github.com/twelsh-aw/go/src@v0.0.0-20230516233729-a56fe86a7c81/runtime/malloc.go (about) 1 // Copyright 2014 The Go Authors. All rights reserved. 2 // Use of this source code is governed by a BSD-style 3 // license that can be found in the LICENSE file. 4 5 // Memory allocator. 6 // 7 // This was originally based on tcmalloc, but has diverged quite a bit. 8 // http://goog-perftools.sourceforge.net/doc/tcmalloc.html 9 10 // The main allocator works in runs of pages. 11 // Small allocation sizes (up to and including 32 kB) are 12 // rounded to one of about 70 size classes, each of which 13 // has its own free set of objects of exactly that size. 14 // Any free page of memory can be split into a set of objects 15 // of one size class, which are then managed using a free bitmap. 16 // 17 // The allocator's data structures are: 18 // 19 // fixalloc: a free-list allocator for fixed-size off-heap objects, 20 // used to manage storage used by the allocator. 21 // mheap: the malloc heap, managed at page (8192-byte) granularity. 22 // mspan: a run of in-use pages managed by the mheap. 23 // mcentral: collects all spans of a given size class. 24 // mcache: a per-P cache of mspans with free space. 25 // mstats: allocation statistics. 26 // 27 // Allocating a small object proceeds up a hierarchy of caches: 28 // 29 // 1. Round the size up to one of the small size classes 30 // and look in the corresponding mspan in this P's mcache. 31 // Scan the mspan's free bitmap to find a free slot. 32 // If there is a free slot, allocate it. 33 // This can all be done without acquiring a lock. 34 // 35 // 2. If the mspan has no free slots, obtain a new mspan 36 // from the mcentral's list of mspans of the required size 37 // class that have free space. 38 // Obtaining a whole span amortizes the cost of locking 39 // the mcentral. 40 // 41 // 3. If the mcentral's mspan list is empty, obtain a run 42 // of pages from the mheap to use for the mspan. 43 // 44 // 4. If the mheap is empty or has no page runs large enough, 45 // allocate a new group of pages (at least 1MB) from the 46 // operating system. Allocating a large run of pages 47 // amortizes the cost of talking to the operating system. 48 // 49 // Sweeping an mspan and freeing objects on it proceeds up a similar 50 // hierarchy: 51 // 52 // 1. If the mspan is being swept in response to allocation, it 53 // is returned to the mcache to satisfy the allocation. 54 // 55 // 2. Otherwise, if the mspan still has allocated objects in it, 56 // it is placed on the mcentral free list for the mspan's size 57 // class. 58 // 59 // 3. Otherwise, if all objects in the mspan are free, the mspan's 60 // pages are returned to the mheap and the mspan is now dead. 61 // 62 // Allocating and freeing a large object uses the mheap 63 // directly, bypassing the mcache and mcentral. 64 // 65 // If mspan.needzero is false, then free object slots in the mspan are 66 // already zeroed. Otherwise if needzero is true, objects are zeroed as 67 // they are allocated. There are various benefits to delaying zeroing 68 // this way: 69 // 70 // 1. Stack frame allocation can avoid zeroing altogether. 71 // 72 // 2. It exhibits better temporal locality, since the program is 73 // probably about to write to the memory. 74 // 75 // 3. We don't zero pages that never get reused. 76 77 // Virtual memory layout 78 // 79 // The heap consists of a set of arenas, which are 64MB on 64-bit and 80 // 4MB on 32-bit (heapArenaBytes). Each arena's start address is also 81 // aligned to the arena size. 82 // 83 // Each arena has an associated heapArena object that stores the 84 // metadata for that arena: the heap bitmap for all words in the arena 85 // and the span map for all pages in the arena. heapArena objects are 86 // themselves allocated off-heap. 87 // 88 // Since arenas are aligned, the address space can be viewed as a 89 // series of arena frames. The arena map (mheap_.arenas) maps from 90 // arena frame number to *heapArena, or nil for parts of the address 91 // space not backed by the Go heap. The arena map is structured as a 92 // two-level array consisting of a "L1" arena map and many "L2" arena 93 // maps; however, since arenas are large, on many architectures, the 94 // arena map consists of a single, large L2 map. 95 // 96 // The arena map covers the entire possible address space, allowing 97 // the Go heap to use any part of the address space. The allocator 98 // attempts to keep arenas contiguous so that large spans (and hence 99 // large objects) can cross arenas. 100 101 package runtime 102 103 import ( 104 "internal/goarch" 105 "internal/goos" 106 "runtime/internal/atomic" 107 "runtime/internal/math" 108 "runtime/internal/sys" 109 "unsafe" 110 ) 111 112 const ( 113 maxTinySize = _TinySize 114 tinySizeClass = _TinySizeClass 115 maxSmallSize = _MaxSmallSize 116 117 pageShift = _PageShift 118 pageSize = _PageSize 119 120 concurrentSweep = _ConcurrentSweep 121 122 _PageSize = 1 << _PageShift 123 _PageMask = _PageSize - 1 124 125 // _64bit = 1 on 64-bit systems, 0 on 32-bit systems 126 _64bit = 1 << (^uintptr(0) >> 63) / 2 127 128 // Tiny allocator parameters, see "Tiny allocator" comment in malloc.go. 129 _TinySize = 16 130 _TinySizeClass = int8(2) 131 132 _FixAllocChunk = 16 << 10 // Chunk size for FixAlloc 133 134 // Per-P, per order stack segment cache size. 135 _StackCacheSize = 32 * 1024 136 137 // Number of orders that get caching. Order 0 is FixedStack 138 // and each successive order is twice as large. 139 // We want to cache 2KB, 4KB, 8KB, and 16KB stacks. Larger stacks 140 // will be allocated directly. 141 // Since FixedStack is different on different systems, we 142 // must vary NumStackOrders to keep the same maximum cached size. 143 // OS | FixedStack | NumStackOrders 144 // -----------------+------------+--------------- 145 // linux/darwin/bsd | 2KB | 4 146 // windows/32 | 4KB | 3 147 // windows/64 | 8KB | 2 148 // plan9 | 4KB | 3 149 _NumStackOrders = 4 - goarch.PtrSize/4*goos.IsWindows - 1*goos.IsPlan9 150 151 // heapAddrBits is the number of bits in a heap address. On 152 // amd64, addresses are sign-extended beyond heapAddrBits. On 153 // other arches, they are zero-extended. 154 // 155 // On most 64-bit platforms, we limit this to 48 bits based on a 156 // combination of hardware and OS limitations. 157 // 158 // amd64 hardware limits addresses to 48 bits, sign-extended 159 // to 64 bits. Addresses where the top 16 bits are not either 160 // all 0 or all 1 are "non-canonical" and invalid. Because of 161 // these "negative" addresses, we offset addresses by 1<<47 162 // (arenaBaseOffset) on amd64 before computing indexes into 163 // the heap arenas index. In 2017, amd64 hardware added 164 // support for 57 bit addresses; however, currently only Linux 165 // supports this extension and the kernel will never choose an 166 // address above 1<<47 unless mmap is called with a hint 167 // address above 1<<47 (which we never do). 168 // 169 // arm64 hardware (as of ARMv8) limits user addresses to 48 170 // bits, in the range [0, 1<<48). 171 // 172 // ppc64, mips64, and s390x support arbitrary 64 bit addresses 173 // in hardware. On Linux, Go leans on stricter OS limits. Based 174 // on Linux's processor.h, the user address space is limited as 175 // follows on 64-bit architectures: 176 // 177 // Architecture Name Maximum Value (exclusive) 178 // --------------------------------------------------------------------- 179 // amd64 TASK_SIZE_MAX 0x007ffffffff000 (47 bit addresses) 180 // arm64 TASK_SIZE_64 0x01000000000000 (48 bit addresses) 181 // ppc64{,le} TASK_SIZE_USER64 0x00400000000000 (46 bit addresses) 182 // mips64{,le} TASK_SIZE64 0x00010000000000 (40 bit addresses) 183 // s390x TASK_SIZE 1<<64 (64 bit addresses) 184 // 185 // These limits may increase over time, but are currently at 186 // most 48 bits except on s390x. On all architectures, Linux 187 // starts placing mmap'd regions at addresses that are 188 // significantly below 48 bits, so even if it's possible to 189 // exceed Go's 48 bit limit, it's extremely unlikely in 190 // practice. 191 // 192 // On 32-bit platforms, we accept the full 32-bit address 193 // space because doing so is cheap. 194 // mips32 only has access to the low 2GB of virtual memory, so 195 // we further limit it to 31 bits. 196 // 197 // On ios/arm64, although 64-bit pointers are presumably 198 // available, pointers are truncated to 33 bits in iOS <14. 199 // Furthermore, only the top 4 GiB of the address space are 200 // actually available to the application. In iOS >=14, more 201 // of the address space is available, and the OS can now 202 // provide addresses outside of those 33 bits. Pick 40 bits 203 // as a reasonable balance between address space usage by the 204 // page allocator, and flexibility for what mmap'd regions 205 // we'll accept for the heap. We can't just move to the full 206 // 48 bits because this uses too much address space for older 207 // iOS versions. 208 // TODO(mknyszek): Once iOS <14 is deprecated, promote ios/arm64 209 // to a 48-bit address space like every other arm64 platform. 210 // 211 // WebAssembly currently has a limit of 4GB linear memory. 212 heapAddrBits = (_64bit*(1-goarch.IsWasm)*(1-goos.IsIos*goarch.IsArm64))*48 + (1-_64bit+goarch.IsWasm)*(32-(goarch.IsMips+goarch.IsMipsle)) + 40*goos.IsIos*goarch.IsArm64 213 214 // maxAlloc is the maximum size of an allocation. On 64-bit, 215 // it's theoretically possible to allocate 1<<heapAddrBits bytes. On 216 // 32-bit, however, this is one less than 1<<32 because the 217 // number of bytes in the address space doesn't actually fit 218 // in a uintptr. 219 maxAlloc = (1 << heapAddrBits) - (1-_64bit)*1 220 221 // The number of bits in a heap address, the size of heap 222 // arenas, and the L1 and L2 arena map sizes are related by 223 // 224 // (1 << addr bits) = arena size * L1 entries * L2 entries 225 // 226 // Currently, we balance these as follows: 227 // 228 // Platform Addr bits Arena size L1 entries L2 entries 229 // -------------- --------- ---------- ---------- ----------- 230 // */64-bit 48 64MB 1 4M (32MB) 231 // windows/64-bit 48 4MB 64 1M (8MB) 232 // ios/arm64 33 4MB 1 2048 (8KB) 233 // */32-bit 32 4MB 1 1024 (4KB) 234 // */mips(le) 31 4MB 1 512 (2KB) 235 236 // heapArenaBytes is the size of a heap arena. The heap 237 // consists of mappings of size heapArenaBytes, aligned to 238 // heapArenaBytes. The initial heap mapping is one arena. 239 // 240 // This is currently 64MB on 64-bit non-Windows and 4MB on 241 // 32-bit and on Windows. We use smaller arenas on Windows 242 // because all committed memory is charged to the process, 243 // even if it's not touched. Hence, for processes with small 244 // heaps, the mapped arena space needs to be commensurate. 245 // This is particularly important with the race detector, 246 // since it significantly amplifies the cost of committed 247 // memory. 248 heapArenaBytes = 1 << logHeapArenaBytes 249 250 heapArenaWords = heapArenaBytes / goarch.PtrSize 251 252 // logHeapArenaBytes is log_2 of heapArenaBytes. For clarity, 253 // prefer using heapArenaBytes where possible (we need the 254 // constant to compute some other constants). 255 logHeapArenaBytes = (6+20)*(_64bit*(1-goos.IsWindows)*(1-goarch.IsWasm)*(1-goos.IsIos*goarch.IsArm64)) + (2+20)*(_64bit*goos.IsWindows) + (2+20)*(1-_64bit) + (2+20)*goarch.IsWasm + (2+20)*goos.IsIos*goarch.IsArm64 256 257 // heapArenaBitmapWords is the size of each heap arena's bitmap in uintptrs. 258 heapArenaBitmapWords = heapArenaWords / (8 * goarch.PtrSize) 259 260 pagesPerArena = heapArenaBytes / pageSize 261 262 // arenaL1Bits is the number of bits of the arena number 263 // covered by the first level arena map. 264 // 265 // This number should be small, since the first level arena 266 // map requires PtrSize*(1<<arenaL1Bits) of space in the 267 // binary's BSS. It can be zero, in which case the first level 268 // index is effectively unused. There is a performance benefit 269 // to this, since the generated code can be more efficient, 270 // but comes at the cost of having a large L2 mapping. 271 // 272 // We use the L1 map on 64-bit Windows because the arena size 273 // is small, but the address space is still 48 bits, and 274 // there's a high cost to having a large L2. 275 arenaL1Bits = 6 * (_64bit * goos.IsWindows) 276 277 // arenaL2Bits is the number of bits of the arena number 278 // covered by the second level arena index. 279 // 280 // The size of each arena map allocation is proportional to 281 // 1<<arenaL2Bits, so it's important that this not be too 282 // large. 48 bits leads to 32MB arena index allocations, which 283 // is about the practical threshold. 284 arenaL2Bits = heapAddrBits - logHeapArenaBytes - arenaL1Bits 285 286 // arenaL1Shift is the number of bits to shift an arena frame 287 // number by to compute an index into the first level arena map. 288 arenaL1Shift = arenaL2Bits 289 290 // arenaBits is the total bits in a combined arena map index. 291 // This is split between the index into the L1 arena map and 292 // the L2 arena map. 293 arenaBits = arenaL1Bits + arenaL2Bits 294 295 // arenaBaseOffset is the pointer value that corresponds to 296 // index 0 in the heap arena map. 297 // 298 // On amd64, the address space is 48 bits, sign extended to 64 299 // bits. This offset lets us handle "negative" addresses (or 300 // high addresses if viewed as unsigned). 301 // 302 // On aix/ppc64, this offset allows to keep the heapAddrBits to 303 // 48. Otherwise, it would be 60 in order to handle mmap addresses 304 // (in range 0x0a00000000000000 - 0x0afffffffffffff). But in this 305 // case, the memory reserved in (s *pageAlloc).init for chunks 306 // is causing important slowdowns. 307 // 308 // On other platforms, the user address space is contiguous 309 // and starts at 0, so no offset is necessary. 310 arenaBaseOffset = 0xffff800000000000*goarch.IsAmd64 + 0x0a00000000000000*goos.IsAix 311 // A typed version of this constant that will make it into DWARF (for viewcore). 312 arenaBaseOffsetUintptr = uintptr(arenaBaseOffset) 313 314 // Max number of threads to run garbage collection. 315 // 2, 3, and 4 are all plausible maximums depending 316 // on the hardware details of the machine. The garbage 317 // collector scales well to 32 cpus. 318 _MaxGcproc = 32 319 320 // minLegalPointer is the smallest possible legal pointer. 321 // This is the smallest possible architectural page size, 322 // since we assume that the first page is never mapped. 323 // 324 // This should agree with minZeroPage in the compiler. 325 minLegalPointer uintptr = 4096 326 327 // minHeapForMetadataHugePages sets a threshold on when certain kinds of 328 // heap metadata, currently the arenas map L2 entries and page alloc bitmap 329 // mappings, are allowed to be backed by huge pages. If the heap goal ever 330 // exceeds this threshold, then huge pages are enabled. 331 // 332 // These numbers are chosen with the assumption that huge pages are on the 333 // order of a few MiB in size. 334 // 335 // The kind of metadata this applies to has a very low overhead when compared 336 // to address space used, but their constant overheads for small heaps would 337 // be very high if they were to be backed by huge pages (e.g. a few MiB makes 338 // a huge difference for an 8 MiB heap, but barely any difference for a 1 GiB 339 // heap). The benefit of huge pages is also not worth it for small heaps, 340 // because only a very, very small part of the metadata is used for small heaps. 341 // 342 // N.B. If the heap goal exceeds the threshold then shrinks to a very small size 343 // again, then huge pages will still be enabled for this mapping. The reason is that 344 // there's no point unless we're also returning the physical memory for these 345 // metadata mappings back to the OS. That would be quite complex to do in general 346 // as the heap is likely fragmented after a reduction in heap size. 347 minHeapForMetadataHugePages = 1 << 30 348 ) 349 350 // physPageSize is the size in bytes of the OS's physical pages. 351 // Mapping and unmapping operations must be done at multiples of 352 // physPageSize. 353 // 354 // This must be set by the OS init code (typically in osinit) before 355 // mallocinit. 356 var physPageSize uintptr 357 358 // physHugePageSize is the size in bytes of the OS's default physical huge 359 // page size whose allocation is opaque to the application. It is assumed 360 // and verified to be a power of two. 361 // 362 // If set, this must be set by the OS init code (typically in osinit) before 363 // mallocinit. However, setting it at all is optional, and leaving the default 364 // value is always safe (though potentially less efficient). 365 // 366 // Since physHugePageSize is always assumed to be a power of two, 367 // physHugePageShift is defined as physHugePageSize == 1 << physHugePageShift. 368 // The purpose of physHugePageShift is to avoid doing divisions in 369 // performance critical functions. 370 var ( 371 physHugePageSize uintptr 372 physHugePageShift uint 373 ) 374 375 func mallocinit() { 376 if class_to_size[_TinySizeClass] != _TinySize { 377 throw("bad TinySizeClass") 378 } 379 380 if heapArenaBitmapWords&(heapArenaBitmapWords-1) != 0 { 381 // heapBits expects modular arithmetic on bitmap 382 // addresses to work. 383 throw("heapArenaBitmapWords not a power of 2") 384 } 385 386 // Check physPageSize. 387 if physPageSize == 0 { 388 // The OS init code failed to fetch the physical page size. 389 throw("failed to get system page size") 390 } 391 if physPageSize > maxPhysPageSize { 392 print("system page size (", physPageSize, ") is larger than maximum page size (", maxPhysPageSize, ")\n") 393 throw("bad system page size") 394 } 395 if physPageSize < minPhysPageSize { 396 print("system page size (", physPageSize, ") is smaller than minimum page size (", minPhysPageSize, ")\n") 397 throw("bad system page size") 398 } 399 if physPageSize&(physPageSize-1) != 0 { 400 print("system page size (", physPageSize, ") must be a power of 2\n") 401 throw("bad system page size") 402 } 403 if physHugePageSize&(physHugePageSize-1) != 0 { 404 print("system huge page size (", physHugePageSize, ") must be a power of 2\n") 405 throw("bad system huge page size") 406 } 407 if physHugePageSize > maxPhysHugePageSize { 408 // physHugePageSize is greater than the maximum supported huge page size. 409 // Don't throw here, like in the other cases, since a system configured 410 // in this way isn't wrong, we just don't have the code to support them. 411 // Instead, silently set the huge page size to zero. 412 physHugePageSize = 0 413 } 414 if physHugePageSize != 0 { 415 // Since physHugePageSize is a power of 2, it suffices to increase 416 // physHugePageShift until 1<<physHugePageShift == physHugePageSize. 417 for 1<<physHugePageShift != physHugePageSize { 418 physHugePageShift++ 419 } 420 } 421 if pagesPerArena%pagesPerSpanRoot != 0 { 422 print("pagesPerArena (", pagesPerArena, ") is not divisible by pagesPerSpanRoot (", pagesPerSpanRoot, ")\n") 423 throw("bad pagesPerSpanRoot") 424 } 425 if pagesPerArena%pagesPerReclaimerChunk != 0 { 426 print("pagesPerArena (", pagesPerArena, ") is not divisible by pagesPerReclaimerChunk (", pagesPerReclaimerChunk, ")\n") 427 throw("bad pagesPerReclaimerChunk") 428 } 429 430 if minTagBits > taggedPointerBits { 431 throw("taggedPointerbits too small") 432 } 433 434 // Initialize the heap. 435 mheap_.init() 436 mcache0 = allocmcache() 437 lockInit(&gcBitsArenas.lock, lockRankGcBitsArenas) 438 lockInit(&profInsertLock, lockRankProfInsert) 439 lockInit(&profBlockLock, lockRankProfBlock) 440 lockInit(&profMemActiveLock, lockRankProfMemActive) 441 for i := range profMemFutureLock { 442 lockInit(&profMemFutureLock[i], lockRankProfMemFuture) 443 } 444 lockInit(&globalAlloc.mutex, lockRankGlobalAlloc) 445 446 // Create initial arena growth hints. 447 if goarch.PtrSize == 8 { 448 // On a 64-bit machine, we pick the following hints 449 // because: 450 // 451 // 1. Starting from the middle of the address space 452 // makes it easier to grow out a contiguous range 453 // without running in to some other mapping. 454 // 455 // 2. This makes Go heap addresses more easily 456 // recognizable when debugging. 457 // 458 // 3. Stack scanning in gccgo is still conservative, 459 // so it's important that addresses be distinguishable 460 // from other data. 461 // 462 // Starting at 0x00c0 means that the valid memory addresses 463 // will begin 0x00c0, 0x00c1, ... 464 // In little-endian, that's c0 00, c1 00, ... None of those are valid 465 // UTF-8 sequences, and they are otherwise as far away from 466 // ff (likely a common byte) as possible. If that fails, we try other 0xXXc0 467 // addresses. An earlier attempt to use 0x11f8 caused out of memory errors 468 // on OS X during thread allocations. 0x00c0 causes conflicts with 469 // AddressSanitizer which reserves all memory up to 0x0100. 470 // These choices reduce the odds of a conservative garbage collector 471 // not collecting memory because some non-pointer block of memory 472 // had a bit pattern that matched a memory address. 473 // 474 // However, on arm64, we ignore all this advice above and slam the 475 // allocation at 0x40 << 32 because when using 4k pages with 3-level 476 // translation buffers, the user address space is limited to 39 bits 477 // On ios/arm64, the address space is even smaller. 478 // 479 // On AIX, mmaps starts at 0x0A00000000000000 for 64-bit. 480 // processes. 481 // 482 // Space mapped for user arenas comes immediately after the range 483 // originally reserved for the regular heap when race mode is not 484 // enabled because user arena chunks can never be used for regular heap 485 // allocations and we want to avoid fragmenting the address space. 486 // 487 // In race mode we have no choice but to just use the same hints because 488 // the race detector requires that the heap be mapped contiguously. 489 for i := 0x7f; i >= 0; i-- { 490 var p uintptr 491 switch { 492 case raceenabled: 493 // The TSAN runtime requires the heap 494 // to be in the range [0x00c000000000, 495 // 0x00e000000000). 496 p = uintptr(i)<<32 | uintptrMask&(0x00c0<<32) 497 if p >= uintptrMask&0x00e000000000 { 498 continue 499 } 500 case GOARCH == "arm64" && GOOS == "ios": 501 p = uintptr(i)<<40 | uintptrMask&(0x0013<<28) 502 case GOARCH == "arm64": 503 p = uintptr(i)<<40 | uintptrMask&(0x0040<<32) 504 case GOOS == "aix": 505 if i == 0 { 506 // We don't use addresses directly after 0x0A00000000000000 507 // to avoid collisions with others mmaps done by non-go programs. 508 continue 509 } 510 p = uintptr(i)<<40 | uintptrMask&(0xa0<<52) 511 default: 512 p = uintptr(i)<<40 | uintptrMask&(0x00c0<<32) 513 } 514 // Switch to generating hints for user arenas if we've gone 515 // through about half the hints. In race mode, take only about 516 // a quarter; we don't have very much space to work with. 517 hintList := &mheap_.arenaHints 518 if (!raceenabled && i > 0x3f) || (raceenabled && i > 0x5f) { 519 hintList = &mheap_.userArena.arenaHints 520 } 521 hint := (*arenaHint)(mheap_.arenaHintAlloc.alloc()) 522 hint.addr = p 523 hint.next, *hintList = *hintList, hint 524 } 525 } else { 526 // On a 32-bit machine, we're much more concerned 527 // about keeping the usable heap contiguous. 528 // Hence: 529 // 530 // 1. We reserve space for all heapArenas up front so 531 // they don't get interleaved with the heap. They're 532 // ~258MB, so this isn't too bad. (We could reserve a 533 // smaller amount of space up front if this is a 534 // problem.) 535 // 536 // 2. We hint the heap to start right above the end of 537 // the binary so we have the best chance of keeping it 538 // contiguous. 539 // 540 // 3. We try to stake out a reasonably large initial 541 // heap reservation. 542 543 const arenaMetaSize = (1 << arenaBits) * unsafe.Sizeof(heapArena{}) 544 meta := uintptr(sysReserve(nil, arenaMetaSize)) 545 if meta != 0 { 546 mheap_.heapArenaAlloc.init(meta, arenaMetaSize, true) 547 } 548 549 // We want to start the arena low, but if we're linked 550 // against C code, it's possible global constructors 551 // have called malloc and adjusted the process' brk. 552 // Query the brk so we can avoid trying to map the 553 // region over it (which will cause the kernel to put 554 // the region somewhere else, likely at a high 555 // address). 556 procBrk := sbrk0() 557 558 // If we ask for the end of the data segment but the 559 // operating system requires a little more space 560 // before we can start allocating, it will give out a 561 // slightly higher pointer. Except QEMU, which is 562 // buggy, as usual: it won't adjust the pointer 563 // upward. So adjust it upward a little bit ourselves: 564 // 1/4 MB to get away from the running binary image. 565 p := firstmoduledata.end 566 if p < procBrk { 567 p = procBrk 568 } 569 if mheap_.heapArenaAlloc.next <= p && p < mheap_.heapArenaAlloc.end { 570 p = mheap_.heapArenaAlloc.end 571 } 572 p = alignUp(p+(256<<10), heapArenaBytes) 573 // Because we're worried about fragmentation on 574 // 32-bit, we try to make a large initial reservation. 575 arenaSizes := []uintptr{ 576 512 << 20, 577 256 << 20, 578 128 << 20, 579 } 580 for _, arenaSize := range arenaSizes { 581 a, size := sysReserveAligned(unsafe.Pointer(p), arenaSize, heapArenaBytes) 582 if a != nil { 583 mheap_.arena.init(uintptr(a), size, false) 584 p = mheap_.arena.end // For hint below 585 break 586 } 587 } 588 hint := (*arenaHint)(mheap_.arenaHintAlloc.alloc()) 589 hint.addr = p 590 hint.next, mheap_.arenaHints = mheap_.arenaHints, hint 591 592 // Place the hint for user arenas just after the large reservation. 593 // 594 // While this potentially competes with the hint above, in practice we probably 595 // aren't going to be getting this far anyway on 32-bit platforms. 596 userArenaHint := (*arenaHint)(mheap_.arenaHintAlloc.alloc()) 597 userArenaHint.addr = p 598 userArenaHint.next, mheap_.userArena.arenaHints = mheap_.userArena.arenaHints, userArenaHint 599 } 600 // Initialize the memory limit here because the allocator is going to look at it 601 // but we haven't called gcinit yet and we're definitely going to allocate memory before then. 602 gcController.memoryLimit.Store(maxInt64) 603 } 604 605 // sysAlloc allocates heap arena space for at least n bytes. The 606 // returned pointer is always heapArenaBytes-aligned and backed by 607 // h.arenas metadata. The returned size is always a multiple of 608 // heapArenaBytes. sysAlloc returns nil on failure. 609 // There is no corresponding free function. 610 // 611 // hintList is a list of hint addresses for where to allocate new 612 // heap arenas. It must be non-nil. 613 // 614 // register indicates whether the heap arena should be registered 615 // in allArenas. 616 // 617 // sysAlloc returns a memory region in the Reserved state. This region must 618 // be transitioned to Prepared and then Ready before use. 619 // 620 // h must be locked. 621 func (h *mheap) sysAlloc(n uintptr, hintList **arenaHint, register bool) (v unsafe.Pointer, size uintptr) { 622 assertLockHeld(&h.lock) 623 624 n = alignUp(n, heapArenaBytes) 625 626 if hintList == &h.arenaHints { 627 // First, try the arena pre-reservation. 628 // Newly-used mappings are considered released. 629 // 630 // Only do this if we're using the regular heap arena hints. 631 // This behavior is only for the heap. 632 v = h.arena.alloc(n, heapArenaBytes, &gcController.heapReleased) 633 if v != nil { 634 size = n 635 goto mapped 636 } 637 } 638 639 // Try to grow the heap at a hint address. 640 for *hintList != nil { 641 hint := *hintList 642 p := hint.addr 643 if hint.down { 644 p -= n 645 } 646 if p+n < p { 647 // We can't use this, so don't ask. 648 v = nil 649 } else if arenaIndex(p+n-1) >= 1<<arenaBits { 650 // Outside addressable heap. Can't use. 651 v = nil 652 } else { 653 v = sysReserve(unsafe.Pointer(p), n) 654 } 655 if p == uintptr(v) { 656 // Success. Update the hint. 657 if !hint.down { 658 p += n 659 } 660 hint.addr = p 661 size = n 662 break 663 } 664 // Failed. Discard this hint and try the next. 665 // 666 // TODO: This would be cleaner if sysReserve could be 667 // told to only return the requested address. In 668 // particular, this is already how Windows behaves, so 669 // it would simplify things there. 670 if v != nil { 671 sysFreeOS(v, n) 672 } 673 *hintList = hint.next 674 h.arenaHintAlloc.free(unsafe.Pointer(hint)) 675 } 676 677 if size == 0 { 678 if raceenabled { 679 // The race detector assumes the heap lives in 680 // [0x00c000000000, 0x00e000000000), but we 681 // just ran out of hints in this region. Give 682 // a nice failure. 683 throw("too many address space collisions for -race mode") 684 } 685 686 // All of the hints failed, so we'll take any 687 // (sufficiently aligned) address the kernel will give 688 // us. 689 v, size = sysReserveAligned(nil, n, heapArenaBytes) 690 if v == nil { 691 return nil, 0 692 } 693 694 // Create new hints for extending this region. 695 hint := (*arenaHint)(h.arenaHintAlloc.alloc()) 696 hint.addr, hint.down = uintptr(v), true 697 hint.next, mheap_.arenaHints = mheap_.arenaHints, hint 698 hint = (*arenaHint)(h.arenaHintAlloc.alloc()) 699 hint.addr = uintptr(v) + size 700 hint.next, mheap_.arenaHints = mheap_.arenaHints, hint 701 } 702 703 // Check for bad pointers or pointers we can't use. 704 { 705 var bad string 706 p := uintptr(v) 707 if p+size < p { 708 bad = "region exceeds uintptr range" 709 } else if arenaIndex(p) >= 1<<arenaBits { 710 bad = "base outside usable address space" 711 } else if arenaIndex(p+size-1) >= 1<<arenaBits { 712 bad = "end outside usable address space" 713 } 714 if bad != "" { 715 // This should be impossible on most architectures, 716 // but it would be really confusing to debug. 717 print("runtime: memory allocated by OS [", hex(p), ", ", hex(p+size), ") not in usable address space: ", bad, "\n") 718 throw("memory reservation exceeds address space limit") 719 } 720 } 721 722 if uintptr(v)&(heapArenaBytes-1) != 0 { 723 throw("misrounded allocation in sysAlloc") 724 } 725 726 mapped: 727 // Create arena metadata. 728 for ri := arenaIndex(uintptr(v)); ri <= arenaIndex(uintptr(v)+size-1); ri++ { 729 l2 := h.arenas[ri.l1()] 730 if l2 == nil { 731 // Allocate an L2 arena map. 732 // 733 // Use sysAllocOS instead of sysAlloc or persistentalloc because there's no 734 // statistic we can comfortably account for this space in. With this structure, 735 // we rely on demand paging to avoid large overheads, but tracking which memory 736 // is paged in is too expensive. Trying to account for the whole region means 737 // that it will appear like an enormous memory overhead in statistics, even though 738 // it is not. 739 l2 = (*[1 << arenaL2Bits]*heapArena)(sysAllocOS(unsafe.Sizeof(*l2))) 740 if l2 == nil { 741 throw("out of memory allocating heap arena map") 742 } 743 if h.arenasHugePages { 744 sysHugePage(unsafe.Pointer(l2), unsafe.Sizeof(*l2)) 745 } else { 746 sysNoHugePage(unsafe.Pointer(l2), unsafe.Sizeof(*l2)) 747 } 748 atomic.StorepNoWB(unsafe.Pointer(&h.arenas[ri.l1()]), unsafe.Pointer(l2)) 749 } 750 751 if l2[ri.l2()] != nil { 752 throw("arena already initialized") 753 } 754 var r *heapArena 755 r = (*heapArena)(h.heapArenaAlloc.alloc(unsafe.Sizeof(*r), goarch.PtrSize, &memstats.gcMiscSys)) 756 if r == nil { 757 r = (*heapArena)(persistentalloc(unsafe.Sizeof(*r), goarch.PtrSize, &memstats.gcMiscSys)) 758 if r == nil { 759 throw("out of memory allocating heap arena metadata") 760 } 761 } 762 763 // Register the arena in allArenas if requested. 764 if register { 765 if len(h.allArenas) == cap(h.allArenas) { 766 size := 2 * uintptr(cap(h.allArenas)) * goarch.PtrSize 767 if size == 0 { 768 size = physPageSize 769 } 770 newArray := (*notInHeap)(persistentalloc(size, goarch.PtrSize, &memstats.gcMiscSys)) 771 if newArray == nil { 772 throw("out of memory allocating allArenas") 773 } 774 oldSlice := h.allArenas 775 *(*notInHeapSlice)(unsafe.Pointer(&h.allArenas)) = notInHeapSlice{newArray, len(h.allArenas), int(size / goarch.PtrSize)} 776 copy(h.allArenas, oldSlice) 777 // Do not free the old backing array because 778 // there may be concurrent readers. Since we 779 // double the array each time, this can lead 780 // to at most 2x waste. 781 } 782 h.allArenas = h.allArenas[:len(h.allArenas)+1] 783 h.allArenas[len(h.allArenas)-1] = ri 784 } 785 786 // Store atomically just in case an object from the 787 // new heap arena becomes visible before the heap lock 788 // is released (which shouldn't happen, but there's 789 // little downside to this). 790 atomic.StorepNoWB(unsafe.Pointer(&l2[ri.l2()]), unsafe.Pointer(r)) 791 } 792 793 // Tell the race detector about the new heap memory. 794 if raceenabled { 795 racemapshadow(v, size) 796 } 797 798 return 799 } 800 801 // sysReserveAligned is like sysReserve, but the returned pointer is 802 // aligned to align bytes. It may reserve either n or n+align bytes, 803 // so it returns the size that was reserved. 804 func sysReserveAligned(v unsafe.Pointer, size, align uintptr) (unsafe.Pointer, uintptr) { 805 // Since the alignment is rather large in uses of this 806 // function, we're not likely to get it by chance, so we ask 807 // for a larger region and remove the parts we don't need. 808 retries := 0 809 retry: 810 p := uintptr(sysReserve(v, size+align)) 811 switch { 812 case p == 0: 813 return nil, 0 814 case p&(align-1) == 0: 815 return unsafe.Pointer(p), size + align 816 case GOOS == "windows": 817 // On Windows we can't release pieces of a 818 // reservation, so we release the whole thing and 819 // re-reserve the aligned sub-region. This may race, 820 // so we may have to try again. 821 sysFreeOS(unsafe.Pointer(p), size+align) 822 p = alignUp(p, align) 823 p2 := sysReserve(unsafe.Pointer(p), size) 824 if p != uintptr(p2) { 825 // Must have raced. Try again. 826 sysFreeOS(p2, size) 827 if retries++; retries == 100 { 828 throw("failed to allocate aligned heap memory; too many retries") 829 } 830 goto retry 831 } 832 // Success. 833 return p2, size 834 default: 835 // Trim off the unaligned parts. 836 pAligned := alignUp(p, align) 837 sysFreeOS(unsafe.Pointer(p), pAligned-p) 838 end := pAligned + size 839 endLen := (p + size + align) - end 840 if endLen > 0 { 841 sysFreeOS(unsafe.Pointer(end), endLen) 842 } 843 return unsafe.Pointer(pAligned), size 844 } 845 } 846 847 // enableMetadataHugePages enables huge pages for various sources of heap metadata. 848 // 849 // A note on latency: for sufficiently small heaps (<10s of GiB) this function will take constant 850 // time, but may take time proportional to the size of the mapped heap beyond that. 851 // 852 // This function is idempotent. 853 // 854 // The heap lock must not be held over this operation, since it will briefly acquire 855 // the heap lock. 856 func (h *mheap) enableMetadataHugePages() { 857 // Enable huge pages for page structure. 858 h.pages.enableChunkHugePages() 859 860 // Grab the lock and set arenasHugePages if it's not. 861 // 862 // Once arenasHugePages is set, all new L2 entries will be eligible for 863 // huge pages. We'll set all the old entries after we release the lock. 864 lock(&h.lock) 865 if h.arenasHugePages { 866 unlock(&h.lock) 867 return 868 } 869 h.arenasHugePages = true 870 unlock(&h.lock) 871 872 // N.B. The arenas L1 map is quite small on all platforms, so it's fine to 873 // just iterate over the whole thing. 874 for i := range h.arenas { 875 l2 := (*[1 << arenaL2Bits]*heapArena)(atomic.Loadp(unsafe.Pointer(&h.arenas[i]))) 876 if l2 == nil { 877 continue 878 } 879 sysHugePage(unsafe.Pointer(l2), unsafe.Sizeof(*l2)) 880 } 881 } 882 883 // base address for all 0-byte allocations 884 var zerobase uintptr 885 886 // nextFreeFast returns the next free object if one is quickly available. 887 // Otherwise it returns 0. 888 func nextFreeFast(s *mspan) gclinkptr { 889 theBit := sys.TrailingZeros64(s.allocCache) // Is there a free object in the allocCache? 890 if theBit < 64 { 891 result := s.freeindex + uintptr(theBit) 892 if result < s.nelems { 893 freeidx := result + 1 894 if freeidx%64 == 0 && freeidx != s.nelems { 895 return 0 896 } 897 s.allocCache >>= uint(theBit + 1) 898 s.freeindex = freeidx 899 s.allocCount++ 900 return gclinkptr(result*s.elemsize + s.base()) 901 } 902 } 903 return 0 904 } 905 906 // nextFree returns the next free object from the cached span if one is available. 907 // Otherwise it refills the cache with a span with an available object and 908 // returns that object along with a flag indicating that this was a heavy 909 // weight allocation. If it is a heavy weight allocation the caller must 910 // determine whether a new GC cycle needs to be started or if the GC is active 911 // whether this goroutine needs to assist the GC. 912 // 913 // Must run in a non-preemptible context since otherwise the owner of 914 // c could change. 915 func (c *mcache) nextFree(spc spanClass) (v gclinkptr, s *mspan, shouldhelpgc bool) { 916 s = c.alloc[spc] 917 shouldhelpgc = false 918 freeIndex := s.nextFreeIndex() 919 if freeIndex == s.nelems { 920 // The span is full. 921 if uintptr(s.allocCount) != s.nelems { 922 println("runtime: s.allocCount=", s.allocCount, "s.nelems=", s.nelems) 923 throw("s.allocCount != s.nelems && freeIndex == s.nelems") 924 } 925 c.refill(spc) 926 shouldhelpgc = true 927 s = c.alloc[spc] 928 929 freeIndex = s.nextFreeIndex() 930 } 931 932 if freeIndex >= s.nelems { 933 throw("freeIndex is not valid") 934 } 935 936 v = gclinkptr(freeIndex*s.elemsize + s.base()) 937 s.allocCount++ 938 if uintptr(s.allocCount) > s.nelems { 939 println("s.allocCount=", s.allocCount, "s.nelems=", s.nelems) 940 throw("s.allocCount > s.nelems") 941 } 942 return 943 } 944 945 // Allocate an object of size bytes. 946 // Small objects are allocated from the per-P cache's free lists. 947 // Large objects (> 32 kB) are allocated straight from the heap. 948 func mallocgc(size uintptr, typ *_type, needzero bool) unsafe.Pointer { 949 if gcphase == _GCmarktermination { 950 throw("mallocgc called with gcphase == _GCmarktermination") 951 } 952 953 if size == 0 { 954 return unsafe.Pointer(&zerobase) 955 } 956 957 // It's possible for any malloc to trigger sweeping, which may in 958 // turn queue finalizers. Record this dynamic lock edge. 959 lockRankMayQueueFinalizer() 960 961 userSize := size 962 if asanenabled { 963 // Refer to ASAN runtime library, the malloc() function allocates extra memory, 964 // the redzone, around the user requested memory region. And the redzones are marked 965 // as unaddressable. We perform the same operations in Go to detect the overflows or 966 // underflows. 967 size += computeRZlog(size) 968 } 969 970 if debug.malloc { 971 if debug.sbrk != 0 { 972 align := uintptr(16) 973 if typ != nil { 974 // TODO(austin): This should be just 975 // align = uintptr(typ.align) 976 // but that's only 4 on 32-bit platforms, 977 // even if there's a uint64 field in typ (see #599). 978 // This causes 64-bit atomic accesses to panic. 979 // Hence, we use stricter alignment that matches 980 // the normal allocator better. 981 if size&7 == 0 { 982 align = 8 983 } else if size&3 == 0 { 984 align = 4 985 } else if size&1 == 0 { 986 align = 2 987 } else { 988 align = 1 989 } 990 } 991 return persistentalloc(size, align, &memstats.other_sys) 992 } 993 994 if inittrace.active && inittrace.id == getg().goid { 995 // Init functions are executed sequentially in a single goroutine. 996 inittrace.allocs += 1 997 } 998 } 999 1000 // assistG is the G to charge for this allocation, or nil if 1001 // GC is not currently active. 1002 assistG := deductAssistCredit(size) 1003 1004 // Set mp.mallocing to keep from being preempted by GC. 1005 mp := acquirem() 1006 if mp.mallocing != 0 { 1007 throw("malloc deadlock") 1008 } 1009 if mp.gsignal == getg() { 1010 throw("malloc during signal") 1011 } 1012 mp.mallocing = 1 1013 1014 shouldhelpgc := false 1015 dataSize := userSize 1016 c := getMCache(mp) 1017 if c == nil { 1018 throw("mallocgc called without a P or outside bootstrapping") 1019 } 1020 var span *mspan 1021 var x unsafe.Pointer 1022 noscan := typ == nil || typ.PtrBytes == 0 1023 // In some cases block zeroing can profitably (for latency reduction purposes) 1024 // be delayed till preemption is possible; delayedZeroing tracks that state. 1025 delayedZeroing := false 1026 if size <= maxSmallSize { 1027 if noscan && size < maxTinySize { 1028 // Tiny allocator. 1029 // 1030 // Tiny allocator combines several tiny allocation requests 1031 // into a single memory block. The resulting memory block 1032 // is freed when all subobjects are unreachable. The subobjects 1033 // must be noscan (don't have pointers), this ensures that 1034 // the amount of potentially wasted memory is bounded. 1035 // 1036 // Size of the memory block used for combining (maxTinySize) is tunable. 1037 // Current setting is 16 bytes, which relates to 2x worst case memory 1038 // wastage (when all but one subobjects are unreachable). 1039 // 8 bytes would result in no wastage at all, but provides less 1040 // opportunities for combining. 1041 // 32 bytes provides more opportunities for combining, 1042 // but can lead to 4x worst case wastage. 1043 // The best case winning is 8x regardless of block size. 1044 // 1045 // Objects obtained from tiny allocator must not be freed explicitly. 1046 // So when an object will be freed explicitly, we ensure that 1047 // its size >= maxTinySize. 1048 // 1049 // SetFinalizer has a special case for objects potentially coming 1050 // from tiny allocator, it such case it allows to set finalizers 1051 // for an inner byte of a memory block. 1052 // 1053 // The main targets of tiny allocator are small strings and 1054 // standalone escaping variables. On a json benchmark 1055 // the allocator reduces number of allocations by ~12% and 1056 // reduces heap size by ~20%. 1057 off := c.tinyoffset 1058 // Align tiny pointer for required (conservative) alignment. 1059 if size&7 == 0 { 1060 off = alignUp(off, 8) 1061 } else if goarch.PtrSize == 4 && size == 12 { 1062 // Conservatively align 12-byte objects to 8 bytes on 32-bit 1063 // systems so that objects whose first field is a 64-bit 1064 // value is aligned to 8 bytes and does not cause a fault on 1065 // atomic access. See issue 37262. 1066 // TODO(mknyszek): Remove this workaround if/when issue 36606 1067 // is resolved. 1068 off = alignUp(off, 8) 1069 } else if size&3 == 0 { 1070 off = alignUp(off, 4) 1071 } else if size&1 == 0 { 1072 off = alignUp(off, 2) 1073 } 1074 if off+size <= maxTinySize && c.tiny != 0 { 1075 // The object fits into existing tiny block. 1076 x = unsafe.Pointer(c.tiny + off) 1077 c.tinyoffset = off + size 1078 c.tinyAllocs++ 1079 mp.mallocing = 0 1080 releasem(mp) 1081 return x 1082 } 1083 // Allocate a new maxTinySize block. 1084 span = c.alloc[tinySpanClass] 1085 v := nextFreeFast(span) 1086 if v == 0 { 1087 v, span, shouldhelpgc = c.nextFree(tinySpanClass) 1088 } 1089 x = unsafe.Pointer(v) 1090 (*[2]uint64)(x)[0] = 0 1091 (*[2]uint64)(x)[1] = 0 1092 // See if we need to replace the existing tiny block with the new one 1093 // based on amount of remaining free space. 1094 if !raceenabled && (size < c.tinyoffset || c.tiny == 0) { 1095 // Note: disabled when race detector is on, see comment near end of this function. 1096 c.tiny = uintptr(x) 1097 c.tinyoffset = size 1098 } 1099 size = maxTinySize 1100 } else { 1101 var sizeclass uint8 1102 if size <= smallSizeMax-8 { 1103 sizeclass = size_to_class8[divRoundUp(size, smallSizeDiv)] 1104 } else { 1105 sizeclass = size_to_class128[divRoundUp(size-smallSizeMax, largeSizeDiv)] 1106 } 1107 size = uintptr(class_to_size[sizeclass]) 1108 spc := makeSpanClass(sizeclass, noscan) 1109 span = c.alloc[spc] 1110 v := nextFreeFast(span) 1111 if v == 0 { 1112 v, span, shouldhelpgc = c.nextFree(spc) 1113 } 1114 x = unsafe.Pointer(v) 1115 if needzero && span.needzero != 0 { 1116 memclrNoHeapPointers(x, size) 1117 } 1118 } 1119 } else { 1120 shouldhelpgc = true 1121 // For large allocations, keep track of zeroed state so that 1122 // bulk zeroing can be happen later in a preemptible context. 1123 span = c.allocLarge(size, noscan) 1124 span.freeindex = 1 1125 span.allocCount = 1 1126 size = span.elemsize 1127 x = unsafe.Pointer(span.base()) 1128 if needzero && span.needzero != 0 { 1129 if noscan { 1130 delayedZeroing = true 1131 } else { 1132 memclrNoHeapPointers(x, size) 1133 // We've in theory cleared almost the whole span here, 1134 // and could take the extra step of actually clearing 1135 // the whole thing. However, don't. Any GC bits for the 1136 // uncleared parts will be zero, and it's just going to 1137 // be needzero = 1 once freed anyway. 1138 } 1139 } 1140 } 1141 1142 if !noscan { 1143 var scanSize uintptr 1144 heapBitsSetType(uintptr(x), size, dataSize, typ) 1145 if dataSize > typ.Size_ { 1146 // Array allocation. If there are any 1147 // pointers, GC has to scan to the last 1148 // element. 1149 if typ.PtrBytes != 0 { 1150 scanSize = dataSize - typ.Size_ + typ.PtrBytes 1151 } 1152 } else { 1153 scanSize = typ.PtrBytes 1154 } 1155 c.scanAlloc += scanSize 1156 } 1157 1158 // Ensure that the stores above that initialize x to 1159 // type-safe memory and set the heap bits occur before 1160 // the caller can make x observable to the garbage 1161 // collector. Otherwise, on weakly ordered machines, 1162 // the garbage collector could follow a pointer to x, 1163 // but see uninitialized memory or stale heap bits. 1164 publicationBarrier() 1165 // As x and the heap bits are initialized, update 1166 // freeIndexForScan now so x is seen by the GC 1167 // (including convervative scan) as an allocated object. 1168 // While this pointer can't escape into user code as a 1169 // _live_ pointer until we return, conservative scanning 1170 // may find a dead pointer that happens to point into this 1171 // object. Delaying this update until now ensures that 1172 // conservative scanning considers this pointer dead until 1173 // this point. 1174 span.freeIndexForScan = span.freeindex 1175 1176 // Allocate black during GC. 1177 // All slots hold nil so no scanning is needed. 1178 // This may be racing with GC so do it atomically if there can be 1179 // a race marking the bit. 1180 if gcphase != _GCoff { 1181 gcmarknewobject(span, uintptr(x), size) 1182 } 1183 1184 if raceenabled { 1185 racemalloc(x, size) 1186 } 1187 1188 if msanenabled { 1189 msanmalloc(x, size) 1190 } 1191 1192 if asanenabled { 1193 // We should only read/write the memory with the size asked by the user. 1194 // The rest of the allocated memory should be poisoned, so that we can report 1195 // errors when accessing poisoned memory. 1196 // The allocated memory is larger than required userSize, it will also include 1197 // redzone and some other padding bytes. 1198 rzBeg := unsafe.Add(x, userSize) 1199 asanpoison(rzBeg, size-userSize) 1200 asanunpoison(x, userSize) 1201 } 1202 1203 if rate := MemProfileRate; rate > 0 { 1204 // Note cache c only valid while m acquired; see #47302 1205 if rate != 1 && size < c.nextSample { 1206 c.nextSample -= size 1207 } else { 1208 profilealloc(mp, x, size) 1209 } 1210 } 1211 mp.mallocing = 0 1212 releasem(mp) 1213 1214 // Pointerfree data can be zeroed late in a context where preemption can occur. 1215 // x will keep the memory alive. 1216 if delayedZeroing { 1217 if !noscan { 1218 throw("delayed zeroing on data that may contain pointers") 1219 } 1220 memclrNoHeapPointersChunked(size, x) // This is a possible preemption point: see #47302 1221 } 1222 1223 if debug.malloc { 1224 if debug.allocfreetrace != 0 { 1225 tracealloc(x, size, typ) 1226 } 1227 1228 if inittrace.active && inittrace.id == getg().goid { 1229 // Init functions are executed sequentially in a single goroutine. 1230 inittrace.bytes += uint64(size) 1231 } 1232 } 1233 1234 if assistG != nil { 1235 // Account for internal fragmentation in the assist 1236 // debt now that we know it. 1237 assistG.gcAssistBytes -= int64(size - dataSize) 1238 } 1239 1240 if shouldhelpgc { 1241 if t := (gcTrigger{kind: gcTriggerHeap}); t.test() { 1242 gcStart(t) 1243 } 1244 } 1245 1246 if raceenabled && noscan && dataSize < maxTinySize { 1247 // Pad tinysize allocations so they are aligned with the end 1248 // of the tinyalloc region. This ensures that any arithmetic 1249 // that goes off the top end of the object will be detectable 1250 // by checkptr (issue 38872). 1251 // Note that we disable tinyalloc when raceenabled for this to work. 1252 // TODO: This padding is only performed when the race detector 1253 // is enabled. It would be nice to enable it if any package 1254 // was compiled with checkptr, but there's no easy way to 1255 // detect that (especially at compile time). 1256 // TODO: enable this padding for all allocations, not just 1257 // tinyalloc ones. It's tricky because of pointer maps. 1258 // Maybe just all noscan objects? 1259 x = add(x, size-dataSize) 1260 } 1261 1262 return x 1263 } 1264 1265 // deductAssistCredit reduces the current G's assist credit 1266 // by size bytes, and assists the GC if necessary. 1267 // 1268 // Caller must be preemptible. 1269 // 1270 // Returns the G for which the assist credit was accounted. 1271 func deductAssistCredit(size uintptr) *g { 1272 var assistG *g 1273 if gcBlackenEnabled != 0 { 1274 // Charge the current user G for this allocation. 1275 assistG = getg() 1276 if assistG.m.curg != nil { 1277 assistG = assistG.m.curg 1278 } 1279 // Charge the allocation against the G. We'll account 1280 // for internal fragmentation at the end of mallocgc. 1281 assistG.gcAssistBytes -= int64(size) 1282 1283 if assistG.gcAssistBytes < 0 { 1284 // This G is in debt. Assist the GC to correct 1285 // this before allocating. This must happen 1286 // before disabling preemption. 1287 gcAssistAlloc(assistG) 1288 } 1289 } 1290 return assistG 1291 } 1292 1293 // memclrNoHeapPointersChunked repeatedly calls memclrNoHeapPointers 1294 // on chunks of the buffer to be zeroed, with opportunities for preemption 1295 // along the way. memclrNoHeapPointers contains no safepoints and also 1296 // cannot be preemptively scheduled, so this provides a still-efficient 1297 // block copy that can also be preempted on a reasonable granularity. 1298 // 1299 // Use this with care; if the data being cleared is tagged to contain 1300 // pointers, this allows the GC to run before it is all cleared. 1301 func memclrNoHeapPointersChunked(size uintptr, x unsafe.Pointer) { 1302 v := uintptr(x) 1303 // got this from benchmarking. 128k is too small, 512k is too large. 1304 const chunkBytes = 256 * 1024 1305 vsize := v + size 1306 for voff := v; voff < vsize; voff = voff + chunkBytes { 1307 if getg().preempt { 1308 // may hold locks, e.g., profiling 1309 goschedguarded() 1310 } 1311 // clear min(avail, lump) bytes 1312 n := vsize - voff 1313 if n > chunkBytes { 1314 n = chunkBytes 1315 } 1316 memclrNoHeapPointers(unsafe.Pointer(voff), n) 1317 } 1318 } 1319 1320 // implementation of new builtin 1321 // compiler (both frontend and SSA backend) knows the signature 1322 // of this function. 1323 func newobject(typ *_type) unsafe.Pointer { 1324 return mallocgc(typ.Size_, typ, true) 1325 } 1326 1327 //go:linkname reflect_unsafe_New reflect.unsafe_New 1328 func reflect_unsafe_New(typ *_type) unsafe.Pointer { 1329 return mallocgc(typ.Size_, typ, true) 1330 } 1331 1332 //go:linkname reflectlite_unsafe_New internal/reflectlite.unsafe_New 1333 func reflectlite_unsafe_New(typ *_type) unsafe.Pointer { 1334 return mallocgc(typ.Size_, typ, true) 1335 } 1336 1337 // newarray allocates an array of n elements of type typ. 1338 func newarray(typ *_type, n int) unsafe.Pointer { 1339 if n == 1 { 1340 return mallocgc(typ.Size_, typ, true) 1341 } 1342 mem, overflow := math.MulUintptr(typ.Size_, uintptr(n)) 1343 if overflow || mem > maxAlloc || n < 0 { 1344 panic(plainError("runtime: allocation size out of range")) 1345 } 1346 return mallocgc(mem, typ, true) 1347 } 1348 1349 //go:linkname reflect_unsafe_NewArray reflect.unsafe_NewArray 1350 func reflect_unsafe_NewArray(typ *_type, n int) unsafe.Pointer { 1351 return newarray(typ, n) 1352 } 1353 1354 func profilealloc(mp *m, x unsafe.Pointer, size uintptr) { 1355 c := getMCache(mp) 1356 if c == nil { 1357 throw("profilealloc called without a P or outside bootstrapping") 1358 } 1359 c.nextSample = nextSample() 1360 mProf_Malloc(x, size) 1361 } 1362 1363 // nextSample returns the next sampling point for heap profiling. The goal is 1364 // to sample allocations on average every MemProfileRate bytes, but with a 1365 // completely random distribution over the allocation timeline; this 1366 // corresponds to a Poisson process with parameter MemProfileRate. In Poisson 1367 // processes, the distance between two samples follows the exponential 1368 // distribution (exp(MemProfileRate)), so the best return value is a random 1369 // number taken from an exponential distribution whose mean is MemProfileRate. 1370 func nextSample() uintptr { 1371 if MemProfileRate == 1 { 1372 // Callers assign our return value to 1373 // mcache.next_sample, but next_sample is not used 1374 // when the rate is 1. So avoid the math below and 1375 // just return something. 1376 return 0 1377 } 1378 if GOOS == "plan9" { 1379 // Plan 9 doesn't support floating point in note handler. 1380 if gp := getg(); gp == gp.m.gsignal { 1381 return nextSampleNoFP() 1382 } 1383 } 1384 1385 return uintptr(fastexprand(MemProfileRate)) 1386 } 1387 1388 // fastexprand returns a random number from an exponential distribution with 1389 // the specified mean. 1390 func fastexprand(mean int) int32 { 1391 // Avoid overflow. Maximum possible step is 1392 // -ln(1/(1<<randomBitCount)) * mean, approximately 20 * mean. 1393 switch { 1394 case mean > 0x7000000: 1395 mean = 0x7000000 1396 case mean == 0: 1397 return 0 1398 } 1399 1400 // Take a random sample of the exponential distribution exp(-mean*x). 1401 // The probability distribution function is mean*exp(-mean*x), so the CDF is 1402 // p = 1 - exp(-mean*x), so 1403 // q = 1 - p == exp(-mean*x) 1404 // log_e(q) = -mean*x 1405 // -log_e(q)/mean = x 1406 // x = -log_e(q) * mean 1407 // x = log_2(q) * (-log_e(2)) * mean ; Using log_2 for efficiency 1408 const randomBitCount = 26 1409 q := fastrandn(1<<randomBitCount) + 1 1410 qlog := fastlog2(float64(q)) - randomBitCount 1411 if qlog > 0 { 1412 qlog = 0 1413 } 1414 const minusLog2 = -0.6931471805599453 // -ln(2) 1415 return int32(qlog*(minusLog2*float64(mean))) + 1 1416 } 1417 1418 // nextSampleNoFP is similar to nextSample, but uses older, 1419 // simpler code to avoid floating point. 1420 func nextSampleNoFP() uintptr { 1421 // Set first allocation sample size. 1422 rate := MemProfileRate 1423 if rate > 0x3fffffff { // make 2*rate not overflow 1424 rate = 0x3fffffff 1425 } 1426 if rate != 0 { 1427 return uintptr(fastrandn(uint32(2 * rate))) 1428 } 1429 return 0 1430 } 1431 1432 type persistentAlloc struct { 1433 base *notInHeap 1434 off uintptr 1435 } 1436 1437 var globalAlloc struct { 1438 mutex 1439 persistentAlloc 1440 } 1441 1442 // persistentChunkSize is the number of bytes we allocate when we grow 1443 // a persistentAlloc. 1444 const persistentChunkSize = 256 << 10 1445 1446 // persistentChunks is a list of all the persistent chunks we have 1447 // allocated. The list is maintained through the first word in the 1448 // persistent chunk. This is updated atomically. 1449 var persistentChunks *notInHeap 1450 1451 // Wrapper around sysAlloc that can allocate small chunks. 1452 // There is no associated free operation. 1453 // Intended for things like function/type/debug-related persistent data. 1454 // If align is 0, uses default align (currently 8). 1455 // The returned memory will be zeroed. 1456 // sysStat must be non-nil. 1457 // 1458 // Consider marking persistentalloc'd types not in heap by embedding 1459 // runtime/internal/sys.NotInHeap. 1460 func persistentalloc(size, align uintptr, sysStat *sysMemStat) unsafe.Pointer { 1461 var p *notInHeap 1462 systemstack(func() { 1463 p = persistentalloc1(size, align, sysStat) 1464 }) 1465 return unsafe.Pointer(p) 1466 } 1467 1468 // Must run on system stack because stack growth can (re)invoke it. 1469 // See issue 9174. 1470 // 1471 //go:systemstack 1472 func persistentalloc1(size, align uintptr, sysStat *sysMemStat) *notInHeap { 1473 const ( 1474 maxBlock = 64 << 10 // VM reservation granularity is 64K on windows 1475 ) 1476 1477 if size == 0 { 1478 throw("persistentalloc: size == 0") 1479 } 1480 if align != 0 { 1481 if align&(align-1) != 0 { 1482 throw("persistentalloc: align is not a power of 2") 1483 } 1484 if align > _PageSize { 1485 throw("persistentalloc: align is too large") 1486 } 1487 } else { 1488 align = 8 1489 } 1490 1491 if size >= maxBlock { 1492 return (*notInHeap)(sysAlloc(size, sysStat)) 1493 } 1494 1495 mp := acquirem() 1496 var persistent *persistentAlloc 1497 if mp != nil && mp.p != 0 { 1498 persistent = &mp.p.ptr().palloc 1499 } else { 1500 lock(&globalAlloc.mutex) 1501 persistent = &globalAlloc.persistentAlloc 1502 } 1503 persistent.off = alignUp(persistent.off, align) 1504 if persistent.off+size > persistentChunkSize || persistent.base == nil { 1505 persistent.base = (*notInHeap)(sysAlloc(persistentChunkSize, &memstats.other_sys)) 1506 if persistent.base == nil { 1507 if persistent == &globalAlloc.persistentAlloc { 1508 unlock(&globalAlloc.mutex) 1509 } 1510 throw("runtime: cannot allocate memory") 1511 } 1512 1513 // Add the new chunk to the persistentChunks list. 1514 for { 1515 chunks := uintptr(unsafe.Pointer(persistentChunks)) 1516 *(*uintptr)(unsafe.Pointer(persistent.base)) = chunks 1517 if atomic.Casuintptr((*uintptr)(unsafe.Pointer(&persistentChunks)), chunks, uintptr(unsafe.Pointer(persistent.base))) { 1518 break 1519 } 1520 } 1521 persistent.off = alignUp(goarch.PtrSize, align) 1522 } 1523 p := persistent.base.add(persistent.off) 1524 persistent.off += size 1525 releasem(mp) 1526 if persistent == &globalAlloc.persistentAlloc { 1527 unlock(&globalAlloc.mutex) 1528 } 1529 1530 if sysStat != &memstats.other_sys { 1531 sysStat.add(int64(size)) 1532 memstats.other_sys.add(-int64(size)) 1533 } 1534 return p 1535 } 1536 1537 // inPersistentAlloc reports whether p points to memory allocated by 1538 // persistentalloc. This must be nosplit because it is called by the 1539 // cgo checker code, which is called by the write barrier code. 1540 // 1541 //go:nosplit 1542 func inPersistentAlloc(p uintptr) bool { 1543 chunk := atomic.Loaduintptr((*uintptr)(unsafe.Pointer(&persistentChunks))) 1544 for chunk != 0 { 1545 if p >= chunk && p < chunk+persistentChunkSize { 1546 return true 1547 } 1548 chunk = *(*uintptr)(unsafe.Pointer(chunk)) 1549 } 1550 return false 1551 } 1552 1553 // linearAlloc is a simple linear allocator that pre-reserves a region 1554 // of memory and then optionally maps that region into the Ready state 1555 // as needed. 1556 // 1557 // The caller is responsible for locking. 1558 type linearAlloc struct { 1559 next uintptr // next free byte 1560 mapped uintptr // one byte past end of mapped space 1561 end uintptr // end of reserved space 1562 1563 mapMemory bool // transition memory from Reserved to Ready if true 1564 } 1565 1566 func (l *linearAlloc) init(base, size uintptr, mapMemory bool) { 1567 if base+size < base { 1568 // Chop off the last byte. The runtime isn't prepared 1569 // to deal with situations where the bounds could overflow. 1570 // Leave that memory reserved, though, so we don't map it 1571 // later. 1572 size -= 1 1573 } 1574 l.next, l.mapped = base, base 1575 l.end = base + size 1576 l.mapMemory = mapMemory 1577 } 1578 1579 func (l *linearAlloc) alloc(size, align uintptr, sysStat *sysMemStat) unsafe.Pointer { 1580 p := alignUp(l.next, align) 1581 if p+size > l.end { 1582 return nil 1583 } 1584 l.next = p + size 1585 if pEnd := alignUp(l.next-1, physPageSize); pEnd > l.mapped { 1586 if l.mapMemory { 1587 // Transition from Reserved to Prepared to Ready. 1588 n := pEnd - l.mapped 1589 sysMap(unsafe.Pointer(l.mapped), n, sysStat) 1590 sysUsed(unsafe.Pointer(l.mapped), n, n) 1591 } 1592 l.mapped = pEnd 1593 } 1594 return unsafe.Pointer(p) 1595 } 1596 1597 // notInHeap is off-heap memory allocated by a lower-level allocator 1598 // like sysAlloc or persistentAlloc. 1599 // 1600 // In general, it's better to use real types which embed 1601 // runtime/internal/sys.NotInHeap, but this serves as a generic type 1602 // for situations where that isn't possible (like in the allocators). 1603 // 1604 // TODO: Use this as the return type of sysAlloc, persistentAlloc, etc? 1605 type notInHeap struct{ _ sys.NotInHeap } 1606 1607 func (p *notInHeap) add(bytes uintptr) *notInHeap { 1608 return (*notInHeap)(unsafe.Pointer(uintptr(unsafe.Pointer(p)) + bytes)) 1609 } 1610 1611 // computeRZlog computes the size of the redzone. 1612 // Refer to the implementation of the compiler-rt. 1613 func computeRZlog(userSize uintptr) uintptr { 1614 switch { 1615 case userSize <= (64 - 16): 1616 return 16 << 0 1617 case userSize <= (128 - 32): 1618 return 16 << 1 1619 case userSize <= (512 - 64): 1620 return 16 << 2 1621 case userSize <= (4096 - 128): 1622 return 16 << 3 1623 case userSize <= (1<<14)-256: 1624 return 16 << 4 1625 case userSize <= (1<<15)-512: 1626 return 16 << 5 1627 case userSize <= (1<<16)-1024: 1628 return 16 << 6 1629 default: 1630 return 16 << 7 1631 } 1632 }