github.com/twelsh-aw/go/src@v0.0.0-20230516233729-a56fe86a7c81/runtime/asm_s390x.s (about) 1 // Copyright 2016 The Go Authors. All rights reserved. 2 // Use of this source code is governed by a BSD-style 3 // license that can be found in the LICENSE file. 4 5 #include "go_asm.h" 6 #include "go_tls.h" 7 #include "funcdata.h" 8 #include "textflag.h" 9 10 // _rt0_s390x_lib is common startup code for s390x systems when 11 // using -buildmode=c-archive or -buildmode=c-shared. The linker will 12 // arrange to invoke this function as a global constructor (for 13 // c-archive) or when the shared library is loaded (for c-shared). 14 // We expect argc and argv to be passed in the usual C ABI registers 15 // R2 and R3. 16 TEXT _rt0_s390x_lib(SB), NOSPLIT|NOFRAME, $0 17 STMG R6, R15, 48(R15) 18 MOVD R2, _rt0_s390x_lib_argc<>(SB) 19 MOVD R3, _rt0_s390x_lib_argv<>(SB) 20 21 // Save R6-R15 in the register save area of the calling function. 22 STMG R6, R15, 48(R15) 23 24 // Allocate 80 bytes on the stack. 25 MOVD $-80(R15), R15 26 27 // Save F8-F15 in our stack frame. 28 FMOVD F8, 16(R15) 29 FMOVD F9, 24(R15) 30 FMOVD F10, 32(R15) 31 FMOVD F11, 40(R15) 32 FMOVD F12, 48(R15) 33 FMOVD F13, 56(R15) 34 FMOVD F14, 64(R15) 35 FMOVD F15, 72(R15) 36 37 // Synchronous initialization. 38 MOVD $runtime·libpreinit(SB), R1 39 BL R1 40 41 // Create a new thread to finish Go runtime initialization. 42 MOVD _cgo_sys_thread_create(SB), R1 43 CMP R1, $0 44 BEQ nocgo 45 MOVD $_rt0_s390x_lib_go(SB), R2 46 MOVD $0, R3 47 BL R1 48 BR restore 49 50 nocgo: 51 MOVD $0x800000, R1 // stacksize 52 MOVD R1, 0(R15) 53 MOVD $_rt0_s390x_lib_go(SB), R1 54 MOVD R1, 8(R15) // fn 55 MOVD $runtime·newosproc(SB), R1 56 BL R1 57 58 restore: 59 // Restore F8-F15 from our stack frame. 60 FMOVD 16(R15), F8 61 FMOVD 24(R15), F9 62 FMOVD 32(R15), F10 63 FMOVD 40(R15), F11 64 FMOVD 48(R15), F12 65 FMOVD 56(R15), F13 66 FMOVD 64(R15), F14 67 FMOVD 72(R15), F15 68 MOVD $80(R15), R15 69 70 // Restore R6-R15. 71 LMG 48(R15), R6, R15 72 RET 73 74 // _rt0_s390x_lib_go initializes the Go runtime. 75 // This is started in a separate thread by _rt0_s390x_lib. 76 TEXT _rt0_s390x_lib_go(SB), NOSPLIT|NOFRAME, $0 77 MOVD _rt0_s390x_lib_argc<>(SB), R2 78 MOVD _rt0_s390x_lib_argv<>(SB), R3 79 MOVD $runtime·rt0_go(SB), R1 80 BR R1 81 82 DATA _rt0_s390x_lib_argc<>(SB)/8, $0 83 GLOBL _rt0_s390x_lib_argc<>(SB), NOPTR, $8 84 DATA _rt0_s90x_lib_argv<>(SB)/8, $0 85 GLOBL _rt0_s390x_lib_argv<>(SB), NOPTR, $8 86 87 TEXT runtime·rt0_go(SB),NOSPLIT|TOPFRAME,$0 88 // R2 = argc; R3 = argv; R11 = temp; R13 = g; R15 = stack pointer 89 // C TLS base pointer in AR0:AR1 90 91 // initialize essential registers 92 XOR R0, R0 93 94 SUB $24, R15 95 MOVW R2, 8(R15) // argc 96 MOVD R3, 16(R15) // argv 97 98 // create istack out of the given (operating system) stack. 99 // _cgo_init may update stackguard. 100 MOVD $runtime·g0(SB), g 101 MOVD R15, R11 102 SUB $(64*1024), R11 103 MOVD R11, g_stackguard0(g) 104 MOVD R11, g_stackguard1(g) 105 MOVD R11, (g_stack+stack_lo)(g) 106 MOVD R15, (g_stack+stack_hi)(g) 107 108 // if there is a _cgo_init, call it using the gcc ABI. 109 MOVD _cgo_init(SB), R11 110 CMPBEQ R11, $0, nocgo 111 MOVW AR0, R4 // (AR0 << 32 | AR1) is the TLS base pointer; MOVD is translated to EAR 112 SLD $32, R4, R4 113 MOVW AR1, R4 // arg 2: TLS base pointer 114 MOVD $setg_gcc<>(SB), R3 // arg 1: setg 115 MOVD g, R2 // arg 0: G 116 // C functions expect 160 bytes of space on caller stack frame 117 // and an 8-byte aligned stack pointer 118 MOVD R15, R9 // save current stack (R9 is preserved in the Linux ABI) 119 SUB $160, R15 // reserve 160 bytes 120 MOVD $~7, R6 121 AND R6, R15 // 8-byte align 122 BL R11 // this call clobbers volatile registers according to Linux ABI (R0-R5, R14) 123 MOVD R9, R15 // restore stack 124 XOR R0, R0 // zero R0 125 126 nocgo: 127 // update stackguard after _cgo_init 128 MOVD (g_stack+stack_lo)(g), R2 129 ADD $const_stackGuard, R2 130 MOVD R2, g_stackguard0(g) 131 MOVD R2, g_stackguard1(g) 132 133 // set the per-goroutine and per-mach "registers" 134 MOVD $runtime·m0(SB), R2 135 136 // save m->g0 = g0 137 MOVD g, m_g0(R2) 138 // save m0 to g0->m 139 MOVD R2, g_m(g) 140 141 BL runtime·check(SB) 142 143 // argc/argv are already prepared on stack 144 BL runtime·args(SB) 145 BL runtime·osinit(SB) 146 BL runtime·schedinit(SB) 147 148 // create a new goroutine to start program 149 MOVD $runtime·mainPC(SB), R2 // entry 150 SUB $16, R15 151 MOVD R2, 8(R15) 152 MOVD $0, 0(R15) 153 BL runtime·newproc(SB) 154 ADD $16, R15 155 156 // start this M 157 BL runtime·mstart(SB) 158 159 MOVD $0, 1(R0) 160 RET 161 162 DATA runtime·mainPC+0(SB)/8,$runtime·main(SB) 163 GLOBL runtime·mainPC(SB),RODATA,$8 164 165 TEXT runtime·breakpoint(SB),NOSPLIT|NOFRAME,$0-0 166 BRRK 167 RET 168 169 TEXT runtime·asminit(SB),NOSPLIT|NOFRAME,$0-0 170 RET 171 172 TEXT runtime·mstart(SB),NOSPLIT|TOPFRAME,$0 173 CALL runtime·mstart0(SB) 174 RET // not reached 175 176 /* 177 * go-routine 178 */ 179 180 // void gogo(Gobuf*) 181 // restore state from Gobuf; longjmp 182 TEXT runtime·gogo(SB), NOSPLIT|NOFRAME, $0-8 183 MOVD buf+0(FP), R5 184 MOVD gobuf_g(R5), R6 185 MOVD 0(R6), R7 // make sure g != nil 186 BR gogo<>(SB) 187 188 TEXT gogo<>(SB), NOSPLIT|NOFRAME, $0 189 MOVD R6, g 190 BL runtime·save_g(SB) 191 192 MOVD 0(g), R4 193 MOVD gobuf_sp(R5), R15 194 MOVD gobuf_lr(R5), LR 195 MOVD gobuf_ret(R5), R3 196 MOVD gobuf_ctxt(R5), R12 197 MOVD $0, gobuf_sp(R5) 198 MOVD $0, gobuf_ret(R5) 199 MOVD $0, gobuf_lr(R5) 200 MOVD $0, gobuf_ctxt(R5) 201 CMP R0, R0 // set condition codes for == test, needed by stack split 202 MOVD gobuf_pc(R5), R6 203 BR (R6) 204 205 // void mcall(fn func(*g)) 206 // Switch to m->g0's stack, call fn(g). 207 // Fn must never return. It should gogo(&g->sched) 208 // to keep running g. 209 TEXT runtime·mcall(SB), NOSPLIT, $-8-8 210 // Save caller state in g->sched 211 MOVD R15, (g_sched+gobuf_sp)(g) 212 MOVD LR, (g_sched+gobuf_pc)(g) 213 MOVD $0, (g_sched+gobuf_lr)(g) 214 215 // Switch to m->g0 & its stack, call fn. 216 MOVD g, R3 217 MOVD g_m(g), R8 218 MOVD m_g0(R8), g 219 BL runtime·save_g(SB) 220 CMP g, R3 221 BNE 2(PC) 222 BR runtime·badmcall(SB) 223 MOVD fn+0(FP), R12 // context 224 MOVD 0(R12), R4 // code pointer 225 MOVD (g_sched+gobuf_sp)(g), R15 // sp = m->g0->sched.sp 226 SUB $16, R15 227 MOVD R3, 8(R15) 228 MOVD $0, 0(R15) 229 BL (R4) 230 BR runtime·badmcall2(SB) 231 232 // systemstack_switch is a dummy routine that systemstack leaves at the bottom 233 // of the G stack. We need to distinguish the routine that 234 // lives at the bottom of the G stack from the one that lives 235 // at the top of the system stack because the one at the top of 236 // the system stack terminates the stack walk (see topofstack()). 237 TEXT runtime·systemstack_switch(SB), NOSPLIT, $0-0 238 UNDEF 239 BL (LR) // make sure this function is not leaf 240 RET 241 242 // func systemstack(fn func()) 243 TEXT runtime·systemstack(SB), NOSPLIT, $0-8 244 MOVD fn+0(FP), R3 // R3 = fn 245 MOVD R3, R12 // context 246 MOVD g_m(g), R4 // R4 = m 247 248 MOVD m_gsignal(R4), R5 // R5 = gsignal 249 CMPBEQ g, R5, noswitch 250 251 MOVD m_g0(R4), R5 // R5 = g0 252 CMPBEQ g, R5, noswitch 253 254 MOVD m_curg(R4), R6 255 CMPBEQ g, R6, switch 256 257 // Bad: g is not gsignal, not g0, not curg. What is it? 258 // Hide call from linker nosplit analysis. 259 MOVD $runtime·badsystemstack(SB), R3 260 BL (R3) 261 BL runtime·abort(SB) 262 263 switch: 264 // save our state in g->sched. Pretend to 265 // be systemstack_switch if the G stack is scanned. 266 BL gosave_systemstack_switch<>(SB) 267 268 // switch to g0 269 MOVD R5, g 270 BL runtime·save_g(SB) 271 MOVD (g_sched+gobuf_sp)(g), R15 272 273 // call target function 274 MOVD 0(R12), R3 // code pointer 275 BL (R3) 276 277 // switch back to g 278 MOVD g_m(g), R3 279 MOVD m_curg(R3), g 280 BL runtime·save_g(SB) 281 MOVD (g_sched+gobuf_sp)(g), R15 282 MOVD $0, (g_sched+gobuf_sp)(g) 283 RET 284 285 noswitch: 286 // already on m stack, just call directly 287 // Using a tail call here cleans up tracebacks since we won't stop 288 // at an intermediate systemstack. 289 MOVD 0(R12), R3 // code pointer 290 MOVD 0(R15), LR // restore LR 291 ADD $8, R15 292 BR (R3) 293 294 /* 295 * support for morestack 296 */ 297 298 // Called during function prolog when more stack is needed. 299 // Caller has already loaded: 300 // R3: framesize, R4: argsize, R5: LR 301 // 302 // The traceback routines see morestack on a g0 as being 303 // the top of a stack (for example, morestack calling newstack 304 // calling the scheduler calling newm calling gc), so we must 305 // record an argument size. For that purpose, it has no arguments. 306 TEXT runtime·morestack(SB),NOSPLIT|NOFRAME,$0-0 307 // Cannot grow scheduler stack (m->g0). 308 MOVD g_m(g), R7 309 MOVD m_g0(R7), R8 310 CMPBNE g, R8, 3(PC) 311 BL runtime·badmorestackg0(SB) 312 BL runtime·abort(SB) 313 314 // Cannot grow signal stack (m->gsignal). 315 MOVD m_gsignal(R7), R8 316 CMP g, R8 317 BNE 3(PC) 318 BL runtime·badmorestackgsignal(SB) 319 BL runtime·abort(SB) 320 321 // Called from f. 322 // Set g->sched to context in f. 323 MOVD R15, (g_sched+gobuf_sp)(g) 324 MOVD LR, R8 325 MOVD R8, (g_sched+gobuf_pc)(g) 326 MOVD R5, (g_sched+gobuf_lr)(g) 327 MOVD R12, (g_sched+gobuf_ctxt)(g) 328 329 // Called from f. 330 // Set m->morebuf to f's caller. 331 MOVD R5, (m_morebuf+gobuf_pc)(R7) // f's caller's PC 332 MOVD R15, (m_morebuf+gobuf_sp)(R7) // f's caller's SP 333 MOVD g, (m_morebuf+gobuf_g)(R7) 334 335 // Call newstack on m->g0's stack. 336 MOVD m_g0(R7), g 337 BL runtime·save_g(SB) 338 MOVD (g_sched+gobuf_sp)(g), R15 339 // Create a stack frame on g0 to call newstack. 340 MOVD $0, -8(R15) // Zero saved LR in frame 341 SUB $8, R15 342 BL runtime·newstack(SB) 343 344 // Not reached, but make sure the return PC from the call to newstack 345 // is still in this function, and not the beginning of the next. 346 UNDEF 347 348 TEXT runtime·morestack_noctxt(SB),NOSPLIT|NOFRAME,$0-0 349 // Force SPWRITE. This function doesn't actually write SP, 350 // but it is called with a special calling convention where 351 // the caller doesn't save LR on stack but passes it as a 352 // register (R5), and the unwinder currently doesn't understand. 353 // Make it SPWRITE to stop unwinding. (See issue 54332) 354 MOVD R15, R15 355 356 MOVD $0, R12 357 BR runtime·morestack(SB) 358 359 // reflectcall: call a function with the given argument list 360 // func call(stackArgsType *_type, f *FuncVal, stackArgs *byte, stackArgsSize, stackRetOffset, frameSize uint32, regArgs *abi.RegArgs). 361 // we don't have variable-sized frames, so we use a small number 362 // of constant-sized-frame functions to encode a few bits of size in the pc. 363 // Caution: ugly multiline assembly macros in your future! 364 365 #define DISPATCH(NAME,MAXSIZE) \ 366 MOVD $MAXSIZE, R4; \ 367 CMP R3, R4; \ 368 BGT 3(PC); \ 369 MOVD $NAME(SB), R5; \ 370 BR (R5) 371 // Note: can't just "BR NAME(SB)" - bad inlining results. 372 373 TEXT ·reflectcall(SB), NOSPLIT, $-8-48 374 MOVWZ frameSize+32(FP), R3 375 DISPATCH(runtime·call16, 16) 376 DISPATCH(runtime·call32, 32) 377 DISPATCH(runtime·call64, 64) 378 DISPATCH(runtime·call128, 128) 379 DISPATCH(runtime·call256, 256) 380 DISPATCH(runtime·call512, 512) 381 DISPATCH(runtime·call1024, 1024) 382 DISPATCH(runtime·call2048, 2048) 383 DISPATCH(runtime·call4096, 4096) 384 DISPATCH(runtime·call8192, 8192) 385 DISPATCH(runtime·call16384, 16384) 386 DISPATCH(runtime·call32768, 32768) 387 DISPATCH(runtime·call65536, 65536) 388 DISPATCH(runtime·call131072, 131072) 389 DISPATCH(runtime·call262144, 262144) 390 DISPATCH(runtime·call524288, 524288) 391 DISPATCH(runtime·call1048576, 1048576) 392 DISPATCH(runtime·call2097152, 2097152) 393 DISPATCH(runtime·call4194304, 4194304) 394 DISPATCH(runtime·call8388608, 8388608) 395 DISPATCH(runtime·call16777216, 16777216) 396 DISPATCH(runtime·call33554432, 33554432) 397 DISPATCH(runtime·call67108864, 67108864) 398 DISPATCH(runtime·call134217728, 134217728) 399 DISPATCH(runtime·call268435456, 268435456) 400 DISPATCH(runtime·call536870912, 536870912) 401 DISPATCH(runtime·call1073741824, 1073741824) 402 MOVD $runtime·badreflectcall(SB), R5 403 BR (R5) 404 405 #define CALLFN(NAME,MAXSIZE) \ 406 TEXT NAME(SB), WRAPPER, $MAXSIZE-48; \ 407 NO_LOCAL_POINTERS; \ 408 /* copy arguments to stack */ \ 409 MOVD stackArgs+16(FP), R4; \ 410 MOVWZ stackArgsSize+24(FP), R5; \ 411 MOVD $stack-MAXSIZE(SP), R6; \ 412 loopArgs: /* copy 256 bytes at a time */ \ 413 CMP R5, $256; \ 414 BLT tailArgs; \ 415 SUB $256, R5; \ 416 MVC $256, 0(R4), 0(R6); \ 417 MOVD $256(R4), R4; \ 418 MOVD $256(R6), R6; \ 419 BR loopArgs; \ 420 tailArgs: /* copy remaining bytes */ \ 421 CMP R5, $0; \ 422 BEQ callFunction; \ 423 SUB $1, R5; \ 424 EXRL $callfnMVC<>(SB), R5; \ 425 callFunction: \ 426 MOVD f+8(FP), R12; \ 427 MOVD (R12), R8; \ 428 PCDATA $PCDATA_StackMapIndex, $0; \ 429 BL (R8); \ 430 /* copy return values back */ \ 431 MOVD stackArgsType+0(FP), R7; \ 432 MOVD stackArgs+16(FP), R6; \ 433 MOVWZ stackArgsSize+24(FP), R5; \ 434 MOVD $stack-MAXSIZE(SP), R4; \ 435 MOVWZ stackRetOffset+28(FP), R1; \ 436 ADD R1, R4; \ 437 ADD R1, R6; \ 438 SUB R1, R5; \ 439 BL callRet<>(SB); \ 440 RET 441 442 // callRet copies return values back at the end of call*. This is a 443 // separate function so it can allocate stack space for the arguments 444 // to reflectcallmove. It does not follow the Go ABI; it expects its 445 // arguments in registers. 446 TEXT callRet<>(SB), NOSPLIT, $40-0 447 MOVD R7, 8(R15) 448 MOVD R6, 16(R15) 449 MOVD R4, 24(R15) 450 MOVD R5, 32(R15) 451 MOVD $0, 40(R15) 452 BL runtime·reflectcallmove(SB) 453 RET 454 455 CALLFN(·call16, 16) 456 CALLFN(·call32, 32) 457 CALLFN(·call64, 64) 458 CALLFN(·call128, 128) 459 CALLFN(·call256, 256) 460 CALLFN(·call512, 512) 461 CALLFN(·call1024, 1024) 462 CALLFN(·call2048, 2048) 463 CALLFN(·call4096, 4096) 464 CALLFN(·call8192, 8192) 465 CALLFN(·call16384, 16384) 466 CALLFN(·call32768, 32768) 467 CALLFN(·call65536, 65536) 468 CALLFN(·call131072, 131072) 469 CALLFN(·call262144, 262144) 470 CALLFN(·call524288, 524288) 471 CALLFN(·call1048576, 1048576) 472 CALLFN(·call2097152, 2097152) 473 CALLFN(·call4194304, 4194304) 474 CALLFN(·call8388608, 8388608) 475 CALLFN(·call16777216, 16777216) 476 CALLFN(·call33554432, 33554432) 477 CALLFN(·call67108864, 67108864) 478 CALLFN(·call134217728, 134217728) 479 CALLFN(·call268435456, 268435456) 480 CALLFN(·call536870912, 536870912) 481 CALLFN(·call1073741824, 1073741824) 482 483 // Not a function: target for EXRL (execute relative long) instruction. 484 TEXT callfnMVC<>(SB),NOSPLIT|NOFRAME,$0-0 485 MVC $1, 0(R4), 0(R6) 486 487 TEXT runtime·procyield(SB),NOSPLIT,$0-0 488 RET 489 490 // Save state of caller into g->sched, 491 // but using fake PC from systemstack_switch. 492 // Must only be called from functions with no locals ($0) 493 // or else unwinding from systemstack_switch is incorrect. 494 // Smashes R1. 495 TEXT gosave_systemstack_switch<>(SB),NOSPLIT|NOFRAME,$0 496 MOVD $runtime·systemstack_switch(SB), R1 497 ADD $16, R1 // get past prologue 498 MOVD R1, (g_sched+gobuf_pc)(g) 499 MOVD R15, (g_sched+gobuf_sp)(g) 500 MOVD $0, (g_sched+gobuf_lr)(g) 501 MOVD $0, (g_sched+gobuf_ret)(g) 502 // Assert ctxt is zero. See func save. 503 MOVD (g_sched+gobuf_ctxt)(g), R1 504 CMPBEQ R1, $0, 2(PC) 505 BL runtime·abort(SB) 506 RET 507 508 // func asmcgocall(fn, arg unsafe.Pointer) int32 509 // Call fn(arg) on the scheduler stack, 510 // aligned appropriately for the gcc ABI. 511 // See cgocall.go for more details. 512 TEXT ·asmcgocall(SB),NOSPLIT,$0-20 513 // R2 = argc; R3 = argv; R11 = temp; R13 = g; R15 = stack pointer 514 // C TLS base pointer in AR0:AR1 515 MOVD fn+0(FP), R3 516 MOVD arg+8(FP), R4 517 518 MOVD R15, R2 // save original stack pointer 519 MOVD g, R5 520 521 // Figure out if we need to switch to m->g0 stack. 522 // We get called to create new OS threads too, and those 523 // come in on the m->g0 stack already. Or we might already 524 // be on the m->gsignal stack. 525 MOVD g_m(g), R6 526 MOVD m_gsignal(R6), R7 527 CMPBEQ R7, g, g0 528 MOVD m_g0(R6), R7 529 CMPBEQ R7, g, g0 530 BL gosave_systemstack_switch<>(SB) 531 MOVD R7, g 532 BL runtime·save_g(SB) 533 MOVD (g_sched+gobuf_sp)(g), R15 534 535 // Now on a scheduling stack (a pthread-created stack). 536 g0: 537 // Save room for two of our pointers, plus 160 bytes of callee 538 // save area that lives on the caller stack. 539 SUB $176, R15 540 MOVD $~7, R6 541 AND R6, R15 // 8-byte alignment for gcc ABI 542 MOVD R5, 168(R15) // save old g on stack 543 MOVD (g_stack+stack_hi)(R5), R5 544 SUB R2, R5 545 MOVD R5, 160(R15) // save depth in old g stack (can't just save SP, as stack might be copied during a callback) 546 MOVD $0, 0(R15) // clear back chain pointer (TODO can we give it real back trace information?) 547 MOVD R4, R2 // arg in R2 548 BL R3 // can clobber: R0-R5, R14, F0-F3, F5, F7-F15 549 550 XOR R0, R0 // set R0 back to 0. 551 // Restore g, stack pointer. 552 MOVD 168(R15), g 553 BL runtime·save_g(SB) 554 MOVD (g_stack+stack_hi)(g), R5 555 MOVD 160(R15), R6 556 SUB R6, R5 557 MOVD R5, R15 558 559 MOVW R2, ret+16(FP) 560 RET 561 562 // cgocallback(fn, frame unsafe.Pointer, ctxt uintptr) 563 // See cgocall.go for more details. 564 TEXT ·cgocallback(SB),NOSPLIT,$24-24 565 NO_LOCAL_POINTERS 566 567 // Load m and g from thread-local storage. 568 MOVB runtime·iscgo(SB), R3 569 CMPBEQ R3, $0, nocgo 570 BL runtime·load_g(SB) 571 572 nocgo: 573 // If g is nil, Go did not create the current thread. 574 // Call needm to obtain one for temporary use. 575 // In this case, we're running on the thread stack, so there's 576 // lots of space, but the linker doesn't know. Hide the call from 577 // the linker analysis by using an indirect call. 578 CMPBEQ g, $0, needm 579 580 MOVD g_m(g), R8 581 MOVD R8, savedm-8(SP) 582 BR havem 583 584 needm: 585 MOVD g, savedm-8(SP) // g is zero, so is m. 586 MOVD $runtime·needm(SB), R3 587 BL (R3) 588 589 // Set m->sched.sp = SP, so that if a panic happens 590 // during the function we are about to execute, it will 591 // have a valid SP to run on the g0 stack. 592 // The next few lines (after the havem label) 593 // will save this SP onto the stack and then write 594 // the same SP back to m->sched.sp. That seems redundant, 595 // but if an unrecovered panic happens, unwindm will 596 // restore the g->sched.sp from the stack location 597 // and then systemstack will try to use it. If we don't set it here, 598 // that restored SP will be uninitialized (typically 0) and 599 // will not be usable. 600 MOVD g_m(g), R8 601 MOVD m_g0(R8), R3 602 MOVD R15, (g_sched+gobuf_sp)(R3) 603 604 havem: 605 // Now there's a valid m, and we're running on its m->g0. 606 // Save current m->g0->sched.sp on stack and then set it to SP. 607 // Save current sp in m->g0->sched.sp in preparation for 608 // switch back to m->curg stack. 609 // NOTE: unwindm knows that the saved g->sched.sp is at 8(R1) aka savedsp-16(SP). 610 MOVD m_g0(R8), R3 611 MOVD (g_sched+gobuf_sp)(R3), R4 612 MOVD R4, savedsp-24(SP) // must match frame size 613 MOVD R15, (g_sched+gobuf_sp)(R3) 614 615 // Switch to m->curg stack and call runtime.cgocallbackg. 616 // Because we are taking over the execution of m->curg 617 // but *not* resuming what had been running, we need to 618 // save that information (m->curg->sched) so we can restore it. 619 // We can restore m->curg->sched.sp easily, because calling 620 // runtime.cgocallbackg leaves SP unchanged upon return. 621 // To save m->curg->sched.pc, we push it onto the curg stack and 622 // open a frame the same size as cgocallback's g0 frame. 623 // Once we switch to the curg stack, the pushed PC will appear 624 // to be the return PC of cgocallback, so that the traceback 625 // will seamlessly trace back into the earlier calls. 626 MOVD m_curg(R8), g 627 BL runtime·save_g(SB) 628 MOVD (g_sched+gobuf_sp)(g), R4 // prepare stack as R4 629 MOVD (g_sched+gobuf_pc)(g), R5 630 MOVD R5, -(24+8)(R4) // "saved LR"; must match frame size 631 // Gather our arguments into registers. 632 MOVD fn+0(FP), R1 633 MOVD frame+8(FP), R2 634 MOVD ctxt+16(FP), R3 635 MOVD $-(24+8)(R4), R15 // switch stack; must match frame size 636 MOVD R1, 8(R15) 637 MOVD R2, 16(R15) 638 MOVD R3, 24(R15) 639 BL runtime·cgocallbackg(SB) 640 641 // Restore g->sched (== m->curg->sched) from saved values. 642 MOVD 0(R15), R5 643 MOVD R5, (g_sched+gobuf_pc)(g) 644 MOVD $(24+8)(R15), R4 // must match frame size 645 MOVD R4, (g_sched+gobuf_sp)(g) 646 647 // Switch back to m->g0's stack and restore m->g0->sched.sp. 648 // (Unlike m->curg, the g0 goroutine never uses sched.pc, 649 // so we do not have to restore it.) 650 MOVD g_m(g), R8 651 MOVD m_g0(R8), g 652 BL runtime·save_g(SB) 653 MOVD (g_sched+gobuf_sp)(g), R15 654 MOVD savedsp-24(SP), R4 // must match frame size 655 MOVD R4, (g_sched+gobuf_sp)(g) 656 657 // If the m on entry was nil, we called needm above to borrow an m 658 // for the duration of the call. Since the call is over, return it with dropm. 659 MOVD savedm-8(SP), R6 660 CMPBNE R6, $0, droppedm 661 MOVD $runtime·dropm(SB), R3 662 BL (R3) 663 droppedm: 664 665 // Done! 666 RET 667 668 // void setg(G*); set g. for use by needm. 669 TEXT runtime·setg(SB), NOSPLIT, $0-8 670 MOVD gg+0(FP), g 671 // This only happens if iscgo, so jump straight to save_g 672 BL runtime·save_g(SB) 673 RET 674 675 // void setg_gcc(G*); set g in C TLS. 676 // Must obey the gcc calling convention. 677 TEXT setg_gcc<>(SB),NOSPLIT|NOFRAME,$0-0 678 // The standard prologue clobbers LR (R14), which is callee-save in 679 // the C ABI, so we have to use NOFRAME and save LR ourselves. 680 MOVD LR, R1 681 // Also save g, R10, and R11 since they're callee-save in C ABI 682 MOVD R10, R3 683 MOVD g, R4 684 MOVD R11, R5 685 686 MOVD R2, g 687 BL runtime·save_g(SB) 688 689 MOVD R5, R11 690 MOVD R4, g 691 MOVD R3, R10 692 MOVD R1, LR 693 RET 694 695 TEXT runtime·abort(SB),NOSPLIT|NOFRAME,$0-0 696 MOVW (R0), R0 697 UNDEF 698 699 // int64 runtime·cputicks(void) 700 TEXT runtime·cputicks(SB),NOSPLIT,$0-8 701 // The TOD clock on s390 counts from the year 1900 in ~250ps intervals. 702 // This means that since about 1972 the msb has been set, making the 703 // result of a call to STORE CLOCK (stck) a negative number. 704 // We clear the msb to make it positive. 705 STCK ret+0(FP) // serialises before and after call 706 MOVD ret+0(FP), R3 // R3 will wrap to 0 in the year 2043 707 SLD $1, R3 708 SRD $1, R3 709 MOVD R3, ret+0(FP) 710 RET 711 712 // AES hashing not implemented for s390x 713 TEXT runtime·memhash(SB),NOSPLIT|NOFRAME,$0-32 714 JMP runtime·memhashFallback(SB) 715 TEXT runtime·strhash(SB),NOSPLIT|NOFRAME,$0-24 716 JMP runtime·strhashFallback(SB) 717 TEXT runtime·memhash32(SB),NOSPLIT|NOFRAME,$0-24 718 JMP runtime·memhash32Fallback(SB) 719 TEXT runtime·memhash64(SB),NOSPLIT|NOFRAME,$0-24 720 JMP runtime·memhash64Fallback(SB) 721 722 TEXT runtime·return0(SB), NOSPLIT, $0 723 MOVW $0, R3 724 RET 725 726 // Called from cgo wrappers, this function returns g->m->curg.stack.hi. 727 // Must obey the gcc calling convention. 728 TEXT _cgo_topofstack(SB),NOSPLIT|NOFRAME,$0 729 // g (R13), R10, R11 and LR (R14) are callee-save in the C ABI, so save them 730 MOVD g, R1 731 MOVD R10, R3 732 MOVD LR, R4 733 MOVD R11, R5 734 735 BL runtime·load_g(SB) // clobbers g (R13), R10, R11 736 MOVD g_m(g), R2 737 MOVD m_curg(R2), R2 738 MOVD (g_stack+stack_hi)(R2), R2 739 740 MOVD R1, g 741 MOVD R3, R10 742 MOVD R4, LR 743 MOVD R5, R11 744 RET 745 746 // The top-most function running on a goroutine 747 // returns to goexit+PCQuantum. 748 TEXT runtime·goexit(SB),NOSPLIT|NOFRAME|TOPFRAME,$0-0 749 BYTE $0x07; BYTE $0x00; // 2-byte nop 750 BL runtime·goexit1(SB) // does not return 751 // traceback from goexit1 must hit code range of goexit 752 BYTE $0x07; BYTE $0x00; // 2-byte nop 753 754 TEXT ·publicationBarrier(SB),NOSPLIT|NOFRAME,$0-0 755 // Stores are already ordered on s390x, so this is just a 756 // compile barrier. 757 RET 758 759 // This is called from .init_array and follows the platform, not Go, ABI. 760 // We are overly conservative. We could only save the registers we use. 761 // However, since this function is only called once per loaded module 762 // performance is unimportant. 763 TEXT runtime·addmoduledata(SB),NOSPLIT|NOFRAME,$0-0 764 // Save R6-R15 in the register save area of the calling function. 765 // Don't bother saving F8-F15 as we aren't doing any calls. 766 STMG R6, R15, 48(R15) 767 768 // append the argument (passed in R2, as per the ELF ABI) to the 769 // moduledata linked list. 770 MOVD runtime·lastmoduledatap(SB), R1 771 MOVD R2, moduledata_next(R1) 772 MOVD R2, runtime·lastmoduledatap(SB) 773 774 // Restore R6-R15. 775 LMG 48(R15), R6, R15 776 RET 777 778 TEXT ·checkASM(SB),NOSPLIT,$0-1 779 MOVB $1, ret+0(FP) 780 RET 781 782 // gcWriteBarrier informs the GC about heap pointer writes. 783 // 784 // gcWriteBarrier does NOT follow the Go ABI. It accepts the 785 // number of bytes of buffer needed in R9, and returns a pointer 786 // to the buffer space in R9. 787 // It clobbers R10 (the temp register) and R1 (used by PLT stub). 788 // It does not clobber any other general-purpose registers, 789 // but may clobber others (e.g., floating point registers). 790 TEXT gcWriteBarrier<>(SB),NOSPLIT,$96 791 // Save the registers clobbered by the fast path. 792 MOVD R4, 96(R15) 793 retry: 794 MOVD g_m(g), R1 795 MOVD m_p(R1), R1 796 // Increment wbBuf.next position. 797 MOVD R9, R4 798 ADD (p_wbBuf+wbBuf_next)(R1), R4 799 // Is the buffer full? 800 MOVD (p_wbBuf+wbBuf_end)(R1), R10 801 CMPUBGT R4, R10, flush 802 // Commit to the larger buffer. 803 MOVD R4, (p_wbBuf+wbBuf_next)(R1) 804 // Make return value (the original next position) 805 SUB R9, R4, R9 806 // Restore registers. 807 MOVD 96(R15), R4 808 RET 809 810 flush: 811 // Save all general purpose registers since these could be 812 // clobbered by wbBufFlush and were not saved by the caller. 813 STMG R2, R3, 8(R15) 814 MOVD R0, 24(R15) 815 // R1 already saved. 816 // R4 already saved. 817 STMG R5, R12, 32(R15) // save R5 - R12 818 // R13 is g. 819 // R14 is LR. 820 // R15 is SP. 821 822 CALL runtime·wbBufFlush(SB) 823 824 LMG 8(R15), R2, R3 // restore R2 - R3 825 MOVD 24(R15), R0 // restore R0 826 LMG 32(R15), R5, R12 // restore R5 - R12 827 JMP retry 828 829 TEXT runtime·gcWriteBarrier1<ABIInternal>(SB),NOSPLIT,$0 830 MOVD $8, R9 831 JMP gcWriteBarrier<>(SB) 832 TEXT runtime·gcWriteBarrier2<ABIInternal>(SB),NOSPLIT,$0 833 MOVD $16, R9 834 JMP gcWriteBarrier<>(SB) 835 TEXT runtime·gcWriteBarrier3<ABIInternal>(SB),NOSPLIT,$0 836 MOVD $24, R9 837 JMP gcWriteBarrier<>(SB) 838 TEXT runtime·gcWriteBarrier4<ABIInternal>(SB),NOSPLIT,$0 839 MOVD $32, R9 840 JMP gcWriteBarrier<>(SB) 841 TEXT runtime·gcWriteBarrier5<ABIInternal>(SB),NOSPLIT,$0 842 MOVD $40, R9 843 JMP gcWriteBarrier<>(SB) 844 TEXT runtime·gcWriteBarrier6<ABIInternal>(SB),NOSPLIT,$0 845 MOVD $48, R9 846 JMP gcWriteBarrier<>(SB) 847 TEXT runtime·gcWriteBarrier7<ABIInternal>(SB),NOSPLIT,$0 848 MOVD $56, R9 849 JMP gcWriteBarrier<>(SB) 850 TEXT runtime·gcWriteBarrier8<ABIInternal>(SB),NOSPLIT,$0 851 MOVD $64, R9 852 JMP gcWriteBarrier<>(SB) 853 854 // Note: these functions use a special calling convention to save generated code space. 855 // Arguments are passed in registers, but the space for those arguments are allocated 856 // in the caller's stack frame. These stubs write the args into that stack space and 857 // then tail call to the corresponding runtime handler. 858 // The tail call makes these stubs disappear in backtraces. 859 TEXT runtime·panicIndex(SB),NOSPLIT,$0-16 860 MOVD R0, x+0(FP) 861 MOVD R1, y+8(FP) 862 JMP runtime·goPanicIndex(SB) 863 TEXT runtime·panicIndexU(SB),NOSPLIT,$0-16 864 MOVD R0, x+0(FP) 865 MOVD R1, y+8(FP) 866 JMP runtime·goPanicIndexU(SB) 867 TEXT runtime·panicSliceAlen(SB),NOSPLIT,$0-16 868 MOVD R1, x+0(FP) 869 MOVD R2, y+8(FP) 870 JMP runtime·goPanicSliceAlen(SB) 871 TEXT runtime·panicSliceAlenU(SB),NOSPLIT,$0-16 872 MOVD R1, x+0(FP) 873 MOVD R2, y+8(FP) 874 JMP runtime·goPanicSliceAlenU(SB) 875 TEXT runtime·panicSliceAcap(SB),NOSPLIT,$0-16 876 MOVD R1, x+0(FP) 877 MOVD R2, y+8(FP) 878 JMP runtime·goPanicSliceAcap(SB) 879 TEXT runtime·panicSliceAcapU(SB),NOSPLIT,$0-16 880 MOVD R1, x+0(FP) 881 MOVD R2, y+8(FP) 882 JMP runtime·goPanicSliceAcapU(SB) 883 TEXT runtime·panicSliceB(SB),NOSPLIT,$0-16 884 MOVD R0, x+0(FP) 885 MOVD R1, y+8(FP) 886 JMP runtime·goPanicSliceB(SB) 887 TEXT runtime·panicSliceBU(SB),NOSPLIT,$0-16 888 MOVD R0, x+0(FP) 889 MOVD R1, y+8(FP) 890 JMP runtime·goPanicSliceBU(SB) 891 TEXT runtime·panicSlice3Alen(SB),NOSPLIT,$0-16 892 MOVD R2, x+0(FP) 893 MOVD R3, y+8(FP) 894 JMP runtime·goPanicSlice3Alen(SB) 895 TEXT runtime·panicSlice3AlenU(SB),NOSPLIT,$0-16 896 MOVD R2, x+0(FP) 897 MOVD R3, y+8(FP) 898 JMP runtime·goPanicSlice3AlenU(SB) 899 TEXT runtime·panicSlice3Acap(SB),NOSPLIT,$0-16 900 MOVD R2, x+0(FP) 901 MOVD R3, y+8(FP) 902 JMP runtime·goPanicSlice3Acap(SB) 903 TEXT runtime·panicSlice3AcapU(SB),NOSPLIT,$0-16 904 MOVD R2, x+0(FP) 905 MOVD R3, y+8(FP) 906 JMP runtime·goPanicSlice3AcapU(SB) 907 TEXT runtime·panicSlice3B(SB),NOSPLIT,$0-16 908 MOVD R1, x+0(FP) 909 MOVD R2, y+8(FP) 910 JMP runtime·goPanicSlice3B(SB) 911 TEXT runtime·panicSlice3BU(SB),NOSPLIT,$0-16 912 MOVD R1, x+0(FP) 913 MOVD R2, y+8(FP) 914 JMP runtime·goPanicSlice3BU(SB) 915 TEXT runtime·panicSlice3C(SB),NOSPLIT,$0-16 916 MOVD R0, x+0(FP) 917 MOVD R1, y+8(FP) 918 JMP runtime·goPanicSlice3C(SB) 919 TEXT runtime·panicSlice3CU(SB),NOSPLIT,$0-16 920 MOVD R0, x+0(FP) 921 MOVD R1, y+8(FP) 922 JMP runtime·goPanicSlice3CU(SB) 923 TEXT runtime·panicSliceConvert(SB),NOSPLIT,$0-16 924 MOVD R2, x+0(FP) 925 MOVD R3, y+8(FP) 926 JMP runtime·goPanicSliceConvert(SB)