().Format(TimeFormat)) 946 func appendTime(b []byte, t time.Time) []byte { 947 const days = "SunMonTueWedThuFriSat" 948 const months = "JanFebMarAprMayJunJulAugSepOctNovDec" 949 950 t = t.UTC() 951 yy, mm, dd := t.Date() 952 hh, mn, ss := t.Clock() 953 day := days[3*t.Weekday():] 954 mon := months[3*(mm-1):] 955 956 return append(b, 957 day[0], day[1], day[2], ',', ' ', 958 byte('0'+dd/10), byte('0'+dd%10), ' ', 959 mon[0], mon[1], mon[2], ' ', 960 byte('0'+yy/1000), byte('0'+(yy/100)%10), byte('0'+(yy/10)%10), byte('0'+yy%10), ' ', 961 byte('0'+hh/10), byte('0'+hh%10), ':', 962 byte('0'+mn/10), byte('0'+mn%10), ':', 963 byte('0'+ss/10), byte('0'+ss%10), ' ', 964 'G', 'M', 'T') 965 } 966 967 var errTooLarge = errors.New("http: request too large") 968 969 // Read next request from connection. 970 func (c *conn) readRequest(ctx context.Context) (w *response, err error) { 971 if c.hijacked() { 972 return nil, ErrHijacked 973 } 974 975 var ( 976 wholeReqDeadline time.Time // or zero if none 977 hdrDeadline time.Time // or zero if none 978 ) 979 t0 := time.Now() 980 if d := c.server.readHeaderTimeout(); d > 0 { 981 hdrDeadline = t0.Add(d) 982 } 983 if d := c.server.ReadTimeout; d > 0 { 984 wholeReqDeadline = t0.Add(d) 985 } 986 c.rwc.SetReadDeadline(hdrDeadline) 987 if d := c.server.WriteTimeout; d > 0 { 988 defer func() { 989 c.rwc.SetWriteDeadline(time.Now().Add(d)) 990 }() 991 } 992 993 c.r.setReadLimit(c.server.initialReadLimitSize()) 994 if c.lastMethod == "POST" { 995 // RFC 7230 section 3 tolerance for old buggy clients. 996 peek, _ := c.bufr.Peek(4) // ReadRequest will get err below 997 c.bufr.Discard(numLeadingCRorLF(peek)) 998 } 999 req, err := readRequest(c.bufr) 1000 if err != nil { 1001 if c.r.hitReadLimit() { 1002 return nil, errTooLarge 1003 } 1004 return nil, err 1005 } 1006 1007 if !http1ServerSupportsRequest(req) { 1008 return nil, statusError{StatusHTTPVersionNotSupported, "unsupported protocol version"} 1009 } 1010 1011 c.lastMethod = req.Method 1012 c.r.setInfiniteReadLimit() 1013 1014 hosts, haveHost := req.Header["Host"] 1015 isH2Upgrade := req.isH2Upgrade() 1016 if req.ProtoAtLeast(1, 1) && (!haveHost || len(hosts) == 0) && !isH2Upgrade && req.Method != "CONNECT" { 1017 return nil, badRequestError("missing required Host header") 1018 } 1019 if len(hosts) == 1 && !httpguts.ValidHostHeader(hosts[0]) { 1020 return nil, badRequestError("malformed Host header") 1021 } 1022 for k, vv := range req.Header { 1023 if !httpguts.ValidHeaderFieldName(k) { 1024 return nil, badRequestError("invalid header name") 1025 } 1026 for _, v := range vv { 1027 if !httpguts.ValidHeaderFieldValue(v) { 1028 return nil, badRequestError("invalid header value") 1029 } 1030 } 1031 } 1032 delete(req.Header, "Host") 1033 1034 ctx, cancelCtx := context.WithCancel(ctx) 1035 req.ctx = ctx 1036 req.RemoteAddr = c.remoteAddr 1037 req.TLS = c.tlsState 1038 if body, ok := req.Body.(*body); ok { 1039 body.doEarlyClose = true 1040 } 1041 1042 // Adjust the read deadline if necessary. 1043 if !hdrDeadline.Equal(wholeReqDeadline) { 1044 c.rwc.SetReadDeadline(wholeReqDeadline) 1045 } 1046 1047 w = &response{ 1048 conn: c, 1049 cancelCtx: cancelCtx, 1050 req: req, 1051 reqBody: req.Body, 1052 handlerHeader: make(Header), 1053 contentLength: -1, 1054 closeNotifyCh: make(chan bool, 1), 1055 1056 // We populate these ahead of time so we're not 1057 // reading from req.Header after their Handler starts 1058 // and maybe mutates it (Issue 14940) 1059 wants10KeepAlive: req.wantsHttp10KeepAlive(), 1060 wantsClose: req.wantsClose(), 1061 } 1062 if isH2Upgrade { 1063 w.closeAfterReply = true 1064 } 1065 w.cw.res = w 1066 w.w = newBufioWriterSize(&w.cw, bufferBeforeChunkingSize) 1067 return w, nil 1068 } 1069 1070 // http1ServerSupportsRequest reports whether Go's HTTP/1.x server 1071 // supports the given request. 1072 func http1ServerSupportsRequest(req *Request) bool { 1073 if req.ProtoMajor == 1 { 1074 return true 1075 } 1076 // Accept "PRI * HTTP/2.0" upgrade requests, so Handlers can 1077 // wire up their own HTTP/2 upgrades. 1078 if req.ProtoMajor == 2 && req.ProtoMinor == 0 && 1079 req.Method == "PRI" && req.RequestURI == "*" { 1080 return true 1081 } 1082 // Reject HTTP/0.x, and all other HTTP/2+ requests (which 1083 // aren't encoded in ASCII anyway). 1084 return false 1085 } 1086 1087 func (w *response) Header() Header { 1088 if w.cw.header == nil && w.wroteHeader && !w.cw.wroteHeader { 1089 // Accessing the header between logically writing it 1090 // and physically writing it means we need to allocate 1091 // a clone to snapshot the logically written state. 1092 w.cw.header = w.handlerHeader.Clone() 1093 } 1094 w.calledHeader = true 1095 return w.handlerHeader 1096 } 1097 1098 // maxPostHandlerReadBytes is the max number of Request.Body bytes not 1099 // consumed by a handler that the server will read from the client 1100 // in order to keep a connection alive. If there are more bytes than 1101 // this then the server to be paranoid instead sends a "Connection: 1102 // close" response. 1103 // 1104 // This number is approximately what a typical machine's TCP buffer 1105 // size is anyway. (if we have the bytes on the machine, we might as 1106 // well read them) 1107 const maxPostHandlerReadBytes = 256 << 10 1108 1109 func checkWriteHeaderCode(code int) { 1110 // Issue 22880: require valid WriteHeader status codes. 1111 // For now we only enforce that it's three digits. 1112 // In the future we might block things over 599 (600 and above aren't defined 1113 // at https://httpwg.org/specs/rfc7231.html#status.codes). 1114 // But for now any three digits. 1115 // 1116 // We used to send "HTTP/1.1 000 0" on the wire in responses but there's 1117 // no equivalent bogus thing we can realistically send in HTTP/2, 1118 // so we'll consistently panic instead and help people find their bugs 1119 // early. (We can't return an error from WriteHeader even if we wanted to.) 1120 if code < 100 || code > 999 { 1121 panic(fmt.Sprintf("invalid WriteHeader code %v", code)) 1122 } 1123 } 1124 1125 // relevantCaller searches the call stack for the first function outside of net/http. 1126 // The purpose of this function is to provide more helpful error messages. 1127 func relevantCaller() runtime.Frame { 1128 pc := make([]uintptr, 16) 1129 n := runtime.Callers(1, pc) 1130 frames := runtime.CallersFrames(pc[:n]) 1131 var frame runtime.Frame 1132 for { 1133 frame, more := frames.Next() 1134 if !strings.HasPrefix(frame.Function, "net/http.") { 1135 return frame 1136 } 1137 if !more { 1138 break 1139 } 1140 } 1141 return frame 1142 } 1143 1144 func (w *response) WriteHeader(code int) { 1145 if w.conn.hijacked() { 1146 caller := relevantCaller() 1147 w.conn.server.logf("http: response.WriteHeader on hijacked connection from %s (%s:%d)", caller.Function, path.Base(caller.File), caller.Line) 1148 return 1149 } 1150 if w.wroteHeader { 1151 caller := relevantCaller() 1152 w.conn.server.logf("http: superfluous response.WriteHeader call from %s (%s:%d)", caller.Function, path.Base(caller.File), caller.Line) 1153 return 1154 } 1155 checkWriteHeaderCode(code) 1156 1157 // Handle informational headers. 1158 // 1159 // We shouldn't send any further headers after 101 Switching Protocols, 1160 // so it takes the non-informational path. 1161 if code >= 100 && code <= 199 && code != StatusSwitchingProtocols { 1162 // Prevent a potential race with an automatically-sent 100 Continue triggered by Request.Body.Read() 1163 if code == 100 && w.canWriteContinue.Load() { 1164 w.writeContinueMu.Lock() 1165 w.canWriteContinue.Store(false) 1166 w.writeContinueMu.Unlock() 1167 } 1168 1169 writeStatusLine(w.conn.bufw, w.req.ProtoAtLeast(1, 1), code, w.statusBuf[:]) 1170 1171 // Per RFC 8297 we must not clear the current header map 1172 w.handlerHeader.WriteSubset(w.conn.bufw, excludedHeadersNoBody) 1173 w.conn.bufw.Write(crlf) 1174 w.conn.bufw.Flush() 1175 1176 return 1177 } 1178 1179 w.wroteHeader = true 1180 w.status = code 1181 1182 if w.calledHeader && w.cw.header == nil { 1183 w.cw.header = w.handlerHeader.Clone() 1184 } 1185 1186 if cl := w.handlerHeader.get("Content-Length"); cl != "" { 1187 v, err := strconv.ParseInt(cl, 10, 64) 1188 if err == nil && v >= 0 { 1189 w.contentLength = v 1190 } else { 1191 w.conn.server.logf("http: invalid Content-Length of %q", cl) 1192 w.handlerHeader.Del("Content-Length") 1193 } 1194 } 1195 } 1196 1197 // extraHeader is the set of headers sometimes added by chunkWriter.writeHeader. 1198 // This type is used to avoid extra allocations from cloning and/or populating 1199 // the response Header map and all its 1-element slices. 1200 type extraHeader struct { 1201 contentType string 1202 connection string 1203 transferEncoding string 1204 date []byte // written if not nil 1205 contentLength []byte // written if not nil 1206 } 1207 1208 // Sorted the same as extraHeader.Write's loop. 1209 var extraHeaderKeys = [][]byte{ 1210 []byte("Content-Type"), 1211 []byte("Connection"), 1212 []byte("Transfer-Encoding"), 1213 } 1214 1215 var ( 1216 headerContentLength = []byte("Content-Length: ") 1217 headerDate = []byte("Date: ") 1218 ) 1219 1220 // Write writes the headers described in h to w. 1221 // 1222 // This method has a value receiver, despite the somewhat large size 1223 // of h, because it prevents an allocation. The escape analysis isn't 1224 // smart enough to realize this function doesn't mutate h. 1225 func (h extraHeader) Write(w *bufio.Writer) { 1226 if h.date != nil { 1227 w.Write(headerDate) 1228 w.Write(h.date) 1229 w.Write(crlf) 1230 } 1231 if h.contentLength != nil { 1232 w.Write(headerContentLength) 1233 w.Write(h.contentLength) 1234 w.Write(crlf) 1235 } 1236 for i, v := range []string{h.contentType, h.connection, h.transferEncoding} { 1237 if v != "" { 1238 w.Write(extraHeaderKeys[i]) 1239 w.Write(colonSpace) 1240 w.WriteString(v) 1241 w.Write(crlf) 1242 } 1243 } 1244 } 1245 1246 // writeHeader finalizes the header sent to the client and writes it 1247 // to cw.res.conn.bufw. 1248 // 1249 // p is not written by writeHeader, but is the first chunk of the body 1250 // that will be written. It is sniffed for a Content-Type if none is 1251 // set explicitly. It's also used to set the Content-Length, if the 1252 // total body size was small and the handler has already finished 1253 // running. 1254 func (cw *chunkWriter) writeHeader(p []byte) { 1255 if cw.wroteHeader { 1256 return 1257 } 1258 cw.wroteHeader = true 1259 1260 w := cw.res 1261 keepAlivesEnabled := w.conn.server.doKeepAlives() 1262 isHEAD := w.req.Method == "HEAD" 1263 1264 // header is written out to w.conn.buf below. Depending on the 1265 // state of the handler, we either own the map or not. If we 1266 // don't own it, the exclude map is created lazily for 1267 // WriteSubset to remove headers. The setHeader struct holds 1268 // headers we need to add. 1269 header := cw.header 1270 owned := header != nil 1271 if !owned { 1272 header = w.handlerHeader 1273 } 1274 var excludeHeader map[string]bool 1275 delHeader := func(key string) { 1276 if owned { 1277 header.Del(key) 1278 return 1279 } 1280 if _, ok := header[key]; !ok { 1281 return 1282 } 1283 if excludeHeader == nil { 1284 excludeHeader = make(map[string]bool) 1285 } 1286 excludeHeader[key] = true 1287 } 1288 var setHeader extraHeader 1289 1290 // Don't write out the fake "Trailer:foo" keys. See TrailerPrefix. 1291 trailers := false 1292 for k := range cw.header { 1293 if strings.HasPrefix(k, TrailerPrefix) { 1294 if excludeHeader == nil { 1295 excludeHeader = make(map[string]bool) 1296 } 1297 excludeHeader[k] = true 1298 trailers = true 1299 } 1300 } 1301 for _, v := range cw.header["Trailer"] { 1302 trailers = true 1303 foreachHeaderElement(v, cw.res.declareTrailer) 1304 } 1305 1306 te := header.get("Transfer-Encoding") 1307 hasTE := te != "" 1308 1309 // If the handler is done but never sent a Content-Length 1310 // response header and this is our first (and last) write, set 1311 // it, even to zero. This helps HTTP/1.0 clients keep their 1312 // "keep-alive" connections alive. 1313 // Exceptions: 304/204/1xx responses never get Content-Length, and if 1314 // it was a HEAD request, we don't know the difference between 1315 // 0 actual bytes and 0 bytes because the handler noticed it 1316 // was a HEAD request and chose not to write anything. So for 1317 // HEAD, the handler should either write the Content-Length or 1318 // write non-zero bytes. If it's actually 0 bytes and the 1319 // handler never looked at the Request.Method, we just don't 1320 // send a Content-Length header. 1321 // Further, we don't send an automatic Content-Length if they 1322 // set a Transfer-Encoding, because they're generally incompatible. 1323 if w.handlerDone.Load() && !trailers && !hasTE && bodyAllowedForStatus(w.status) && header.get("Content-Length") == "" && (!isHEAD || len(p) > 0) { 1324 w.contentLength = int64(len(p)) 1325 setHeader.contentLength = strconv.AppendInt(cw.res.clenBuf[:0], int64(len(p)), 10) 1326 } 1327 1328 // If this was an HTTP/1.0 request with keep-alive and we sent a 1329 // Content-Length back, we can make this a keep-alive response ... 1330 if w.wants10KeepAlive && keepAlivesEnabled { 1331 sentLength := header.get("Content-Length") != "" 1332 if sentLength && header.get("Connection") == "keep-alive" { 1333 w.closeAfterReply = false 1334 } 1335 } 1336 1337 // Check for an explicit (and valid) Content-Length header. 1338 hasCL := w.contentLength != -1 1339 1340 if w.wants10KeepAlive && (isHEAD || hasCL || !bodyAllowedForStatus(w.status)) { 1341 _, connectionHeaderSet := header["Connection"] 1342 if !connectionHeaderSet { 1343 setHeader.connection = "keep-alive" 1344 } 1345 } else if !w.req.ProtoAtLeast(1, 1) || w.wantsClose { 1346 w.closeAfterReply = true 1347 } 1348 1349 if header.get("Connection") == "close" || !keepAlivesEnabled { 1350 w.closeAfterReply = true 1351 } 1352 1353 // If the client wanted a 100-continue but we never sent it to 1354 // them (or, more strictly: we never finished reading their 1355 // request body), don't reuse this connection because it's now 1356 // in an unknown state: we might be sending this response at 1357 // the same time the client is now sending its request body 1358 // after a timeout. (Some HTTP clients send Expect: 1359 // 100-continue but knowing that some servers don't support 1360 // it, the clients set a timer and send the body later anyway) 1361 // If we haven't seen EOF, we can't skip over the unread body 1362 // because we don't know if the next bytes on the wire will be 1363 // the body-following-the-timer or the subsequent request. 1364 // See Issue 11549. 1365 if ecr, ok := w.req.Body.(*expectContinueReader); ok && !ecr.sawEOF.Load() { 1366 w.closeAfterReply = true 1367 } 1368 1369 // We do this by default because there are a number of clients that 1370 // send a full request before starting to read the response, and they 1371 // can deadlock if we start writing the response with unconsumed body 1372 // remaining. See Issue 15527 for some history. 1373 // 1374 // If full duplex mode has been enabled with ResponseController.EnableFullDuplex, 1375 // then leave the request body alone. 1376 if w.req.ContentLength != 0 && !w.closeAfterReply && !w.fullDuplex { 1377 var discard, tooBig bool 1378 1379 switch bdy := w.req.Body.(type) { 1380 case *expectContinueReader: 1381 if bdy.resp.wroteContinue { 1382 discard = true 1383 } 1384 case *body: 1385 bdy.mu.Lock() 1386 switch { 1387 case bdy.closed: 1388 if !bdy.sawEOF { 1389 // Body was closed in handler with non-EOF error. 1390 w.closeAfterReply = true 1391 } 1392 case bdy.unreadDataSizeLocked() >= maxPostHandlerReadBytes: 1393 tooBig = true 1394 default: 1395 discard = true 1396 } 1397 bdy.mu.Unlock() 1398 default: 1399 discard = true 1400 } 1401 1402 if discard { 1403 _, err := io.CopyN(io.Discard, w.reqBody, maxPostHandlerReadBytes+1) 1404 switch err { 1405 case nil: 1406 // There must be even more data left over. 1407 tooBig = true 1408 case ErrBodyReadAfterClose: 1409 // Body was already consumed and closed. 1410 case io.EOF: 1411 // The remaining body was just consumed, close it. 1412 err = w.reqBody.Close() 1413 if err != nil { 1414 w.closeAfterReply = true 1415 } 1416 default: 1417 // Some other kind of error occurred, like a read timeout, or 1418 // corrupt chunked encoding. In any case, whatever remains 1419 // on the wire must not be parsed as another HTTP request. 1420 w.closeAfterReply = true 1421 } 1422 } 1423 1424 if tooBig { 1425 w.requestTooLarge() 1426 delHeader("Connection") 1427 setHeader.connection = "close" 1428 } 1429 } 1430 1431 code := w.status 1432 if bodyAllowedForStatus(code) { 1433 // If no content type, apply sniffing algorithm to body. 1434 _, haveType := header["Content-Type"] 1435 1436 // If the Content-Encoding was set and is non-blank, 1437 // we shouldn't sniff the body. See Issue 31753. 1438 ce := header.Get("Content-Encoding") 1439 hasCE := len(ce) > 0 1440 if !hasCE && !haveType && !hasTE && len(p) > 0 { 1441 setHeader.contentType = DetectContentType(p) 1442 } 1443 } else { 1444 for _, k := range suppressedHeaders(code) { 1445 delHeader(k) 1446 } 1447 } 1448 1449 if !header.has("Date") { 1450 setHeader.date = appendTime(cw.res.dateBuf[:0], time.Now()) 1451 } 1452 1453 if hasCL && hasTE && te != "identity" { 1454 // TODO: return an error if WriteHeader gets a return parameter 1455 // For now just ignore the Content-Length. 1456 w.conn.server.logf("http: WriteHeader called with both Transfer-Encoding of %q and a Content-Length of %d", 1457 te, w.contentLength) 1458 delHeader("Content-Length") 1459 hasCL = false 1460 } 1461 1462 if w.req.Method == "HEAD" || !bodyAllowedForStatus(code) || code == StatusNoContent { 1463 // Response has no body. 1464 delHeader("Transfer-Encoding") 1465 } else if hasCL { 1466 // Content-Length has been provided, so no chunking is to be done. 1467 delHeader("Transfer-Encoding") 1468 } else if w.req.ProtoAtLeast(1, 1) { 1469 // HTTP/1.1 or greater: Transfer-Encoding has been set to identity, and no 1470 // content-length has been provided. The connection must be closed after the 1471 // reply is written, and no chunking is to be done. This is the setup 1472 // recommended in the Server-Sent Events candidate recommendation 11, 1473 // section 8. 1474 if hasTE && te == "identity" { 1475 cw.chunking = false 1476 w.closeAfterReply = true 1477 delHeader("Transfer-Encoding") 1478 } else { 1479 // HTTP/1.1 or greater: use chunked transfer encoding 1480 // to avoid closing the connection at EOF. 1481 cw.chunking = true 1482 setHeader.transferEncoding = "chunked" 1483 if hasTE && te == "chunked" { 1484 // We will send the chunked Transfer-Encoding header later. 1485 delHeader("Transfer-Encoding") 1486 } 1487 } 1488 } else { 1489 // HTTP version < 1.1: cannot do chunked transfer 1490 // encoding and we don't know the Content-Length so 1491 // signal EOF by closing connection. 1492 w.closeAfterReply = true 1493 delHeader("Transfer-Encoding") // in case already set 1494 } 1495 1496 // Cannot use Content-Length with non-identity Transfer-Encoding. 1497 if cw.chunking { 1498 delHeader("Content-Length") 1499 } 1500 if !w.req.ProtoAtLeast(1, 0) { 1501 return 1502 } 1503 1504 // Only override the Connection header if it is not a successful 1505 // protocol switch response and if KeepAlives are not enabled. 1506 // See https://golang.org/issue/36381. 1507 delConnectionHeader := w.closeAfterReply && 1508 (!keepAlivesEnabled || !hasToken(cw.header.get("Connection"), "close")) && 1509 !isProtocolSwitchResponse(w.status, header) 1510 if delConnectionHeader { 1511 delHeader("Connection") 1512 if w.req.ProtoAtLeast(1, 1) { 1513 setHeader.connection = "close" 1514 } 1515 } 1516 1517 writeStatusLine(w.conn.bufw, w.req.ProtoAtLeast(1, 1), code, w.statusBuf[:]) 1518 cw.header.WriteSubset(w.conn.bufw, excludeHeader) 1519 setHeader.Write(w.conn.bufw) 1520 w.conn.bufw.Write(crlf) 1521 } 1522 1523 // foreachHeaderElement splits v according to the "#rule" construction 1524 // in RFC 7230 section 7 and calls fn for each non-empty element. 1525 func foreachHeaderElement(v string, fn func(string)) { 1526 v = textproto.TrimString(v) 1527 if v == "" { 1528 return 1529 } 1530 if !strings.Contains(v, ",") { 1531 fn(v) 1532 return 1533 } 1534 for _, f := range strings.Split(v, ",") { 1535 if f = textproto.TrimString(f); f != "" { 1536 fn(f) 1537 } 1538 } 1539 } 1540 1541 // writeStatusLine writes an HTTP/1.x Status-Line (RFC 7230 Section 3.1.2) 1542 // to bw. is11 is whether the HTTP request is HTTP/1.1. false means HTTP/1.0. 1543 // code is the response status code. 1544 // scratch is an optional scratch buffer. If it has at least capacity 3, it's used. 1545 func writeStatusLine(bw *bufio.Writer, is11 bool, code int, scratch []byte) { 1546 if is11 { 1547 bw.WriteString("HTTP/1.1 ") 1548 } else { 1549 bw.WriteString("HTTP/1.0 ") 1550 } 1551 if text := StatusText(code); text != "" { 1552 bw.Write(strconv.AppendInt(scratch[:0], int64(code), 10)) 1553 bw.WriteByte(' ') 1554 bw.WriteString(text) 1555 bw.WriteString("\r\n") 1556 } else { 1557 // don't worry about performance 1558 fmt.Fprintf(bw, "%03d status code %d\r\n", code, code) 1559 } 1560 } 1561 1562 // bodyAllowed reports whether a Write is allowed for this response type. 1563 // It's illegal to call this before the header has been flushed. 1564 func (w *response) bodyAllowed() bool { 1565 if !w.wroteHeader { 1566 panic("") 1567 } 1568 return bodyAllowedForStatus(w.status) 1569 } 1570 1571 // The Life Of A Write is like this: 1572 // 1573 // Handler starts. No header has been sent. The handler can either 1574 // write a header, or just start writing. Writing before sending a header 1575 // sends an implicitly empty 200 OK header. 1576 // 1577 // If the handler didn't declare a Content-Length up front, we either 1578 // go into chunking mode or, if the handler finishes running before 1579 // the chunking buffer size, we compute a Content-Length and send that 1580 // in the header instead. 1581 // 1582 // Likewise, if the handler didn't set a Content-Type, we sniff that 1583 // from the initial chunk of output. 1584 // 1585 // The Writers are wired together like: 1586 // 1587 // 1. *response (the ResponseWriter) -> 1588 // 2. (*response).w, a *bufio.Writer of bufferBeforeChunkingSize bytes -> 1589 // 3. chunkWriter.Writer (whose writeHeader finalizes Content-Length/Type) 1590 // and which writes the chunk headers, if needed -> 1591 // 4. conn.bufw, a *bufio.Writer of default (4kB) bytes, writing to -> 1592 // 5. checkConnErrorWriter{c}, which notes any non-nil error on Write 1593 // and populates c.werr with it if so, but otherwise writes to -> 1594 // 6. the rwc, the net.Conn. 1595 // 1596 // TODO(bradfitz): short-circuit some of the buffering when the 1597 // initial header contains both a Content-Type and Content-Length. 1598 // Also short-circuit in (1) when the header's been sent and not in 1599 // chunking mode, writing directly to (4) instead, if (2) has no 1600 // buffered data. More generally, we could short-circuit from (1) to 1601 // (3) even in chunking mode if the write size from (1) is over some 1602 // threshold and nothing is in (2). The answer might be mostly making 1603 // bufferBeforeChunkingSize smaller and having bufio's fast-paths deal 1604 // with this instead. 1605 func (w *response) Write(data []byte) (n int, err error) { 1606 return w.write(len(data), data, "") 1607 } 1608 1609 func (w *response) WriteString(data string) (n int, err error) { 1610 return w.write(len(data), nil, data) 1611 } 1612 1613 // either dataB or dataS is non-zero. 1614 func (w *response) write(lenData int, dataB []byte, dataS string) (n int, err error) { 1615 if w.conn.hijacked() { 1616 if lenData > 0 { 1617 caller := relevantCaller() 1618 w.conn.server.logf("http: response.Write on hijacked connection from %s (%s:%d)", caller.Function, path.Base(caller.File), caller.Line) 1619 } 1620 return 0, ErrHijacked 1621 } 1622 1623 if w.canWriteContinue.Load() { 1624 // Body reader wants to write 100 Continue but hasn't yet. 1625 // Tell it not to. The store must be done while holding the lock 1626 // because the lock makes sure that there is not an active write 1627 // this very moment. 1628 w.writeContinueMu.Lock() 1629 w.canWriteContinue.Store(false) 1630 w.writeContinueMu.Unlock() 1631 } 1632 1633 if !w.wroteHeader { 1634 w.WriteHeader(StatusOK) 1635 } 1636 if lenData == 0 { 1637 return 0, nil 1638 } 1639 if !w.bodyAllowed() { 1640 return 0, ErrBodyNotAllowed 1641 } 1642 1643 w.written += int64(lenData) // ignoring errors, for errorKludge 1644 if w.contentLength != -1 && w.written > w.contentLength { 1645 return 0, ErrContentLength 1646 } 1647 if dataB != nil { 1648 return w.w.Write(dataB) 1649 } else { 1650 return w.w.WriteString(dataS) 1651 } 1652 } 1653 1654 func (w *response) finishRequest() { 1655 w.handlerDone.Store(true) 1656 1657 if !w.wroteHeader { 1658 w.WriteHeader(StatusOK) 1659 } 1660 1661 w.w.Flush() 1662 putBufioWriter(w.w) 1663 w.cw.close() 1664 w.conn.bufw.Flush() 1665 1666 w.conn.r.abortPendingRead() 1667 1668 // Close the body (regardless of w.closeAfterReply) so we can 1669 // re-use its bufio.Reader later safely. 1670 w.reqBody.Close() 1671 1672 if w.req.MultipartForm != nil { 1673 w.req.MultipartForm.RemoveAll() 1674 } 1675 } 1676 1677 // shouldReuseConnection reports whether the underlying TCP connection can be reused. 1678 // It must only be called after the handler is done executing. 1679 func (w *response) shouldReuseConnection() bool { 1680 if w.closeAfterReply { 1681 // The request or something set while executing the 1682 // handler indicated we shouldn't reuse this 1683 // connection. 1684 return false 1685 } 1686 1687 if w.req.Method != "HEAD" && w.contentLength != -1 && w.bodyAllowed() && w.contentLength != w.written { 1688 // Did not write enough. Avoid getting out of sync. 1689 return false 1690 } 1691 1692 // There was some error writing to the underlying connection 1693 // during the request, so don't re-use this conn. 1694 if w.conn.werr != nil { 1695 return false 1696 } 1697 1698 if w.closedRequestBodyEarly() { 1699 return false 1700 } 1701 1702 return true 1703 } 1704 1705 func (w *response) closedRequestBodyEarly() bool { 1706 body, ok := w.req.Body.(*body) 1707 return ok && body.didEarlyClose() 1708 } 1709 1710 func (w *response) Flush() { 1711 w.FlushError() 1712 } 1713 1714 func (w *response) FlushError() error { 1715 if !w.wroteHeader { 1716 w.WriteHeader(StatusOK) 1717 } 1718 err := w.w.Flush() 1719 e2 := w.cw.flush() 1720 if err == nil { 1721 err = e2 1722 } 1723 return err 1724 } 1725 1726 func (c *conn) finalFlush() { 1727 if c.bufr != nil { 1728 // Steal the bufio.Reader (~4KB worth of memory) and its associated 1729 // reader for a future connection. 1730 putBufioReader(c.bufr) 1731 c.bufr = nil 1732 } 1733 1734 if c.bufw != nil { 1735 c.bufw.Flush() 1736 // Steal the bufio.Writer (~4KB worth of memory) and its associated 1737 // writer for a future connection. 1738 putBufioWriter(c.bufw) 1739 c.bufw = nil 1740 } 1741 } 1742 1743 // Close the connection. 1744 func (c *conn) close() { 1745 c.finalFlush() 1746 c.rwc.Close() 1747 } 1748 1749 // rstAvoidanceDelay is the amount of time we sleep after closing the 1750 // write side of a TCP connection before closing the entire socket. 1751 // By sleeping, we increase the chances that the client sees our FIN 1752 // and processes its final data before they process the subsequent RST 1753 // from closing a connection with known unread data. 1754 // This RST seems to occur mostly on BSD systems. (And Windows?) 1755 // This timeout is somewhat arbitrary (~latency around the planet). 1756 const rstAvoidanceDelay = 500 * time.Millisecond 1757 1758 type closeWriter interface { 1759 CloseWrite() error 1760 } 1761 1762 var _ closeWriter = (*net.TCPConn)(nil) 1763 1764 // closeWriteAndWait flushes any outstanding data and sends a FIN packet (if 1765 // client is connected via TCP), signaling that we're done. We then 1766 // pause for a bit, hoping the client processes it before any 1767 // subsequent RST. 1768 // 1769 // See https://golang.org/issue/3595 1770 func (c *conn) closeWriteAndWait() { 1771 c.finalFlush() 1772 if tcp, ok := c.rwc.(closeWriter); ok { 1773 tcp.CloseWrite() 1774 } 1775 time.Sleep(rstAvoidanceDelay) 1776 } 1777 1778 // validNextProto reports whether the proto is a valid ALPN protocol name. 1779 // Everything is valid except the empty string and built-in protocol types, 1780 // so that those can't be overridden with alternate implementations. 1781 func validNextProto(proto string) bool { 1782 switch proto { 1783 case "", "http/1.1", "http/1.0": 1784 return false 1785 } 1786 return true 1787 } 1788 1789 const ( 1790 runHooks = true 1791 skipHooks = false 1792 ) 1793 1794 func (c *conn) setState(nc net.Conn, state ConnState, runHook bool) { 1795 srv := c.server 1796 switch state { 1797 case StateNew: 1798 srv.trackConn(c, true) 1799 case StateHijacked, StateClosed: 1800 srv.trackConn(c, false) 1801 } 1802 if state > 0xff || state < 0 { 1803 panic("internal error") 1804 } 1805 packedState := uint64(time.Now().Unix()<<8) | uint64(state) 1806 c.curState.Store(packedState) 1807 if !runHook { 1808 return 1809 } 1810 if hook := srv.ConnState; hook != nil { 1811 hook(nc, state) 1812 } 1813 } 1814 1815 func (c *conn) getState() (state ConnState, unixSec int64) { 1816 packedState := c.curState.Load() 1817 return ConnState(packedState & 0xff), int64(packedState >> 8) 1818 } 1819 1820 // badRequestError is a literal string (used by in the server in HTML, 1821 // unescaped) to tell the user why their request was bad. It should 1822 // be plain text without user info or other embedded errors. 1823 func badRequestError(e string) error { return statusError{StatusBadRequest, e} } 1824 1825 // statusError is an error used to respond to a request with an HTTP status. 1826 // The text should be plain text without user info or other embedded errors. 1827 type statusError struct { 1828 code int 1829 text string 1830 } 1831 1832 func (e statusError) Error() string { return StatusText(e.code) + ": " + e.text } 1833 1834 // ErrAbortHandler is a sentinel panic value to abort a handler. 1835 // While any panic from ServeHTTP aborts the response to the client, 1836 // panicking with ErrAbortHandler also suppresses logging of a stack 1837 // trace to the server's error log. 1838 var ErrAbortHandler = errors.New("net/http: abort Handler") 1839 1840 // isCommonNetReadError reports whether err is a common error 1841 // encountered during reading a request off the network when the 1842 // client has gone away or had its read fail somehow. This is used to 1843 // determine which logs are interesting enough to log about. 1844 func isCommonNetReadError(err error) bool { 1845 if err == io.EOF { 1846 return true 1847 } 1848 if neterr, ok := err.(net.Error); ok && neterr.Timeout() { 1849 return true 1850 } 1851 if oe, ok := err.(*net.OpError); ok && oe.Op == "read" { 1852 return true 1853 } 1854 return false 1855 } 1856 1857 // Serve a new connection. 1858 func (c *conn) serve(ctx context.Context) { 1859 c.remoteAddr = c.rwc.RemoteAddr().String() 1860 ctx = context.WithValue(ctx, LocalAddrContextKey, c.rwc.LocalAddr()) 1861 var inFlightResponse *response 1862 defer func() { 1863 if err := recover(); err != nil && err != ErrAbortHandler { 1864 const size = 64 << 10 1865 buf := make([]byte, size) 1866 buf = buf[:runtime.Stack(buf, false)] 1867 c.server.logf("http: panic serving %v: %v\n%s", c.remoteAddr, err, buf) 1868 } 1869 if inFlightResponse != nil { 1870 inFlightResponse.cancelCtx() 1871 } 1872 if !c.hijacked() { 1873 if inFlightResponse != nil { 1874 inFlightResponse.conn.r.abortPendingRead() 1875 inFlightResponse.reqBody.Close() 1876 } 1877 c.close() 1878 c.setState(c.rwc, StateClosed, runHooks) 1879 } 1880 }() 1881 1882 if tlsConn, ok := c.rwc.(*tls.Conn); ok { 1883 tlsTO := c.server.tlsHandshakeTimeout() 1884 if tlsTO > 0 { 1885 dl := time.Now().Add(tlsTO) 1886 c.rwc.SetReadDeadline(dl) 1887 c.rwc.SetWriteDeadline(dl) 1888 } 1889 if err := tlsConn.HandshakeContext(ctx); err != nil { 1890 // If the handshake failed due to the client not speaking 1891 // TLS, assume they're speaking plaintext HTTP and write a 1892 // 400 response on the TLS conn's underlying net.Conn. 1893 if re, ok := err.(tls.RecordHeaderError); ok && re.Conn != nil && tlsRecordHeaderLooksLikeHTTP(re.RecordHeader) { 1894 io.WriteString(re.Conn, "HTTP/1.0 400 Bad Request\r\n\r\nClient sent an HTTP request to an HTTPS server.\n") 1895 re.Conn.Close() 1896 return 1897 } 1898 c.server.logf("http: TLS handshake error from %s: %v", c.rwc.RemoteAddr(), err) 1899 return 1900 } 1901 // Restore Conn-level deadlines. 1902 if tlsTO > 0 { 1903 c.rwc.SetReadDeadline(time.Time{}) 1904 c.rwc.SetWriteDeadline(time.Time{}) 1905 } 1906 c.tlsState = new(tls.ConnectionState) 1907 *c.tlsState = tlsConn.ConnectionState() 1908 if proto := c.tlsState.NegotiatedProtocol; validNextProto(proto) { 1909 if fn := c.server.TLSNextProto[proto]; fn != nil { 1910 h := initALPNRequest{ctx, tlsConn, serverHandler{c.server}} 1911 // Mark freshly created HTTP/2 as active and prevent any server state hooks 1912 // from being run on these connections. This prevents closeIdleConns from 1913 // closing such connections. See issue https://golang.org/issue/39776. 1914 c.setState(c.rwc, StateActive, skipHooks) 1915 fn(c.server, tlsConn, h) 1916 } 1917 return 1918 } 1919 } 1920 1921 // HTTP/1.x from here on. 1922 1923 ctx, cancelCtx := context.WithCancel(ctx) 1924 c.cancelCtx = cancelCtx 1925 defer cancelCtx() 1926 1927 c.r = &connReader{conn: c} 1928 c.bufr = newBufioReader(c.r) 1929 c.bufw = newBufioWriterSize(checkConnErrorWriter{c}, 4<<10) 1930 1931 for { 1932 w, err := c.readRequest(ctx) 1933 if c.r.remain != c.server.initialReadLimitSize() { 1934 // If we read any bytes off the wire, we're active. 1935 c.setState(c.rwc, StateActive, runHooks) 1936 } 1937 if err != nil { 1938 const errorHeaders = "\r\nContent-Type: text/plain; charset=utf-8\r\nConnection: close\r\n\r\n" 1939 1940 switch { 1941 case err == errTooLarge: 1942 // Their HTTP client may or may not be 1943 // able to read this if we're 1944 // responding to them and hanging up 1945 // while they're still writing their 1946 // request. Undefined behavior. 1947 const publicErr = "431 Request Header Fields Too Large" 1948 fmt.Fprintf(c.rwc, "HTTP/1.1 "+publicErr+errorHeaders+publicErr) 1949 c.closeWriteAndWait() 1950 return 1951 1952 case isUnsupportedTEError(err): 1953 // Respond as per RFC 7230 Section 3.3.1 which says, 1954 // A server that receives a request message with a 1955 // transfer coding it does not understand SHOULD 1956 // respond with 501 (Unimplemented). 1957 code := StatusNotImplemented 1958 1959 // We purposefully aren't echoing back the transfer-encoding's value, 1960 // so as to mitigate the risk of cross side scripting by an attacker. 1961 fmt.Fprintf(c.rwc, "HTTP/1.1 %d %s%sUnsupported transfer encoding", code, StatusText(code), errorHeaders) 1962 return 1963 1964 case isCommonNetReadError(err): 1965 return // don't reply 1966 1967 default: 1968 if v, ok := err.(statusError); ok { 1969 fmt.Fprintf(c.rwc, "HTTP/1.1 %d %s: %s%s%d %s: %s", v.code, StatusText(v.code), v.text, errorHeaders, v.code, StatusText(v.code), v.text) 1970 return 1971 } 1972 publicErr := "400 Bad Request" 1973 fmt.Fprintf(c.rwc, "HTTP/1.1 "+publicErr+errorHeaders+publicErr) 1974 return 1975 } 1976 } 1977 1978 // Expect 100 Continue support 1979 req := w.req 1980 if req.expectsContinue() { 1981 if req.ProtoAtLeast(1, 1) && req.ContentLength != 0 { 1982 // Wrap the Body reader with one that replies on the connection 1983 req.Body = &expectContinueReader{readCloser: req.Body, resp: w} 1984 w.canWriteContinue.Store(true) 1985 } 1986 } else if req.Header.get("Expect") != "" { 1987 w.sendExpectationFailed() 1988 return 1989 } 1990 1991 c.curReq.Store(w) 1992 1993 if requestBodyRemains(req.Body) { 1994 registerOnHitEOF(req.Body, w.conn.r.startBackgroundRead) 1995 } else { 1996 w.conn.r.startBackgroundRead() 1997 } 1998 1999 // HTTP cannot have multiple simultaneous active requests.[*] 2000 // Until the server replies to this request, it can't read another, 2001 // so we might as well run the handler in this goroutine. 2002 // [*] Not strictly true: HTTP pipelining. We could let them all process 2003 // in parallel even if their responses need to be serialized. 2004 // But we're not going to implement HTTP pipelining because it 2005 // was never deployed in the wild and the answer is HTTP/2. 2006 inFlightResponse = w 2007 serverHandler{c.server}.ServeHTTP(w, w.req) 2008 inFlightResponse = nil 2009 w.cancelCtx() 2010 if c.hijacked() { 2011 return 2012 } 2013 w.finishRequest() 2014 c.rwc.SetWriteDeadline(time.Time{}) 2015 if !w.shouldReuseConnection() { 2016 if w.requestBodyLimitHit || w.closedRequestBodyEarly() { 2017 c.closeWriteAndWait() 2018 } 2019 return 2020 } 2021 c.setState(c.rwc, StateIdle, runHooks) 2022 c.curReq.Store(nil) 2023 2024 if !w.conn.server.doKeepAlives() { 2025 // We're in shutdown mode. We might've replied 2026 // to the user without "Connection: close" and 2027 // they might think they can send another 2028 // request, but such is life with HTTP/1.1. 2029 return 2030 } 2031 2032 if d := c.server.idleTimeout(); d != 0 { 2033 c.rwc.SetReadDeadline(time.Now().Add(d)) 2034 } else { 2035 c.rwc.SetReadDeadline(time.Time{}) 2036 } 2037 2038 // Wait for the connection to become readable again before trying to 2039 // read the next request. This prevents a ReadHeaderTimeout or 2040 // ReadTimeout from starting until the first bytes of the next request 2041 // have been received. 2042 if _, err := c.bufr.Peek(4); err != nil { 2043 return 2044 } 2045 2046 c.rwc.SetReadDeadline(time.Time{}) 2047 } 2048 } 2049 2050 func (w *response) sendExpectationFailed() { 2051 // TODO(bradfitz): let ServeHTTP handlers handle 2052 // requests with non-standard expectation[s]? Seems 2053 // theoretical at best, and doesn't fit into the 2054 // current ServeHTTP model anyway. We'd need to 2055 // make the ResponseWriter an optional 2056 // "ExpectReplier" interface or something. 2057 // 2058 // For now we'll just obey RFC 7231 5.1.1 which says 2059 // "A server that receives an Expect field-value other 2060 // than 100-continue MAY respond with a 417 (Expectation 2061 // Failed) status code to indicate that the unexpected 2062 // expectation cannot be met." 2063 w.Header().Set("Connection", "close") 2064 w.WriteHeader(StatusExpectationFailed) 2065 w.finishRequest() 2066 } 2067 2068 // Hijack implements the Hijacker.Hijack method. Our response is both a ResponseWriter 2069 // and a Hijacker. 2070 func (w *response) Hijack() (rwc net.Conn, buf *bufio.ReadWriter, err error) { 2071 if w.handlerDone.Load() { 2072 panic("net/http: Hijack called after ServeHTTP finished") 2073 } 2074 if w.wroteHeader { 2075 w.cw.flush() 2076 } 2077 2078 c := w.conn 2079 c.mu.Lock() 2080 defer c.mu.Unlock() 2081 2082 // Release the bufioWriter that writes to the chunk writer, it is not 2083 // used after a connection has been hijacked. 2084 rwc, buf, err = c.hijackLocked() 2085 if err == nil { 2086 putBufioWriter(w.w) 2087 w.w = nil 2088 } 2089 return rwc, buf, err 2090 } 2091 2092 func (w *response) CloseNotify() <-chan bool { 2093 if w.handlerDone.Load() { 2094 panic("net/http: CloseNotify called after ServeHTTP finished") 2095 } 2096 return w.closeNotifyCh 2097 } 2098 2099 func registerOnHitEOF(rc io.ReadCloser, fn func()) { 2100 switch v := rc.(type) { 2101 case *expectContinueReader: 2102 registerOnHitEOF(v.readCloser, fn) 2103 case *body: 2104 v.registerOnHitEOF(fn) 2105 default: 2106 panic("unexpected type " + fmt.Sprintf("%T", rc)) 2107 } 2108 } 2109 2110 // requestBodyRemains reports whether future calls to Read 2111 // on rc might yield more data. 2112 func requestBodyRemains(rc io.ReadCloser) bool { 2113 if rc == NoBody { 2114 return false 2115 } 2116 switch v := rc.(type) { 2117 case *expectContinueReader: 2118 return requestBodyRemains(v.readCloser) 2119 case *body: 2120 return v.bodyRemains() 2121 default: 2122 panic("unexpected type " + fmt.Sprintf("%T", rc)) 2123 } 2124 } 2125 2126 // The HandlerFunc type is an adapter to allow the use of 2127 // ordinary functions as HTTP handlers. If f is a function 2128 // with the appropriate signature, HandlerFunc(f) is a 2129 // Handler that calls f. 2130 type HandlerFunc func(ResponseWriter, *Request) 2131 2132 // ServeHTTP calls f(w, r). 2133 func (f HandlerFunc) ServeHTTP(w ResponseWriter, r *Request) { 2134 f(w, r) 2135 } 2136 2137 // Helper handlers 2138 2139 // Error replies to the request with the specified error message and HTTP code. 2140 // It does not otherwise end the request; the caller should ensure no further 2141 // writes are done to w. 2142 // The error message should be plain text. 2143 func Error(w ResponseWriter, error string, code int) { 2144 w.Header().Set("Content-Type", "text/plain; charset=utf-8") 2145 w.Header().Set("X-Content-Type-Options", "nosniff") 2146 w.WriteHeader(code) 2147 fmt.Fprintln(w, error) 2148 } 2149 2150 // NotFound replies to the request with an HTTP 404 not found error. 2151 func NotFound(w ResponseWriter, r *Request) { Error(w, "404 page not found", StatusNotFound) } 2152 2153 // NotFoundHandler returns a simple request handler 2154 // that replies to each request with a “404 page not found” reply. 2155 func NotFoundHandler() Handler { return HandlerFunc(NotFound) } 2156 2157 // StripPrefix returns a handler that serves HTTP requests by removing the 2158 // given prefix from the request URL's Path (and RawPath if set) and invoking 2159 // the handler h. StripPrefix handles a request for a path that doesn't begin 2160 // with prefix by replying with an HTTP 404 not found error. The prefix must 2161 // match exactly: if the prefix in the request contains escaped characters 2162 // the reply is also an HTTP 404 not found error. 2163 func StripPrefix(prefix string, h Handler) Handler { 2164 if prefix == "" { 2165 return h 2166 } 2167 return HandlerFunc(func(w ResponseWriter, r *Request) { 2168 p := strings.TrimPrefix(r.URL.Path, prefix) 2169 rp := strings.TrimPrefix(r.URL.RawPath, prefix) 2170 if len(p) < len(r.URL.Path) && (r.URL.RawPath == "" || len(rp) < len(r.URL.RawPath)) { 2171 r2 := new(Request) 2172 *r2 = *r 2173 r2.URL = new(url.URL) 2174 *r2.URL = *r.URL 2175 r2.URL.Path = p 2176 r2.URL.RawPath = rp 2177 h.ServeHTTP(w, r2) 2178 } else { 2179 NotFound(w, r) 2180 } 2181 }) 2182 } 2183 2184 // Redirect replies to the request with a redirect to url, 2185 // which may be a path relative to the request path. 2186 // 2187 // The provided code should be in the 3xx range and is usually 2188 // StatusMovedPermanently, StatusFound or StatusSeeOther. 2189 // 2190 // If the Content-Type header has not been set, Redirect sets it 2191 // to "text/html; charset=utf-8" and writes a small HTML body. 2192 // Setting the Content-Type header to any value, including nil, 2193 // disables that behavior. 2194 func Redirect(w ResponseWriter, r *Request, url string, code int) { 2195 if u, err := urlpkg.Parse(url); err == nil { 2196 // If url was relative, make its path absolute by 2197 // combining with request path. 2198 // The client would probably do this for us, 2199 // but doing it ourselves is more reliable. 2200 // See RFC 7231, section 7.1.2 2201 if u.Scheme == "" && u.Host == "" { 2202 oldpath := r.URL.Path 2203 if oldpath == "" { // should not happen, but avoid a crash if it does 2204 oldpath = "/" 2205 } 2206 2207 // no leading http://server 2208 if url == "" || url[0] != '/' { 2209 // make relative path absolute 2210 olddir, _ := path.Split(oldpath) 2211 url = olddir + url 2212 } 2213 2214 var query string 2215 if i := strings.Index(url, "?"); i != -1 { 2216 url, query = url[:i], url[i:] 2217 } 2218 2219 // clean up but preserve trailing slash 2220 trailing := strings.HasSuffix(url, "/") 2221 url = path.Clean(url) 2222 if trailing && !strings.HasSuffix(url, "/") { 2223 url += "/" 2224 } 2225 url += query 2226 } 2227 } 2228 2229 h := w.Header() 2230 2231 // RFC 7231 notes that a short HTML body is usually included in 2232 // the response because older user agents may not understand 301/307. 2233 // Do it only if the request didn't already have a Content-Type header. 2234 _, hadCT := h["Content-Type"] 2235 2236 h.Set("Location", hexEscapeNonASCII(url)) 2237 if !hadCT && (r.Method == "GET" || r.Method == "HEAD") { 2238 h.Set("Content-Type", "text/html; charset=utf-8") 2239 } 2240 w.WriteHeader(code) 2241 2242 // Shouldn't send the body for POST or HEAD; that leaves GET. 2243 if !hadCT && r.Method == "GET" { 2244 body := "<a href=\"" + htmlEscape(url) + "\">" + StatusText(code) + "</a>.\n" 2245 fmt.Fprintln(w, body) 2246 } 2247 } 2248 2249 var htmlReplacer = strings.NewReplacer( 2250 "&", "&", 2251 "<", "<", 2252 ">", ">", 2253 // """ is shorter than """. 2254 `"`, """, 2255 // "'" is shorter than "'" and apos was not in HTML until HTML5. 2256 "'", "'", 2257 ) 2258 2259 func htmlEscape(s string) string { 2260 return htmlReplacer.Replace(s) 2261 } 2262 2263 // Redirect to a fixed URL 2264 type redirectHandler struct { 2265 url string 2266 code int 2267 } 2268 2269 func (rh *redirectHandler) ServeHTTP(w ResponseWriter, r *Request) { 2270 Redirect(w, r, rh.url, rh.code) 2271 } 2272 2273 // RedirectHandler returns a request handler that redirects 2274 // each request it receives to the given url using the given 2275 // status code. 2276 // 2277 // The provided code should be in the 3xx range and is usually 2278 // StatusMovedPermanently, StatusFound or StatusSeeOther. 2279 func RedirectHandler(url string, code int) Handler { 2280 return &redirectHandler{url, code} 2281 } 2282 2283 // ServeMux is an HTTP request multiplexer. 2284 // It matches the URL of each incoming request against a list of registered 2285 // patterns and calls the handler for the pattern that 2286 // most closely matches the URL. 2287 // 2288 // Patterns name fixed, rooted paths, like "/favicon.ico", 2289 // or rooted subtrees, like "/images/" (note the trailing slash). 2290 // Longer patterns take precedence over shorter ones, so that 2291 // if there are handlers registered for both "/images/" 2292 // and "/images/thumbnails/", the latter handler will be 2293 // called for paths beginning with "/images/thumbnails/" and the 2294 // former will receive requests for any other paths in the 2295 // "/images/" subtree. 2296 // 2297 // Note that since a pattern ending in a slash names a rooted subtree, 2298 // the pattern "/" matches all paths not matched by other registered 2299 // patterns, not just the URL with Path == "/". 2300 // 2301 // If a subtree has been registered and a request is received naming the 2302 // subtree root without its trailing slash, ServeMux redirects that 2303 // request to the subtree root (adding the trailing slash). This behavior can 2304 // be overridden with a separate registration for the path without 2305 // the trailing slash. For example, registering "/images/" causes ServeMux 2306 // to redirect a request for "/images" to "/images/", unless "/images" has 2307 // been registered separately. 2308 // 2309 // Patterns may optionally begin with a host name, restricting matches to 2310 // URLs on that host only. Host-specific patterns take precedence over 2311 // general patterns, so that a handler might register for the two patterns 2312 // "/codesearch" and "codesearch.google.com/" without also taking over 2313 // requests for "http://www.google.com/". 2314 // 2315 // ServeMux also takes care of sanitizing the URL request path and the Host 2316 // header, stripping the port number and redirecting any request containing . or 2317 // .. elements or repeated slashes to an equivalent, cleaner URL. 2318 type ServeMux struct { 2319 mu sync.RWMutex 2320 m map[string]muxEntry 2321 es []muxEntry // slice of entries sorted from longest to shortest. 2322 hosts bool // whether any patterns contain hostnames 2323 } 2324 2325 type muxEntry struct { 2326 h Handler 2327 pattern string 2328 } 2329 2330 // NewServeMux allocates and returns a new ServeMux. 2331 func NewServeMux() *ServeMux { return new(ServeMux) } 2332 2333 // DefaultServeMux is the default ServeMux used by Serve. 2334 var DefaultServeMux = &defaultServeMux 2335 2336 var defaultServeMux ServeMux 2337 2338 // cleanPath returns the canonical path for p, eliminating . and .. elements. 2339 func cleanPath(p string) string { 2340 if p == "" { 2341 return "/" 2342 } 2343 if p[0] != '/' { 2344 p = "/" + p 2345 } 2346 np := path.Clean(p) 2347 // path.Clean removes trailing slash except for root; 2348 // put the trailing slash back if necessary. 2349 if p[len(p)-1] == '/' && np != "/" { 2350 // Fast path for common case of p being the string we want: 2351 if len(p) == len(np)+1 && strings.HasPrefix(p, np) { 2352 np = p 2353 } else { 2354 np += "/" 2355 } 2356 } 2357 return np 2358 } 2359 2360 // stripHostPort returns h without any trailing ":<port>". 2361 func stripHostPort(h string) string { 2362 // If no port on host, return unchanged 2363 if !strings.Contains(h, ":") { 2364 return h 2365 } 2366 host, _, err := net.SplitHostPort(h) 2367 if err != nil { 2368 return h // on error, return unchanged 2369 } 2370 return host 2371 } 2372 2373 // Find a handler on a handler map given a path string. 2374 // Most-specific (longest) pattern wins. 2375 func (mux *ServeMux) match(path string) (h Handler, pattern string) { 2376 // Check for exact match first. 2377 v, ok := mux.m[path] 2378 if ok { 2379 return v.h, v.pattern 2380 } 2381 2382 // Check for longest valid match. mux.es contains all patterns 2383 // that end in / sorted from longest to shortest. 2384 for _, e := range mux.es { 2385 if strings.HasPrefix(path, e.pattern) { 2386 return e.h, e.pattern 2387 } 2388 } 2389 return nil, "" 2390 } 2391 2392 // redirectToPathSlash determines if the given path needs appending "/" to it. 2393 // This occurs when a handler for path + "/" was already registered, but 2394 // not for path itself. If the path needs appending to, it creates a new 2395 // URL, setting the path to u.Path + "/" and returning true to indicate so. 2396 func (mux *ServeMux) redirectToPathSlash(host, path string, u *url.URL) (*url.URL, bool) { 2397 mux.mu.RLock() 2398 shouldRedirect := mux.shouldRedirectRLocked(host, path) 2399 mux.mu.RUnlock() 2400 if !shouldRedirect { 2401 return u, false 2402 } 2403 path = path + "/" 2404 u = &url.URL{Path: path, RawQuery: u.RawQuery} 2405 return u, true 2406 } 2407 2408 // shouldRedirectRLocked reports whether the given path and host should be redirected to 2409 // path+"/". This should happen if a handler is registered for path+"/" but 2410 // not path -- see comments at ServeMux. 2411 func (mux *ServeMux) shouldRedirectRLocked(host, path string) bool { 2412 p := []string{path, host + path} 2413 2414 for _, c := range p { 2415 if _, exist := mux.m[c]; exist { 2416 return false 2417 } 2418 } 2419 2420 n := len(path) 2421 if n == 0 { 2422 return false 2423 } 2424 for _, c := range p { 2425 if _, exist := mux.m[c+"/"]; exist { 2426 return path[n-1] != '/' 2427 } 2428 } 2429 2430 return false 2431 } 2432 2433 // Handler returns the handler to use for the given request, 2434 // consulting r.Method, r.Host, and r.URL.Path. It always returns 2435 // a non-nil handler. If the path is not in its canonical form, the 2436 // handler will be an internally-generated handler that redirects 2437 // to the canonical path. If the host contains a port, it is ignored 2438 // when matching handlers. 2439 // 2440 // The path and host are used unchanged for CONNECT requests. 2441 // 2442 // Handler also returns the registered pattern that matches the 2443 // request or, in the case of internally-generated redirects, 2444 // the pattern that will match after following the redirect. 2445 // 2446 // If there is no registered handler that applies to the request, 2447 // Handler returns a “page not found” handler and an empty pattern. 2448 func (mux *ServeMux) Handler(r *Request) (h Handler, pattern string) { 2449 2450 // CONNECT requests are not canonicalized. 2451 if r.Method == "CONNECT" { 2452 // If r.URL.Path is /tree and its handler is not registered, 2453 // the /tree -> /tree/ redirect applies to CONNECT requests 2454 // but the path canonicalization does not. 2455 if u, ok := mux.redirectToPathSlash(r.URL.Host, r.URL.Path, r.URL); ok { 2456 return RedirectHandler(u.String(), StatusMovedPermanently), u.Path 2457 } 2458 2459 return mux.handler(r.Host, r.URL.Path) 2460 } 2461 2462 // All other requests have any port stripped and path cleaned 2463 // before passing to mux.handler. 2464 host := stripHostPort(r.Host) 2465 path := cleanPath(r.URL.Path) 2466 2467 // If the given path is /tree and its handler is not registered, 2468 // redirect for /tree/. 2469 if u, ok := mux.redirectToPathSlash(host, path, r.URL); ok { 2470 return RedirectHandler(u.String(), StatusMovedPermanently), u.Path 2471 } 2472 2473 if path != r.URL.Path { 2474 _, pattern = mux.handler(host, path) 2475 u := &url.URL{Path: path, RawQuery: r.URL.RawQuery} 2476 return RedirectHandler(u.String(), StatusMovedPermanently), pattern 2477 } 2478 2479 return mux.handler(host, r.URL.Path) 2480 } 2481 2482 // handler is the main implementation of Handler. 2483 // The path is known to be in canonical form, except for CONNECT methods. 2484 func (mux *ServeMux) handler(host, path string) (h Handler, pattern string) { 2485 mux.mu.RLock() 2486 defer mux.mu.RUnlock() 2487 2488 // Host-specific pattern takes precedence over generic ones 2489 if mux.hosts { 2490 h, pattern = mux.match(host + path) 2491 } 2492 if h == nil { 2493 h, pattern = mux.match(path) 2494 } 2495 if h == nil { 2496 h, pattern = NotFoundHandler(), "" 2497 } 2498 return 2499 } 2500 2501 // ServeHTTP dispatches the request to the handler whose 2502 // pattern most closely matches the request URL. 2503 func (mux *ServeMux) ServeHTTP(w ResponseWriter, r *Request) { 2504 if r.RequestURI == "*" { 2505 if r.ProtoAtLeast(1, 1) { 2506 w.Header().Set("Connection", "close") 2507 } 2508 w.WriteHeader(StatusBadRequest) 2509 return 2510 } 2511 h, _ := mux.Handler(r) 2512 h.ServeHTTP(w, r) 2513 } 2514 2515 // Handle registers the handler for the given pattern. 2516 // If a handler already exists for pattern, Handle panics. 2517 func (mux *ServeMux) Handle(pattern string, handler Handler) { 2518 mux.mu.Lock() 2519 defer mux.mu.Unlock() 2520 2521 if pattern == "" { 2522 panic("http: invalid pattern") 2523 } 2524 if handler == nil { 2525 panic("http: nil handler") 2526 } 2527 if _, exist := mux.m[pattern]; exist { 2528 panic("http: multiple registrations for " + pattern) 2529 } 2530 2531 if mux.m == nil { 2532 mux.m = make(map[string]muxEntry) 2533 } 2534 e := muxEntry{h: handler, pattern: pattern} 2535 mux.m[pattern] = e 2536 if pattern[len(pattern)-1] == '/' { 2537 mux.es = appendSorted(mux.es, e) 2538 } 2539 2540 if pattern[0] != '/' { 2541 mux.hosts = true 2542 } 2543 } 2544 2545 func appendSorted(es []muxEntry, e muxEntry) []muxEntry { 2546 n := len(es) 2547 i := sort.Search(n, func(i int) bool { 2548 return len(es[i].pattern) < len(e.pattern) 2549 }) 2550 if i == n { 2551 return append(es, e) 2552 } 2553 // we now know that i points at where we want to insert 2554 es = append(es, muxEntry{}) // try to grow the slice in place, any entry works. 2555 copy(es[i+1:], es[i:]) // Move shorter entries down 2556 es[i] = e 2557 return es 2558 } 2559 2560 // HandleFunc registers the handler function for the given pattern. 2561 func (mux *ServeMux) HandleFunc(pattern string, handler func(ResponseWriter, *Request)) { 2562 if handler == nil { 2563 panic("http: nil handler") 2564 } 2565 mux.Handle(pattern, HandlerFunc(handler)) 2566 } 2567 2568 // Handle registers the handler for the given pattern 2569 // in the DefaultServeMux. 2570 // The documentation for ServeMux explains how patterns are matched. 2571 func Handle(pattern string, handler Handler) { DefaultServeMux.Handle(pattern, handler) } 2572 2573 // HandleFunc registers the handler function for the given pattern 2574 // in the DefaultServeMux. 2575 // The documentation for ServeMux explains how patterns are matched. 2576 func HandleFunc(pattern string, handler func(ResponseWriter, *Request)) { 2577 DefaultServeMux.HandleFunc(pattern, handler) 2578 } 2579 2580 // Serve accepts incoming HTTP connections on the listener l, 2581 // creating a new service goroutine for each. The service goroutines 2582 // read requests and then call handler to reply to them. 2583 // 2584 // The handler is typically nil, in which case the DefaultServeMux is used. 2585 // 2586 // HTTP/2 support is only enabled if the Listener returns *tls.Conn 2587 // connections and they were configured with "h2" in the TLS 2588 // Config.NextProtos. 2589 // 2590 // Serve always returns a non-nil error. 2591 func Serve(l net.Listener, handler Handler) error { 2592 srv := &Server{Handler: handler} 2593 return srv.Serve(l) 2594 } 2595 2596 // ServeTLS accepts incoming HTTPS connections on the listener l, 2597 // creating a new service goroutine for each. The service goroutines 2598 // read requests and then call handler to reply to them. 2599 // 2600 // The handler is typically nil, in which case the DefaultServeMux is used. 2601 // 2602 // Additionally, files containing a certificate and matching private key 2603 // for the server must be provided. If the certificate is signed by a 2604 // certificate authority, the certFile should be the concatenation 2605 // of the server's certificate, any intermediates, and the CA's certificate. 2606 // 2607 // ServeTLS always returns a non-nil error. 2608 func ServeTLS(l net.Listener, handler Handler, certFile, keyFile string) error { 2609 srv := &Server{Handler: handler} 2610 return srv.ServeTLS(l, certFile, keyFile) 2611 } 2612 2613 // A Server defines parameters for running an HTTP server. 2614 // The zero value for Server is a valid configuration. 2615 type Server struct { 2616 // Addr optionally specifies the TCP address for the server to listen on, 2617 // in the form "host:port". If empty, ":http" (port 80) is used. 2618 // The service names are defined in RFC 6335 and assigned by IANA. 2619 // See net.Dial for details of the address format. 2620 Addr string 2621 2622 Handler Handler // handler to invoke, http.DefaultServeMux if nil 2623 2624 // DisableGeneralOptionsHandler, if true, passes "OPTIONS *" requests to the Handler, 2625 // otherwise responds with 200 OK and Content-Length: 0. 2626 DisableGeneralOptionsHandler bool 2627 2628 // TLSConfig optionally provides a TLS configuration for use 2629 // by ServeTLS and ListenAndServeTLS. Note that this value is 2630 // cloned by ServeTLS and ListenAndServeTLS, so it's not 2631 // possible to modify the configuration with methods like 2632 // tls.Config.SetSessionTicketKeys. To use 2633 // SetSessionTicketKeys, use Server.Serve with a TLS Listener 2634 // instead. 2635 TLSConfig *tls.Config 2636 2637 // ReadTimeout is the maximum duration for reading the entire 2638 // request, including the body. A zero or negative value means 2639 // there will be no timeout. 2640 // 2641 // Because ReadTimeout does not let Handlers make per-request 2642 // decisions on each request body's acceptable deadline or 2643 // upload rate, most users will prefer to use 2644 // ReadHeaderTimeout. It is valid to use them both. 2645 ReadTimeout time.Duration 2646 2647 // ReadHeaderTimeout is the amount of time allowed to read 2648 // request headers. The connection's read deadline is reset 2649 // after reading the headers and the Handler can decide what 2650 // is considered too slow for the body. If ReadHeaderTimeout 2651 // is zero, the value of ReadTimeout is used. If both are 2652 // zero, there is no timeout. 2653 ReadHeaderTimeout time.Duration 2654 2655 // WriteTimeout is the maximum duration before timing out 2656 // writes of the response. It is reset whenever a new 2657 // request's header is read. Like ReadTimeout, it does not 2658 // let Handlers make decisions on a per-request basis. 2659 // A zero or negative value means there will be no timeout. 2660 WriteTimeout time.Duration 2661 2662 // IdleTimeout is the maximum amount of time to wait for the 2663 // next request when keep-alives are enabled. If IdleTimeout 2664 // is zero, the value of ReadTimeout is used. If both are 2665 // zero, there is no timeout. 2666 IdleTimeout time.Duration 2667 2668 // MaxHeaderBytes controls the maximum number of bytes the 2669 // server will read parsing the request header's keys and 2670 // values, including the request line. It does not limit the 2671 // size of the request body. 2672 // If zero, DefaultMaxHeaderBytes is used. 2673 MaxHeaderBytes int 2674 2675 // TLSNextProto optionally specifies a function to take over 2676 // ownership of the provided TLS connection when an ALPN 2677 // protocol upgrade has occurred. The map key is the protocol 2678 // name negotiated. The Handler argument should be used to 2679 // handle HTTP requests and will initialize the Request's TLS 2680 // and RemoteAddr if not already set. The connection is 2681 // automatically closed when the function returns. 2682 // If TLSNextProto is not nil, HTTP/2 support is not enabled 2683 // automatically. 2684 TLSNextProto map[string]func(*Server, *tls.Conn, Handler) 2685 2686 // ConnState specifies an optional callback function that is 2687 // called when a client connection changes state. See the 2688 // ConnState type and associated constants for details. 2689 ConnState func(net.Conn, ConnState) 2690 2691 // ErrorLog specifies an optional logger for errors accepting 2692 // connections, unexpected behavior from handlers, and 2693 // underlying FileSystem errors. 2694 // If nil, logging is done via the log package's standard logger. 2695 ErrorLog *log.Logger 2696 2697 // BaseContext optionally specifies a function that returns 2698 // the base context for incoming requests on this server. 2699 // The provided Listener is the specific Listener that's 2700 // about to start accepting requests. 2701 // If BaseContext is nil, the default is context.Background(). 2702 // If non-nil, it must return a non-nil context. 2703 BaseContext func(net.Listener) context.Context 2704 2705 // ConnContext optionally specifies a function that modifies 2706 // the context used for a new connection c. The provided ctx 2707 // is derived from the base context and has a ServerContextKey 2708 // value. 2709 ConnContext func(ctx context.Context, c net.Conn) context.Context 2710 2711 inShutdown atomic.Bool // true when server is in shutdown 2712 2713 disableKeepAlives atomic.Bool 2714 nextProtoOnce sync.Once // guards setupHTTP2_* init 2715 nextProtoErr error // result of http2.ConfigureServer if used 2716 2717 mu sync.Mutex 2718 listeners map[*net.Listener]struct{} 2719 activeConn map[*conn]struct{} 2720 onShutdown []func() 2721 2722 listenerGroup sync.WaitGroup 2723 } 2724 2725 // Close immediately closes all active net.Listeners and any 2726 // connections in state StateNew, StateActive, or StateIdle. For a 2727 // graceful shutdown, use Shutdown. 2728 // 2729 // Close does not attempt to close (and does not even know about) 2730 // any hijacked connections, such as WebSockets. 2731 // 2732 // Close returns any error returned from closing the Server's 2733 // underlying Listener(s). 2734 func (srv *Server) Close() error { 2735 srv.inShutdown.Store(true) 2736 srv.mu.Lock() 2737 defer srv.mu.Unlock() 2738 err := srv.closeListenersLocked() 2739 2740 // Unlock srv.mu while waiting for listenerGroup. 2741 // The group Add and Done calls are made with srv.mu held, 2742 // to avoid adding a new listener in the window between 2743 // us setting inShutdown above and waiting here. 2744 srv.mu.Unlock() 2745 srv.listenerGroup.Wait() 2746 srv.mu.Lock() 2747 2748 for c := range srv.activeConn { 2749 c.rwc.Close() 2750 delete(srv.activeConn, c) 2751 } 2752 return err 2753 } 2754 2755 // shutdownPollIntervalMax is the max polling interval when checking 2756 // quiescence during Server.Shutdown. Polling starts with a small 2757 // interval and backs off to the max. 2758 // Ideally we could find a solution that doesn't involve polling, 2759 // but which also doesn't have a high runtime cost (and doesn't 2760 // involve any contentious mutexes), but that is left as an 2761 // exercise for the reader. 2762 const shutdownPollIntervalMax = 500 * time.Millisecond 2763 2764 // Shutdown gracefully shuts down the server without interrupting any 2765 // active connections. Shutdown works by first closing all open 2766 // listeners, then closing all idle connections, and then waiting 2767 // indefinitely for connections to return to idle and then shut down. 2768 // If the provided context expires before the shutdown is complete, 2769 // Shutdown returns the context's error, otherwise it returns any 2770 // error returned from closing the Server's underlying Listener(s). 2771 // 2772 // When Shutdown is called, Serve, ListenAndServe, and 2773 // ListenAndServeTLS immediately return ErrServerClosed. Make sure the 2774 // program doesn't exit and waits instead for Shutdown to return. 2775 // 2776 // Shutdown does not attempt to close nor wait for hijacked 2777 // connections such as WebSockets. The caller of Shutdown should 2778 // separately notify such long-lived connections of shutdown and wait 2779 // for them to close, if desired. See RegisterOnShutdown for a way to 2780 // register shutdown notification functions. 2781 // 2782 // Once Shutdown has been called on a server, it may not be reused; 2783 // future calls to methods such as Serve will return ErrServerClosed. 2784 func (srv *Server) Shutdown(ctx context.Context) error { 2785 srv.inShutdown.Store(true) 2786 2787 srv.mu.Lock() 2788 lnerr := srv.closeListenersLocked() 2789 for _, f := range srv.onShutdown { 2790 go f() 2791 } 2792 srv.mu.Unlock() 2793 srv.listenerGroup.Wait() 2794 2795 pollIntervalBase := time.Millisecond 2796 nextPollInterval := func() time.Duration { 2797 // Add 10% jitter. 2798 interval := pollIntervalBase + time.Duration(rand.Intn(int(pollIntervalBase/10))) 2799 // Double and clamp for next time. 2800 pollIntervalBase *= 2 2801 if pollIntervalBase > shutdownPollIntervalMax { 2802 pollIntervalBase = shutdownPollIntervalMax 2803 } 2804 return interval 2805 } 2806 2807 timer := time.NewTimer(nextPollInterval()) 2808 defer timer.Stop() 2809 for { 2810 if srv.closeIdleConns() { 2811 return lnerr 2812 } 2813 select { 2814 case <-ctx.Done(): 2815 return ctx.Err() 2816 case <-timer.C: 2817 timer.Reset(nextPollInterval()) 2818 } 2819 } 2820 } 2821 2822 // RegisterOnShutdown registers a function to call on Shutdown. 2823 // This can be used to gracefully shutdown connections that have 2824 // undergone ALPN protocol upgrade or that have been hijacked. 2825 // This function should start protocol-specific graceful shutdown, 2826 // but should not wait for shutdown to complete. 2827 func (srv *Server) RegisterOnShutdown(f func()) { 2828 srv.mu.Lock() 2829 srv.onShutdown = append(srv.onShutdown, f) 2830 srv.mu.Unlock() 2831 } 2832 2833 // closeIdleConns closes all idle connections and reports whether the 2834 // server is quiescent. 2835 func (s *Server) closeIdleConns() bool { 2836 s.mu.Lock() 2837 defer s.mu.Unlock() 2838 quiescent := true 2839 for c := range s.activeConn { 2840 st, unixSec := c.getState() 2841 // Issue 22682: treat StateNew connections as if 2842 // they're idle if we haven't read the first request's 2843 // header in over 5 seconds. 2844 if st == StateNew && unixSec < time.Now().Unix()-5 { 2845 st = StateIdle 2846 } 2847 if st != StateIdle || unixSec == 0 { 2848 // Assume unixSec == 0 means it's a very new 2849 // connection, without state set yet. 2850 quiescent = false 2851 continue 2852 } 2853 c.rwc.Close() 2854 delete(s.activeConn, c) 2855 } 2856 return quiescent 2857 } 2858 2859 func (s *Server) closeListenersLocked() error { 2860 var err error 2861 for ln := range s.listeners { 2862 if cerr := (*ln).Close(); cerr != nil && err == nil { 2863 err = cerr 2864 } 2865 } 2866 return err 2867 } 2868 2869 // A ConnState represents the state of a client connection to a server. 2870 // It's used by the optional Server.ConnState hook. 2871 type ConnState int 2872 2873 const ( 2874 // StateNew represents a new connection that is expected to 2875 // send a request immediately. Connections begin at this 2876 // state and then transition to either StateActive or 2877 // StateClosed. 2878 StateNew ConnState = iota 2879 2880 // StateActive represents a connection that has read 1 or more 2881 // bytes of a request. The Server.ConnState hook for 2882 // StateActive fires before the request has entered a handler 2883 // and doesn't fire again until the request has been 2884 // handled. After the request is handled, the state 2885 // transitions to StateClosed, StateHijacked, or StateIdle. 2886 // For HTTP/2, StateActive fires on the transition from zero 2887 // to one active request, and only transitions away once all 2888 // active requests are complete. That means that ConnState 2889 // cannot be used to do per-request work; ConnState only notes 2890 // the overall state of the connection. 2891 StateActive 2892 2893 // StateIdle represents a connection that has finished 2894 // handling a request and is in the keep-alive state, waiting 2895 // for a new request. Connections transition from StateIdle 2896 // to either StateActive or StateClosed. 2897 StateIdle 2898 2899 // StateHijacked represents a hijacked connection. 2900 // This is a terminal state. It does not transition to StateClosed. 2901 StateHijacked 2902 2903 // StateClosed represents a closed connection. 2904 // This is a terminal state. Hijacked connections do not 2905 // transition to StateClosed. 2906 StateClosed 2907 ) 2908 2909 var stateName = map[ConnState]string{ 2910 StateNew: "new", 2911 StateActive: "active", 2912 StateIdle: "idle", 2913 StateHijacked: "hijacked", 2914 StateClosed: "closed", 2915 } 2916 2917 func (c ConnState) String() string { 2918 return stateName[c] 2919 } 2920 2921 // serverHandler delegates to either the server's Handler or 2922 // DefaultServeMux and also handles "OPTIONS *" requests. 2923 type serverHandler struct { 2924 srv *Server 2925 } 2926 2927 func (sh serverHandler) ServeHTTP(rw ResponseWriter, req *Request) { 2928 handler := sh.srv.Handler 2929 if handler == nil { 2930 handler = DefaultServeMux 2931 } 2932 if !sh.srv.DisableGeneralOptionsHandler && req.RequestURI == "*" && req.Method == "OPTIONS" { 2933 handler = globalOptionsHandler{} 2934 } 2935 2936 handler.ServeHTTP(rw, req) 2937 } 2938 2939 // AllowQuerySemicolons returns a handler that serves requests by converting any 2940 // unescaped semicolons in the URL query to ampersands, and invoking the handler h. 2941 // 2942 // This restores the pre-Go 1.17 behavior of splitting query parameters on both 2943 // semicolons and ampersands. (See golang.org/issue/25192). Note that this 2944 // behavior doesn't match that of many proxies, and the mismatch can lead to 2945 // security issues. 2946 // 2947 // AllowQuerySemicolons should be invoked before Request.ParseForm is called. 2948 func AllowQuerySemicolons(h Handler) Handler { 2949 return HandlerFunc(func(w ResponseWriter, r *Request) { 2950 if strings.Contains(r.URL.RawQuery, ";") { 2951 r2 := new(Request) 2952 *r2 = *r 2953 r2.URL = new(url.URL) 2954 *r2.URL = *r.URL 2955 r2.URL.RawQuery = strings.ReplaceAll(r.URL.RawQuery, ";", "&") 2956 h.ServeHTTP(w, r2) 2957 } else { 2958 h.ServeHTTP(w, r) 2959 } 2960 }) 2961 } 2962 2963 // ListenAndServe listens on the TCP network address srv.Addr and then 2964 // calls Serve to handle requests on incoming connections. 2965 // Accepted connections are configured to enable TCP keep-alives. 2966 // 2967 // If srv.Addr is blank, ":http" is used. 2968 // 2969 // ListenAndServe always returns a non-nil error. After Shutdown or Close, 2970 // the returned error is ErrServerClosed. 2971 func (srv *Server) ListenAndServe() error { 2972 if srv.shuttingDown() { 2973 return ErrServerClosed 2974 } 2975 addr := srv.Addr 2976 if addr == "" { 2977 addr = ":http" 2978 } 2979 ln, err := net.Listen("tcp", addr) 2980 if err != nil { 2981 return err 2982 } 2983 return srv.Serve(ln) 2984 } 2985 2986 var testHookServerServe func(*Server, net.Listener) // used if non-nil 2987 2988 // shouldConfigureHTTP2ForServe reports whether Server.Serve should configure 2989 // automatic HTTP/2. (which sets up the srv.TLSNextProto map) 2990 func (srv *Server) shouldConfigureHTTP2ForServe() bool { 2991 if srv.TLSConfig == nil { 2992 // Compatibility with Go 1.6: 2993 // If there's no TLSConfig, it's possible that the user just 2994 // didn't set it on the http.Server, but did pass it to 2995 // tls.NewListener and passed that listener to Serve. 2996 // So we should configure HTTP/2 (to set up srv.TLSNextProto) 2997 // in case the listener returns an "h2" *tls.Conn. 2998 return true 2999 } 3000 // The user specified a TLSConfig on their http.Server. 3001 // In this, case, only configure HTTP/2 if their tls.Config 3002 // explicitly mentions "h2". Otherwise http2.ConfigureServer 3003 // would modify the tls.Config to add it, but they probably already 3004 // passed this tls.Config to tls.NewListener. And if they did, 3005 // it's too late anyway to fix it. It would only be potentially racy. 3006 // See Issue 15908. 3007 return strSliceContains(srv.TLSConfig.NextProtos, http2NextProtoTLS) 3008 } 3009 3010 // ErrServerClosed is returned by the Server's Serve, ServeTLS, ListenAndServe, 3011 // and ListenAndServeTLS methods after a call to Shutdown or Close. 3012 var ErrServerClosed = errors.New("http: Server closed") 3013 3014 // Serve accepts incoming connections on the Listener l, creating a 3015 // new service goroutine for each. The service goroutines read requests and 3016 // then call srv.Handler to reply to them. 3017 // 3018 // HTTP/2 support is only enabled if the Listener returns *tls.Conn 3019 // connections and they were configured with "h2" in the TLS 3020 // Config.NextProtos. 3021 // 3022 // Serve always returns a non-nil error and closes l. 3023 // After Shutdown or Close, the returned error is ErrServerClosed. 3024 func (srv *Server) Serve(l net.Listener) error { 3025 if fn := testHookServerServe; fn != nil { 3026 fn(srv, l) // call hook with unwrapped listener 3027 } 3028 3029 origListener := l 3030 l = &onceCloseListener{Listener: l} 3031 defer l.Close() 3032 3033 if err := srv.setupHTTP2_Serve(); err != nil { 3034 return err 3035 } 3036 3037 if !srv.trackListener(&l, true) { 3038 return ErrServerClosed 3039 } 3040 defer srv.trackListener(&l, false) 3041 3042 baseCtx := context.Background() 3043 if srv.BaseContext != nil { 3044 baseCtx = srv.BaseContext(origListener) 3045 if baseCtx == nil { 3046 panic("BaseContext returned a nil context") 3047 } 3048 } 3049 3050 var tempDelay time.Duration // how long to sleep on accept failure 3051 3052 ctx := context.WithValue(baseCtx, ServerContextKey, srv) 3053 for { 3054 rw, err := l.Accept() 3055 if err != nil { 3056 if srv.shuttingDown() { 3057 return ErrServerClosed 3058 } 3059 if ne, ok := err.(net.Error); ok && ne.Temporary() { 3060 if tempDelay == 0 { 3061 tempDelay = 5 * time.Millisecond 3062 } else { 3063 tempDelay *= 2 3064 } 3065 if max := 1 * time.Second; tempDelay > max { 3066 tempDelay = max 3067 } 3068 srv.logf("http: Accept error: %v; retrying in %v", err, tempDelay) 3069 time.Sleep(tempDelay) 3070 continue 3071 } 3072 return err 3073 } 3074 connCtx := ctx 3075 if cc := srv.ConnContext; cc != nil { 3076 connCtx = cc(connCtx, rw) 3077 if connCtx == nil { 3078 panic("ConnContext returned nil") 3079 } 3080 } 3081 tempDelay = 0 3082 c := srv.newConn(rw) 3083 c.setState(c.rwc, StateNew, runHooks) // before Serve can return 3084 go c.serve(connCtx) 3085 } 3086 } 3087 3088 // ServeTLS accepts incoming connections on the Listener l, creating a 3089 // new service goroutine for each. The service goroutines perform TLS 3090 // setup and then read requests, calling srv.Handler to reply to them. 3091 // 3092 // Files containing a certificate and matching private key for the 3093 // server must be provided if neither the Server's 3094 // TLSConfig.Certificates nor TLSConfig.GetCertificate are populated. 3095 // If the certificate is signed by a certificate authority, the 3096 // certFile should be the concatenation of the server's certificate, 3097 // any intermediates, and the CA's certificate. 3098 // 3099 // ServeTLS always returns a non-nil error. After Shutdown or Close, the 3100 // returned error is ErrServerClosed. 3101 func (srv *Server) ServeTLS(l net.Listener, certFile, keyFile string) error { 3102 // Setup HTTP/2 before srv.Serve, to initialize srv.TLSConfig 3103 // before we clone it and create the TLS Listener. 3104 if err := srv.setupHTTP2_ServeTLS(); err != nil { 3105 return err 3106 } 3107 3108 config := cloneTLSConfig(srv.TLSConfig) 3109 if !strSliceContains(config.NextProtos, "http/1.1") { 3110 config.NextProtos = append(config.NextProtos, "http/1.1") 3111 } 3112 3113 configHasCert := len(config.Certificates) > 0 || config.GetCertificate != nil 3114 if !configHasCert || certFile != "" || keyFile != "" { 3115 var err error 3116 config.Certificates = make([]tls.Certificate, 1) 3117 config.Certificates[0], err = tls.LoadX509KeyPair(certFile, keyFile) 3118 if err != nil { 3119 return err 3120 } 3121 } 3122 3123 tlsListener := tls.NewListener(l, config) 3124 return srv.Serve(tlsListener) 3125 } 3126 3127 // trackListener adds or removes a net.Listener to the set of tracked 3128 // listeners. 3129 // 3130 // We store a pointer to interface in the map set, in case the 3131 // net.Listener is not comparable. This is safe because we only call 3132 // trackListener via Serve and can track+defer untrack the same 3133 // pointer to local variable there. We never need to compare a 3134 // Listener from another caller. 3135 // 3136 // It reports whether the server is still up (not Shutdown or Closed). 3137 func (s *Server) trackListener(ln *net.Listener, add bool) bool { 3138 s.mu.Lock() 3139 defer s.mu.Unlock() 3140 if s.listeners == nil { 3141 s.listeners = make(map[*net.Listener]struct{}) 3142 } 3143 if add { 3144 if s.shuttingDown() { 3145 return false 3146 } 3147 s.listeners[ln] = struct{}{} 3148 s.listenerGroup.Add(1) 3149 } else { 3150 delete(s.listeners, ln) 3151 s.listenerGroup.Done() 3152 } 3153 return true 3154 } 3155 3156 func (s *Server) trackConn(c *conn, add bool) { 3157 s.mu.Lock() 3158 defer s.mu.Unlock() 3159 if s.activeConn == nil { 3160 s.activeConn = make(map[*conn]struct{}) 3161 } 3162 if add { 3163 s.activeConn[c] = struct{}{} 3164 } else { 3165 delete(s.activeConn, c) 3166 } 3167 } 3168 3169 func (s *Server) idleTimeout() time.Duration { 3170 if s.IdleTimeout != 0 { 3171 return s.IdleTimeout 3172 } 3173 return s.ReadTimeout 3174 } 3175 3176 func (s *Server) readHeaderTimeout() time.Duration { 3177 if s.ReadHeaderTimeout != 0 { 3178 return s.ReadHeaderTimeout 3179 } 3180 return s.ReadTimeout 3181 } 3182 3183 func (s *Server) doKeepAlives() bool { 3184 return !s.disableKeepAlives.Load() && !s.shuttingDown() 3185 } 3186 3187 func (s *Server) shuttingDown() bool { 3188 return s.inShutdown.Load() 3189 } 3190 3191 // SetKeepAlivesEnabled controls whether HTTP keep-alives are enabled. 3192 // By default, keep-alives are always enabled. Only very 3193 // resource-constrained environments or servers in the process of 3194 // shutting down should disable them. 3195 func (srv *Server) SetKeepAlivesEnabled(v bool) { 3196 if v { 3197 srv.disableKeepAlives.Store(false) 3198 return 3199 } 3200 srv.disableKeepAlives.Store(true) 3201 3202 // Close idle HTTP/1 conns: 3203 srv.closeIdleConns() 3204 3205 // TODO: Issue 26303: close HTTP/2 conns as soon as they become idle. 3206 } 3207 3208 func (s *Server) logf(format string, args ...any) { 3209 if s.ErrorLog != nil { 3210 s.ErrorLog.Printf(format, args...) 3211 } else { 3212 log.Printf(format, args...) 3213 } 3214 } 3215 3216 // logf prints to the ErrorLog of the *Server associated with request r 3217 // via ServerContextKey. If there's no associated server, or if ErrorLog 3218 // is nil, logging is done via the log package's standard logger. 3219 func logf(r *Request, format string, args ...any) { 3220 s, _ := r.Context().Value(ServerContextKey).(*Server) 3221 if s != nil && s.ErrorLog != nil { 3222 s.ErrorLog.Printf(format, args...) 3223 } else { 3224 log.Printf(format, args...) 3225 } 3226 } 3227 3228 // ListenAndServe listens on the TCP network address addr and then calls 3229 // Serve with handler to handle requests on incoming connections. 3230 // Accepted connections are configured to enable TCP keep-alives. 3231 // 3232 // The handler is typically nil, in which case the DefaultServeMux is used. 3233 // 3234 // ListenAndServe always returns a non-nil error. 3235 func ListenAndServe(addr string, handler Handler) error { 3236 server := &Server{Addr: addr, Handler: handler} 3237 return server.ListenAndServe() 3238 } 3239 3240 // ListenAndServeTLS acts identically to ListenAndServe, except that it 3241 // expects HTTPS connections. Additionally, files containing a certificate and 3242 // matching private key for the server must be provided. If the certificate 3243 // is signed by a certificate authority, the certFile should be the concatenation 3244 // of the server's certificate, any intermediates, and the CA's certificate. 3245 func ListenAndServeTLS(addr, certFile, keyFile string, handler Handler) error { 3246 server := &Server{Addr: addr, Handler: handler} 3247 return server.ListenAndServeTLS(certFile, keyFile) 3248 } 3249 3250 // ListenAndServeTLS listens on the TCP network address srv.Addr and 3251 // then calls ServeTLS to handle requests on incoming TLS connections. 3252 // Accepted connections are configured to enable TCP keep-alives. 3253 // 3254 // Filenames containing a certificate and matching private key for the 3255 // server must be provided if neither the Server's TLSConfig.Certificates 3256 // nor TLSConfig.GetCertificate are populated. If the certificate is 3257 // signed by a certificate authority, the certFile should be the 3258 // concatenation of the server's certificate, any intermediates, and 3259 // the CA's certificate. 3260 // 3261 // If srv.Addr is blank, ":https" is used. 3262 // 3263 // ListenAndServeTLS always returns a non-nil error. After Shutdown or 3264 // Close, the returned error is ErrServerClosed. 3265 func (srv *Server) ListenAndServeTLS(certFile, keyFile string) error { 3266 if srv.shuttingDown() { 3267 return ErrServerClosed 3268 } 3269 addr := srv.Addr 3270 if addr == "" { 3271 addr = ":https" 3272 } 3273 3274 ln, err := net.Listen("tcp", addr) 3275 if err != nil { 3276 return err 3277 } 3278 3279 defer ln.Close() 3280 3281 return srv.ServeTLS(ln, certFile, keyFile) 3282 } 3283 3284 // setupHTTP2_ServeTLS conditionally configures HTTP/2 on 3285 // srv and reports whether there was an error setting it up. If it is 3286 // not configured for policy reasons, nil is returned. 3287 func (srv *Server) setupHTTP2_ServeTLS() error { 3288 srv.nextProtoOnce.Do(srv.onceSetNextProtoDefaults) 3289 return srv.nextProtoErr 3290 } 3291 3292 // setupHTTP2_Serve is called from (*Server).Serve and conditionally 3293 // configures HTTP/2 on srv using a more conservative policy than 3294 // setupHTTP2_ServeTLS because Serve is called after tls.Listen, 3295 // and may be called concurrently. See shouldConfigureHTTP2ForServe. 3296 // 3297 // The tests named TestTransportAutomaticHTTP2* and 3298 // TestConcurrentServerServe in server_test.go demonstrate some 3299 // of the supported use cases and motivations. 3300 func (srv *Server) setupHTTP2_Serve() error { 3301 srv.nextProtoOnce.Do(srv.onceSetNextProtoDefaults_Serve) 3302 return srv.nextProtoErr 3303 } 3304 3305 func (srv *Server) onceSetNextProtoDefaults_Serve() { 3306 if srv.shouldConfigureHTTP2ForServe() { 3307 srv.onceSetNextProtoDefaults() 3308 } 3309 } 3310 3311 var http2server = godebug.New("http2server") 3312 3313 // onceSetNextProtoDefaults configures HTTP/2, if the user hasn't 3314 // configured otherwise. (by setting srv.TLSNextProto non-nil) 3315 // It must only be called via srv.nextProtoOnce (use srv.setupHTTP2_*). 3316 func (srv *Server) onceSetNextProtoDefaults() { 3317 if omitBundledHTTP2 { 3318 return 3319 } 3320 if http2server.Value() == "0" { 3321 http2server.IncNonDefault() 3322 return 3323 } 3324 // Enable HTTP/2 by default if the user hasn't otherwise 3325 // configured their TLSNextProto map. 3326 if srv.TLSNextProto == nil { 3327 conf := &http2Server{ 3328 NewWriteScheduler: func() http2WriteScheduler { return http2NewPriorityWriteScheduler(nil) }, 3329 } 3330 srv.nextProtoErr = http2ConfigureServer(srv, conf) 3331 } 3332 } 3333 3334 // TimeoutHandler returns a Handler that runs h with the given time limit. 3335 // 3336 // The new Handler calls h.ServeHTTP to handle each request, but if a 3337 // call runs for longer than its time limit, the handler responds with 3338 // a 503 Service Unavailable error and the given message in its body. 3339 // (If msg is empty, a suitable default message will be sent.) 3340 // After such a timeout, writes by h to its ResponseWriter will return 3341 // ErrHandlerTimeout. 3342 // 3343 // TimeoutHandler supports the Pusher interface but does not support 3344 // the Hijacker or Flusher interfaces. 3345 func TimeoutHandler(h Handler, dt time.Duration, msg string) Handler { 3346 return &timeoutHandler{ 3347 handler: h, 3348 body: msg, 3349 dt: dt, 3350 } 3351 } 3352 3353 // ErrHandlerTimeout is returned on ResponseWriter Write calls 3354 // in handlers which have timed out. 3355 var ErrHandlerTimeout = errors.New("http: Handler timeout") 3356 3357 type timeoutHandler struct { 3358 handler Handler 3359 body string 3360 dt time.Duration 3361 3362 // When set, no context will be created and this context will 3363 // be used instead. 3364 testContext context.Context 3365 } 3366 3367 func (h *timeoutHandler) errorBody() string { 3368 if h.body != "" { 3369 return h.body 3370 } 3371 return "<html><head><title>Timeout</title></head><body><h1>Timeout</h1></body></html>" 3372 } 3373 3374 func (h *timeoutHandler) ServeHTTP(w ResponseWriter, r *Request) { 3375 ctx := h.testContext 3376 if ctx == nil { 3377 var cancelCtx context.CancelFunc 3378 ctx, cancelCtx = context.WithTimeout(r.Context(), h.dt) 3379 defer cancelCtx() 3380 } 3381 r = r.WithContext(ctx) 3382 done := make(chan struct{}) 3383 tw := &timeoutWriter{ 3384 w: w, 3385 h: make(Header), 3386 req: r, 3387 } 3388 panicChan := make(chan any, 1) 3389 go func() { 3390 defer func() { 3391 if p := recover(); p != nil { 3392 panicChan <- p 3393 } 3394 }() 3395 h.handler.ServeHTTP(tw, r) 3396 close(done) 3397 }() 3398 select { 3399 case p := <-panicChan: 3400 panic(p) 3401 case <-done: 3402 tw.mu.Lock() 3403 defer tw.mu.Unlock() 3404 dst := w.Header() 3405 for k, vv := range tw.h { 3406 dst[k] = vv 3407 } 3408 if !tw.wroteHeader { 3409 tw.code = StatusOK 3410 } 3411 w.WriteHeader(tw.code) 3412 w.Write(tw.wbuf.Bytes()) 3413 case <-ctx.Done(): 3414 tw.mu.Lock() 3415 defer tw.mu.Unlock() 3416 switch err := ctx.Err(); err { 3417 case context.DeadlineExceeded: 3418 w.WriteHeader(StatusServiceUnavailable) 3419 io.WriteString(w, h.errorBody()) 3420 tw.err = ErrHandlerTimeout 3421 default: 3422 w.WriteHeader(StatusServiceUnavailable) 3423 tw.err = err 3424 } 3425 } 3426 } 3427 3428 type timeoutWriter struct { 3429 w ResponseWriter 3430 h Header 3431 wbuf bytes.Buffer 3432 req *Request 3433 3434 mu sync.Mutex 3435 err error 3436 wroteHeader bool 3437 code int 3438 } 3439 3440 var _ Pusher = (*timeoutWriter)(nil) 3441 3442 // Push implements the Pusher interface. 3443 func (tw *timeoutWriter) Push(target string, opts *PushOptions) error { 3444 if pusher, ok := tw.w.(Pusher); ok { 3445 return pusher.Push(target, opts) 3446 } 3447 return ErrNotSupported 3448 } 3449 3450 func (tw *timeoutWriter) Header() Header { return tw.h } 3451 3452 func (tw *timeoutWriter) Write(p []byte) (int, error) { 3453 tw.mu.Lock() 3454 defer tw.mu.Unlock() 3455 if tw.err != nil { 3456 return 0, tw.err 3457 } 3458 if !tw.wroteHeader { 3459 tw.writeHeaderLocked(StatusOK) 3460 } 3461 return tw.wbuf.Write(p) 3462 } 3463 3464 func (tw *timeoutWriter) writeHeaderLocked(code int) { 3465 checkWriteHeaderCode(code) 3466 3467 switch { 3468 case tw.err != nil: 3469 return 3470 case tw.wroteHeader: 3471 if tw.req != nil { 3472 caller := relevantCaller() 3473 logf(tw.req, "http: superfluous response.WriteHeader call from %s (%s:%d)", caller.Function, path.Base(caller.File), caller.Line) 3474 } 3475 default: 3476 tw.wroteHeader = true 3477 tw.code = code 3478 } 3479 } 3480 3481 func (tw *timeoutWriter) WriteHeader(code int) { 3482 tw.mu.Lock() 3483 defer tw.mu.Unlock() 3484 tw.writeHeaderLocked(code) 3485 } 3486 3487 // onceCloseListener wraps a net.Listener, protecting it from 3488 // multiple Close calls. 3489 type onceCloseListener struct { 3490 net.Listener 3491 once sync.Once 3492 closeErr error 3493 } 3494 3495 func (oc *onceCloseListener) Close() error { 3496 oc.once.Do(oc.close) 3497 return oc.closeErr 3498 } 3499 3500 func (oc *onceCloseListener) close() { oc.closeErr = oc.Listener.Close() } 3501 3502 // globalOptionsHandler responds to "OPTIONS *" requests. 3503 type globalOptionsHandler struct{} 3504 3505 func (globalOptionsHandler) ServeHTTP(w ResponseWriter, r *Request) { 3506 w.Header().Set("Content-Length", "0") 3507 if r.ContentLength != 0 { 3508 // Read up to 4KB of OPTIONS body (as mentioned in the 3509 // spec as being reserved for future use), but anything 3510 // over that is considered a waste of server resources 3511 // (or an attack) and we abort and close the connection, 3512 // courtesy of MaxBytesReader's EOF behavior. 3513 mb := MaxBytesReader(w, r.Body, 4<<10) 3514 io.Copy(io.Discard, mb) 3515 } 3516 } 3517 3518 // initALPNRequest is an HTTP handler that initializes certain 3519 // uninitialized fields in its *Request. Such partially-initialized 3520 // Requests come from ALPN protocol handlers. 3521 type initALPNRequest struct { 3522 ctx context.Context 3523 c *tls.Conn 3524 h serverHandler 3525 } 3526 3527 // BaseContext is an exported but unadvertised http.Handler method 3528 // recognized by x/net/http2 to pass down a context; the TLSNextProto 3529 // API predates context support so we shoehorn through the only 3530 // interface we have available. 3531 func (h initALPNRequest) BaseContext() context.Context { return h.ctx } 3532 3533 func (h initALPNRequest) ServeHTTP(rw ResponseWriter, req *Request) { 3534 if req.TLS == nil { 3535 req.TLS = &tls.ConnectionState{} 3536 *req.TLS = h.c.ConnectionState() 3537 } 3538 if req.Body == nil { 3539 req.Body = NoBody 3540 } 3541 if req.RemoteAddr == "" { 3542 req.RemoteAddr = h.c.RemoteAddr().String() 3543 } 3544 h.h.ServeHTTP(rw, req) 3545 } 3546 3547 // loggingConn is used for debugging. 3548 type loggingConn struct { 3549 name string 3550 net.Conn 3551 } 3552 3553 var ( 3554 uniqNameMu sync.Mutex 3555 uniqNameNext = make(map[string]int) 3556 ) 3557 3558 func newLoggingConn(baseName string, c net.Conn) net.Conn { 3559 uniqNameMu.Lock() 3560 defer uniqNameMu.Unlock() 3561 uniqNameNext[baseName]++ 3562 return &loggingConn{ 3563 name: fmt.Sprintf("%s-%d", baseName, uniqNameNext[baseName]), 3564 Conn: c, 3565 } 3566 } 3567 3568 func (c *loggingConn) Write(p []byte) (n int, err error) { 3569 log.Printf("%s.Write(%d) = ....", c.name, len(p)) 3570 n, err = c.Conn.Write(p) 3571 log.Printf("%s.Write(%d) = %d, %v", c.name, len(p), n, err) 3572 return 3573 } 3574 3575 func (c *loggingConn) Read(p []byte) (n int, err error) { 3576 log.Printf("%s.Read(%d) = ....", c.name, len(p)) 3577 n, err = c.Conn.Read(p) 3578 log.Printf("%s.Read(%d) = %d, %v", c.name, len(p), n, err) 3579 return 3580 } 3581 3582 func (c *loggingConn) Close() (err error) { 3583 log.Printf("%s.Close() = ...", c.name) 3584 err = c.Conn.Close() 3585 log.Printf("%s.Close() = %v", c.name, err) 3586 return 3587 } 3588 3589 // checkConnErrorWriter writes to c.rwc and records any write errors to c.werr. 3590 // It only contains one field (and a pointer field at that), so it 3591 // fits in an interface value without an extra allocation. 3592 type checkConnErrorWriter struct { 3593 c *conn 3594 } 3595 3596 func (w checkConnErrorWriter) Write(p []byte) (n int, err error) { 3597 n, err = w.c.rwc.Write(p) 3598 if err != nil && w.c.werr == nil { 3599 w.c.werr = err 3600 w.c.cancelCtx() 3601 } 3602 return 3603 } 3604 3605 func numLeadingCRorLF(v []byte) (n int) { 3606 for _, b := range v { 3607 if b == '\r' || b == '\n' { 3608 n++ 3609 continue 3610 } 3611 break 3612 } 3613 return 3614 3615 } 3616 3617 func strSliceContains(ss []string, s string) bool { 3618 for _, v := range ss { 3619 if v == s { 3620 return true 3621 } 3622 } 3623 return false 3624 } 3625 3626 // tlsRecordHeaderLooksLikeHTTP reports whether a TLS record header 3627 // looks like it might've been a misdirected plaintext HTTP request. 3628 func tlsRecordHeaderLooksLikeHTTP(hdr [5]byte) bool { 3629 switch string(hdr[:]) { 3630 case "GET /", "HEAD ", "POST ", "PUT /", "OPTIO": 3631 return true 3632 } 3633 return false 3634 } 3635 3636 // MaxBytesHandler returns a Handler that runs h with its ResponseWriter and Request.Body wrapped by a MaxBytesReader. 3637 func MaxBytesHandler(h Handler, n int64) Handler { 3638 return HandlerFunc(func(w ResponseWriter, r *Request) { 3639 r2 := *r 3640 r2.Body = MaxBytesReader(w, r.Body, n) 3641 h.ServeHTTP(w, &r2) 3642 }) 3643 }