github.com/twelsh-aw/go/src@v0.0.0-20230516233729-a56fe86a7c81/runtime/cgocall.go (about)

     1  // Copyright 2009 The Go Authors. All rights reserved.
     2  // Use of this source code is governed by a BSD-style
     3  // license that can be found in the LICENSE file.
     4  
     5  // Cgo call and callback support.
     6  //
     7  // To call into the C function f from Go, the cgo-generated code calls
     8  // runtime.cgocall(_cgo_Cfunc_f, frame), where _cgo_Cfunc_f is a
     9  // gcc-compiled function written by cgo.
    10  //
    11  // runtime.cgocall (below) calls entersyscall so as not to block
    12  // other goroutines or the garbage collector, and then calls
    13  // runtime.asmcgocall(_cgo_Cfunc_f, frame).
    14  //
    15  // runtime.asmcgocall (in asm_$GOARCH.s) switches to the m->g0 stack
    16  // (assumed to be an operating system-allocated stack, so safe to run
    17  // gcc-compiled code on) and calls _cgo_Cfunc_f(frame).
    18  //
    19  // _cgo_Cfunc_f invokes the actual C function f with arguments
    20  // taken from the frame structure, records the results in the frame,
    21  // and returns to runtime.asmcgocall.
    22  //
    23  // After it regains control, runtime.asmcgocall switches back to the
    24  // original g (m->curg)'s stack and returns to runtime.cgocall.
    25  //
    26  // After it regains control, runtime.cgocall calls exitsyscall, which blocks
    27  // until this m can run Go code without violating the $GOMAXPROCS limit,
    28  // and then unlocks g from m.
    29  //
    30  // The above description skipped over the possibility of the gcc-compiled
    31  // function f calling back into Go. If that happens, we continue down
    32  // the rabbit hole during the execution of f.
    33  //
    34  // To make it possible for gcc-compiled C code to call a Go function p.GoF,
    35  // cgo writes a gcc-compiled function named GoF (not p.GoF, since gcc doesn't
    36  // know about packages).  The gcc-compiled C function f calls GoF.
    37  //
    38  // GoF initializes "frame", a structure containing all of its
    39  // arguments and slots for p.GoF's results. It calls
    40  // crosscall2(_cgoexp_GoF, frame, framesize, ctxt) using the gcc ABI.
    41  //
    42  // crosscall2 (in cgo/asm_$GOARCH.s) is a four-argument adapter from
    43  // the gcc function call ABI to the gc function call ABI. At this
    44  // point we're in the Go runtime, but we're still running on m.g0's
    45  // stack and outside the $GOMAXPROCS limit. crosscall2 calls
    46  // runtime.cgocallback(_cgoexp_GoF, frame, ctxt) using the gc ABI.
    47  // (crosscall2's framesize argument is no longer used, but there's one
    48  // case where SWIG calls crosscall2 directly and expects to pass this
    49  // argument. See _cgo_panic.)
    50  //
    51  // runtime.cgocallback (in asm_$GOARCH.s) switches from m.g0's stack
    52  // to the original g (m.curg)'s stack, on which it calls
    53  // runtime.cgocallbackg(_cgoexp_GoF, frame, ctxt). As part of the
    54  // stack switch, runtime.cgocallback saves the current SP as
    55  // m.g0.sched.sp, so that any use of m.g0's stack during the execution
    56  // of the callback will be done below the existing stack frames.
    57  // Before overwriting m.g0.sched.sp, it pushes the old value on the
    58  // m.g0 stack, so that it can be restored later.
    59  //
    60  // runtime.cgocallbackg (below) is now running on a real goroutine
    61  // stack (not an m.g0 stack).  First it calls runtime.exitsyscall, which will
    62  // block until the $GOMAXPROCS limit allows running this goroutine.
    63  // Once exitsyscall has returned, it is safe to do things like call the memory
    64  // allocator or invoke the Go callback function.  runtime.cgocallbackg
    65  // first defers a function to unwind m.g0.sched.sp, so that if p.GoF
    66  // panics, m.g0.sched.sp will be restored to its old value: the m.g0 stack
    67  // and the m.curg stack will be unwound in lock step.
    68  // Then it calls _cgoexp_GoF(frame).
    69  //
    70  // _cgoexp_GoF, which was generated by cmd/cgo, unpacks the arguments
    71  // from frame, calls p.GoF, writes the results back to frame, and
    72  // returns. Now we start unwinding this whole process.
    73  //
    74  // runtime.cgocallbackg pops but does not execute the deferred
    75  // function to unwind m.g0.sched.sp, calls runtime.entersyscall, and
    76  // returns to runtime.cgocallback.
    77  //
    78  // After it regains control, runtime.cgocallback switches back to
    79  // m.g0's stack (the pointer is still in m.g0.sched.sp), restores the old
    80  // m.g0.sched.sp value from the stack, and returns to crosscall2.
    81  //
    82  // crosscall2 restores the callee-save registers for gcc and returns
    83  // to GoF, which unpacks any result values and returns to f.
    84  
    85  package runtime
    86  
    87  import (
    88  	"internal/goarch"
    89  	"internal/goexperiment"
    90  	"runtime/internal/sys"
    91  	"unsafe"
    92  )
    93  
    94  // Addresses collected in a cgo backtrace when crashing.
    95  // Length must match arg.Max in x_cgo_callers in runtime/cgo/gcc_traceback.c.
    96  type cgoCallers [32]uintptr
    97  
    98  // argset matches runtime/cgo/linux_syscall.c:argset_t
    99  type argset struct {
   100  	args   unsafe.Pointer
   101  	retval uintptr
   102  }
   103  
   104  // wrapper for syscall package to call cgocall for libc (cgo) calls.
   105  //
   106  //go:linkname syscall_cgocaller syscall.cgocaller
   107  //go:nosplit
   108  //go:uintptrescapes
   109  func syscall_cgocaller(fn unsafe.Pointer, args ...uintptr) uintptr {
   110  	as := argset{args: unsafe.Pointer(&args[0])}
   111  	cgocall(fn, unsafe.Pointer(&as))
   112  	return as.retval
   113  }
   114  
   115  var ncgocall uint64 // number of cgo calls in total for dead m
   116  
   117  // Call from Go to C.
   118  //
   119  // This must be nosplit because it's used for syscalls on some
   120  // platforms. Syscalls may have untyped arguments on the stack, so
   121  // it's not safe to grow or scan the stack.
   122  //
   123  //go:nosplit
   124  func cgocall(fn, arg unsafe.Pointer) int32 {
   125  	if !iscgo && GOOS != "solaris" && GOOS != "illumos" && GOOS != "windows" {
   126  		throw("cgocall unavailable")
   127  	}
   128  
   129  	if fn == nil {
   130  		throw("cgocall nil")
   131  	}
   132  
   133  	if raceenabled {
   134  		racereleasemerge(unsafe.Pointer(&racecgosync))
   135  	}
   136  
   137  	mp := getg().m
   138  	mp.ncgocall++
   139  
   140  	// Reset traceback.
   141  	mp.cgoCallers[0] = 0
   142  
   143  	// Announce we are entering a system call
   144  	// so that the scheduler knows to create another
   145  	// M to run goroutines while we are in the
   146  	// foreign code.
   147  	//
   148  	// The call to asmcgocall is guaranteed not to
   149  	// grow the stack and does not allocate memory,
   150  	// so it is safe to call while "in a system call", outside
   151  	// the $GOMAXPROCS accounting.
   152  	//
   153  	// fn may call back into Go code, in which case we'll exit the
   154  	// "system call", run the Go code (which may grow the stack),
   155  	// and then re-enter the "system call" reusing the PC and SP
   156  	// saved by entersyscall here.
   157  	entersyscall()
   158  
   159  	// Tell asynchronous preemption that we're entering external
   160  	// code. We do this after entersyscall because this may block
   161  	// and cause an async preemption to fail, but at this point a
   162  	// sync preemption will succeed (though this is not a matter
   163  	// of correctness).
   164  	osPreemptExtEnter(mp)
   165  
   166  	mp.incgo = true
   167  	// We use ncgo as a check during execution tracing for whether there is
   168  	// any C on the call stack, which there will be after this point. If
   169  	// there isn't, we can use frame pointer unwinding to collect call
   170  	// stacks efficiently. This will be the case for the first Go-to-C call
   171  	// on a stack, so it's prefereable to update it here, after we emit a
   172  	// trace event in entersyscall above.
   173  	mp.ncgo++
   174  
   175  	errno := asmcgocall(fn, arg)
   176  
   177  	// Update accounting before exitsyscall because exitsyscall may
   178  	// reschedule us on to a different M.
   179  	mp.incgo = false
   180  	mp.ncgo--
   181  
   182  	osPreemptExtExit(mp)
   183  
   184  	exitsyscall()
   185  
   186  	// Note that raceacquire must be called only after exitsyscall has
   187  	// wired this M to a P.
   188  	if raceenabled {
   189  		raceacquire(unsafe.Pointer(&racecgosync))
   190  	}
   191  
   192  	// From the garbage collector's perspective, time can move
   193  	// backwards in the sequence above. If there's a callback into
   194  	// Go code, GC will see this function at the call to
   195  	// asmcgocall. When the Go call later returns to C, the
   196  	// syscall PC/SP is rolled back and the GC sees this function
   197  	// back at the call to entersyscall. Normally, fn and arg
   198  	// would be live at entersyscall and dead at asmcgocall, so if
   199  	// time moved backwards, GC would see these arguments as dead
   200  	// and then live. Prevent these undead arguments from crashing
   201  	// GC by forcing them to stay live across this time warp.
   202  	KeepAlive(fn)
   203  	KeepAlive(arg)
   204  	KeepAlive(mp)
   205  
   206  	return errno
   207  }
   208  
   209  // Call from C back to Go. fn must point to an ABIInternal Go entry-point.
   210  //
   211  //go:nosplit
   212  func cgocallbackg(fn, frame unsafe.Pointer, ctxt uintptr) {
   213  	gp := getg()
   214  	if gp != gp.m.curg {
   215  		println("runtime: bad g in cgocallback")
   216  		exit(2)
   217  	}
   218  
   219  	// The call from C is on gp.m's g0 stack, so we must ensure
   220  	// that we stay on that M. We have to do this before calling
   221  	// exitsyscall, since it would otherwise be free to move us to
   222  	// a different M. The call to unlockOSThread is in unwindm.
   223  	lockOSThread()
   224  
   225  	checkm := gp.m
   226  
   227  	// Save current syscall parameters, so m.syscall can be
   228  	// used again if callback decide to make syscall.
   229  	syscall := gp.m.syscall
   230  
   231  	// entersyscall saves the caller's SP to allow the GC to trace the Go
   232  	// stack. However, since we're returning to an earlier stack frame and
   233  	// need to pair with the entersyscall() call made by cgocall, we must
   234  	// save syscall* and let reentersyscall restore them.
   235  	savedsp := unsafe.Pointer(gp.syscallsp)
   236  	savedpc := gp.syscallpc
   237  	exitsyscall() // coming out of cgo call
   238  	gp.m.incgo = false
   239  
   240  	osPreemptExtExit(gp.m)
   241  
   242  	cgocallbackg1(fn, frame, ctxt) // will call unlockOSThread
   243  
   244  	// At this point unlockOSThread has been called.
   245  	// The following code must not change to a different m.
   246  	// This is enforced by checking incgo in the schedule function.
   247  
   248  	gp.m.incgo = true
   249  
   250  	if gp.m != checkm {
   251  		throw("m changed unexpectedly in cgocallbackg")
   252  	}
   253  
   254  	osPreemptExtEnter(gp.m)
   255  
   256  	// going back to cgo call
   257  	reentersyscall(savedpc, uintptr(savedsp))
   258  
   259  	gp.m.syscall = syscall
   260  }
   261  
   262  func cgocallbackg1(fn, frame unsafe.Pointer, ctxt uintptr) {
   263  	gp := getg()
   264  
   265  	// When we return, undo the call to lockOSThread in cgocallbackg.
   266  	// We must still stay on the same m.
   267  	defer unlockOSThread()
   268  
   269  	if gp.m.needextram || extraMWaiters.Load() > 0 {
   270  		gp.m.needextram = false
   271  		systemstack(newextram)
   272  	}
   273  
   274  	if ctxt != 0 {
   275  		s := append(gp.cgoCtxt, ctxt)
   276  
   277  		// Now we need to set gp.cgoCtxt = s, but we could get
   278  		// a SIGPROF signal while manipulating the slice, and
   279  		// the SIGPROF handler could pick up gp.cgoCtxt while
   280  		// tracing up the stack.  We need to ensure that the
   281  		// handler always sees a valid slice, so set the
   282  		// values in an order such that it always does.
   283  		p := (*slice)(unsafe.Pointer(&gp.cgoCtxt))
   284  		atomicstorep(unsafe.Pointer(&p.array), unsafe.Pointer(&s[0]))
   285  		p.cap = cap(s)
   286  		p.len = len(s)
   287  
   288  		defer func(gp *g) {
   289  			// Decrease the length of the slice by one, safely.
   290  			p := (*slice)(unsafe.Pointer(&gp.cgoCtxt))
   291  			p.len--
   292  		}(gp)
   293  	}
   294  
   295  	if gp.m.ncgo == 0 {
   296  		// The C call to Go came from a thread not currently running
   297  		// any Go. In the case of -buildmode=c-archive or c-shared,
   298  		// this call may be coming in before package initialization
   299  		// is complete. Wait until it is.
   300  		<-main_init_done
   301  	}
   302  
   303  	// Check whether the profiler needs to be turned on or off; this route to
   304  	// run Go code does not use runtime.execute, so bypasses the check there.
   305  	hz := sched.profilehz
   306  	if gp.m.profilehz != hz {
   307  		setThreadCPUProfiler(hz)
   308  	}
   309  
   310  	// Add entry to defer stack in case of panic.
   311  	restore := true
   312  	defer unwindm(&restore)
   313  
   314  	if raceenabled {
   315  		raceacquire(unsafe.Pointer(&racecgosync))
   316  	}
   317  
   318  	// Invoke callback. This function is generated by cmd/cgo and
   319  	// will unpack the argument frame and call the Go function.
   320  	var cb func(frame unsafe.Pointer)
   321  	cbFV := funcval{uintptr(fn)}
   322  	*(*unsafe.Pointer)(unsafe.Pointer(&cb)) = noescape(unsafe.Pointer(&cbFV))
   323  	cb(frame)
   324  
   325  	if raceenabled {
   326  		racereleasemerge(unsafe.Pointer(&racecgosync))
   327  	}
   328  
   329  	// Do not unwind m->g0->sched.sp.
   330  	// Our caller, cgocallback, will do that.
   331  	restore = false
   332  }
   333  
   334  func unwindm(restore *bool) {
   335  	if *restore {
   336  		// Restore sp saved by cgocallback during
   337  		// unwind of g's stack (see comment at top of file).
   338  		mp := acquirem()
   339  		sched := &mp.g0.sched
   340  		sched.sp = *(*uintptr)(unsafe.Pointer(sched.sp + alignUp(sys.MinFrameSize, sys.StackAlign)))
   341  
   342  		// Do the accounting that cgocall will not have a chance to do
   343  		// during an unwind.
   344  		//
   345  		// In the case where a Go call originates from C, ncgo is 0
   346  		// and there is no matching cgocall to end.
   347  		if mp.ncgo > 0 {
   348  			mp.incgo = false
   349  			mp.ncgo--
   350  			osPreemptExtExit(mp)
   351  		}
   352  
   353  		releasem(mp)
   354  	}
   355  }
   356  
   357  // called from assembly.
   358  func badcgocallback() {
   359  	throw("misaligned stack in cgocallback")
   360  }
   361  
   362  // called from (incomplete) assembly.
   363  func cgounimpl() {
   364  	throw("cgo not implemented")
   365  }
   366  
   367  var racecgosync uint64 // represents possible synchronization in C code
   368  
   369  // Pointer checking for cgo code.
   370  
   371  // We want to detect all cases where a program that does not use
   372  // unsafe makes a cgo call passing a Go pointer to memory that
   373  // contains a Go pointer. Here a Go pointer is defined as a pointer
   374  // to memory allocated by the Go runtime. Programs that use unsafe
   375  // can evade this restriction easily, so we don't try to catch them.
   376  // The cgo program will rewrite all possibly bad pointer arguments to
   377  // call cgoCheckPointer, where we can catch cases of a Go pointer
   378  // pointing to a Go pointer.
   379  
   380  // Complicating matters, taking the address of a slice or array
   381  // element permits the C program to access all elements of the slice
   382  // or array. In that case we will see a pointer to a single element,
   383  // but we need to check the entire data structure.
   384  
   385  // The cgoCheckPointer call takes additional arguments indicating that
   386  // it was called on an address expression. An additional argument of
   387  // true means that it only needs to check a single element. An
   388  // additional argument of a slice or array means that it needs to
   389  // check the entire slice/array, but nothing else. Otherwise, the
   390  // pointer could be anything, and we check the entire heap object,
   391  // which is conservative but safe.
   392  
   393  // When and if we implement a moving garbage collector,
   394  // cgoCheckPointer will pin the pointer for the duration of the cgo
   395  // call.  (This is necessary but not sufficient; the cgo program will
   396  // also have to change to pin Go pointers that cannot point to Go
   397  // pointers.)
   398  
   399  // cgoCheckPointer checks if the argument contains a Go pointer that
   400  // points to a Go pointer, and panics if it does.
   401  func cgoCheckPointer(ptr any, arg any) {
   402  	if !goexperiment.CgoCheck2 && debug.cgocheck == 0 {
   403  		return
   404  	}
   405  
   406  	ep := efaceOf(&ptr)
   407  	t := ep._type
   408  
   409  	top := true
   410  	if arg != nil && (t.Kind_&kindMask == kindPtr || t.Kind_&kindMask == kindUnsafePointer) {
   411  		p := ep.data
   412  		if t.Kind_&kindDirectIface == 0 {
   413  			p = *(*unsafe.Pointer)(p)
   414  		}
   415  		if p == nil || !cgoIsGoPointer(p) {
   416  			return
   417  		}
   418  		aep := efaceOf(&arg)
   419  		switch aep._type.Kind_ & kindMask {
   420  		case kindBool:
   421  			if t.Kind_&kindMask == kindUnsafePointer {
   422  				// We don't know the type of the element.
   423  				break
   424  			}
   425  			pt := (*ptrtype)(unsafe.Pointer(t))
   426  			cgoCheckArg(pt.Elem, p, true, false, cgoCheckPointerFail)
   427  			return
   428  		case kindSlice:
   429  			// Check the slice rather than the pointer.
   430  			ep = aep
   431  			t = ep._type
   432  		case kindArray:
   433  			// Check the array rather than the pointer.
   434  			// Pass top as false since we have a pointer
   435  			// to the array.
   436  			ep = aep
   437  			t = ep._type
   438  			top = false
   439  		default:
   440  			throw("can't happen")
   441  		}
   442  	}
   443  
   444  	cgoCheckArg(t, ep.data, t.Kind_&kindDirectIface == 0, top, cgoCheckPointerFail)
   445  }
   446  
   447  const cgoCheckPointerFail = "cgo argument has Go pointer to Go pointer"
   448  const cgoResultFail = "cgo result has Go pointer"
   449  
   450  // cgoCheckArg is the real work of cgoCheckPointer. The argument p
   451  // is either a pointer to the value (of type t), or the value itself,
   452  // depending on indir. The top parameter is whether we are at the top
   453  // level, where Go pointers are allowed.
   454  func cgoCheckArg(t *_type, p unsafe.Pointer, indir, top bool, msg string) {
   455  	if t.PtrBytes == 0 || p == nil {
   456  		// If the type has no pointers there is nothing to do.
   457  		return
   458  	}
   459  
   460  	switch t.Kind_ & kindMask {
   461  	default:
   462  		throw("can't happen")
   463  	case kindArray:
   464  		at := (*arraytype)(unsafe.Pointer(t))
   465  		if !indir {
   466  			if at.Len != 1 {
   467  				throw("can't happen")
   468  			}
   469  			cgoCheckArg(at.Elem, p, at.Elem.Kind_&kindDirectIface == 0, top, msg)
   470  			return
   471  		}
   472  		for i := uintptr(0); i < at.Len; i++ {
   473  			cgoCheckArg(at.Elem, p, true, top, msg)
   474  			p = add(p, at.Elem.Size_)
   475  		}
   476  	case kindChan, kindMap:
   477  		// These types contain internal pointers that will
   478  		// always be allocated in the Go heap. It's never OK
   479  		// to pass them to C.
   480  		panic(errorString(msg))
   481  	case kindFunc:
   482  		if indir {
   483  			p = *(*unsafe.Pointer)(p)
   484  		}
   485  		if !cgoIsGoPointer(p) {
   486  			return
   487  		}
   488  		panic(errorString(msg))
   489  	case kindInterface:
   490  		it := *(**_type)(p)
   491  		if it == nil {
   492  			return
   493  		}
   494  		// A type known at compile time is OK since it's
   495  		// constant. A type not known at compile time will be
   496  		// in the heap and will not be OK.
   497  		if inheap(uintptr(unsafe.Pointer(it))) {
   498  			panic(errorString(msg))
   499  		}
   500  		p = *(*unsafe.Pointer)(add(p, goarch.PtrSize))
   501  		if !cgoIsGoPointer(p) {
   502  			return
   503  		}
   504  		if !top {
   505  			panic(errorString(msg))
   506  		}
   507  		cgoCheckArg(it, p, it.Kind_&kindDirectIface == 0, false, msg)
   508  	case kindSlice:
   509  		st := (*slicetype)(unsafe.Pointer(t))
   510  		s := (*slice)(p)
   511  		p = s.array
   512  		if p == nil || !cgoIsGoPointer(p) {
   513  			return
   514  		}
   515  		if !top {
   516  			panic(errorString(msg))
   517  		}
   518  		if st.Elem.PtrBytes == 0 {
   519  			return
   520  		}
   521  		for i := 0; i < s.cap; i++ {
   522  			cgoCheckArg(st.Elem, p, true, false, msg)
   523  			p = add(p, st.Elem.Size_)
   524  		}
   525  	case kindString:
   526  		ss := (*stringStruct)(p)
   527  		if !cgoIsGoPointer(ss.str) {
   528  			return
   529  		}
   530  		if !top {
   531  			panic(errorString(msg))
   532  		}
   533  	case kindStruct:
   534  		st := (*structtype)(unsafe.Pointer(t))
   535  		if !indir {
   536  			if len(st.Fields) != 1 {
   537  				throw("can't happen")
   538  			}
   539  			cgoCheckArg(st.Fields[0].Typ, p, st.Fields[0].Typ.Kind_&kindDirectIface == 0, top, msg)
   540  			return
   541  		}
   542  		for _, f := range st.Fields {
   543  			if f.Typ.PtrBytes == 0 {
   544  				continue
   545  			}
   546  			cgoCheckArg(f.Typ, add(p, f.Offset), true, top, msg)
   547  		}
   548  	case kindPtr, kindUnsafePointer:
   549  		if indir {
   550  			p = *(*unsafe.Pointer)(p)
   551  			if p == nil {
   552  				return
   553  			}
   554  		}
   555  
   556  		if !cgoIsGoPointer(p) {
   557  			return
   558  		}
   559  		if !top {
   560  			panic(errorString(msg))
   561  		}
   562  
   563  		cgoCheckUnknownPointer(p, msg)
   564  	}
   565  }
   566  
   567  // cgoCheckUnknownPointer is called for an arbitrary pointer into Go
   568  // memory. It checks whether that Go memory contains any other
   569  // pointer into Go memory. If it does, we panic.
   570  // The return values are unused but useful to see in panic tracebacks.
   571  func cgoCheckUnknownPointer(p unsafe.Pointer, msg string) (base, i uintptr) {
   572  	if inheap(uintptr(p)) {
   573  		b, span, _ := findObject(uintptr(p), 0, 0)
   574  		base = b
   575  		if base == 0 {
   576  			return
   577  		}
   578  		n := span.elemsize
   579  		hbits := heapBitsForAddr(base, n)
   580  		for {
   581  			var addr uintptr
   582  			if hbits, addr = hbits.next(); addr == 0 {
   583  				break
   584  			}
   585  			if cgoIsGoPointer(*(*unsafe.Pointer)(unsafe.Pointer(addr))) {
   586  				panic(errorString(msg))
   587  			}
   588  		}
   589  
   590  		return
   591  	}
   592  
   593  	for _, datap := range activeModules() {
   594  		if cgoInRange(p, datap.data, datap.edata) || cgoInRange(p, datap.bss, datap.ebss) {
   595  			// We have no way to know the size of the object.
   596  			// We have to assume that it might contain a pointer.
   597  			panic(errorString(msg))
   598  		}
   599  		// In the text or noptr sections, we know that the
   600  		// pointer does not point to a Go pointer.
   601  	}
   602  
   603  	return
   604  }
   605  
   606  // cgoIsGoPointer reports whether the pointer is a Go pointer--a
   607  // pointer to Go memory. We only care about Go memory that might
   608  // contain pointers.
   609  //
   610  //go:nosplit
   611  //go:nowritebarrierrec
   612  func cgoIsGoPointer(p unsafe.Pointer) bool {
   613  	if p == nil {
   614  		return false
   615  	}
   616  
   617  	if inHeapOrStack(uintptr(p)) {
   618  		return true
   619  	}
   620  
   621  	for _, datap := range activeModules() {
   622  		if cgoInRange(p, datap.data, datap.edata) || cgoInRange(p, datap.bss, datap.ebss) {
   623  			return true
   624  		}
   625  	}
   626  
   627  	return false
   628  }
   629  
   630  // cgoInRange reports whether p is between start and end.
   631  //
   632  //go:nosplit
   633  //go:nowritebarrierrec
   634  func cgoInRange(p unsafe.Pointer, start, end uintptr) bool {
   635  	return start <= uintptr(p) && uintptr(p) < end
   636  }
   637  
   638  // cgoCheckResult is called to check the result parameter of an
   639  // exported Go function. It panics if the result is or contains a Go
   640  // pointer.
   641  func cgoCheckResult(val any) {
   642  	if !goexperiment.CgoCheck2 && debug.cgocheck == 0 {
   643  		return
   644  	}
   645  
   646  	ep := efaceOf(&val)
   647  	t := ep._type
   648  	cgoCheckArg(t, ep.data, t.Kind_&kindDirectIface == 0, false, cgoResultFail)
   649  }