github.com/twelsh-aw/go/src@v0.0.0-20230516233729-a56fe86a7c81/runtime/mbarrier.go (about) 1 // Copyright 2015 The Go Authors. All rights reserved. 2 // Use of this source code is governed by a BSD-style 3 // license that can be found in the LICENSE file. 4 5 // Garbage collector: write barriers. 6 // 7 // For the concurrent garbage collector, the Go compiler implements 8 // updates to pointer-valued fields that may be in heap objects by 9 // emitting calls to write barriers. The main write barrier for 10 // individual pointer writes is gcWriteBarrier and is implemented in 11 // assembly. This file contains write barrier entry points for bulk 12 // operations. See also mwbbuf.go. 13 14 package runtime 15 16 import ( 17 "internal/abi" 18 "internal/goarch" 19 "internal/goexperiment" 20 "unsafe" 21 ) 22 23 // Go uses a hybrid barrier that combines a Yuasa-style deletion 24 // barrier—which shades the object whose reference is being 25 // overwritten—with Dijkstra insertion barrier—which shades the object 26 // whose reference is being written. The insertion part of the barrier 27 // is necessary while the calling goroutine's stack is grey. In 28 // pseudocode, the barrier is: 29 // 30 // writePointer(slot, ptr): 31 // shade(*slot) 32 // if current stack is grey: 33 // shade(ptr) 34 // *slot = ptr 35 // 36 // slot is the destination in Go code. 37 // ptr is the value that goes into the slot in Go code. 38 // 39 // Shade indicates that it has seen a white pointer by adding the referent 40 // to wbuf as well as marking it. 41 // 42 // The two shades and the condition work together to prevent a mutator 43 // from hiding an object from the garbage collector: 44 // 45 // 1. shade(*slot) prevents a mutator from hiding an object by moving 46 // the sole pointer to it from the heap to its stack. If it attempts 47 // to unlink an object from the heap, this will shade it. 48 // 49 // 2. shade(ptr) prevents a mutator from hiding an object by moving 50 // the sole pointer to it from its stack into a black object in the 51 // heap. If it attempts to install the pointer into a black object, 52 // this will shade it. 53 // 54 // 3. Once a goroutine's stack is black, the shade(ptr) becomes 55 // unnecessary. shade(ptr) prevents hiding an object by moving it from 56 // the stack to the heap, but this requires first having a pointer 57 // hidden on the stack. Immediately after a stack is scanned, it only 58 // points to shaded objects, so it's not hiding anything, and the 59 // shade(*slot) prevents it from hiding any other pointers on its 60 // stack. 61 // 62 // For a detailed description of this barrier and proof of 63 // correctness, see https://github.com/golang/proposal/blob/master/design/17503-eliminate-rescan.md 64 // 65 // 66 // 67 // Dealing with memory ordering: 68 // 69 // Both the Yuasa and Dijkstra barriers can be made conditional on the 70 // color of the object containing the slot. We chose not to make these 71 // conditional because the cost of ensuring that the object holding 72 // the slot doesn't concurrently change color without the mutator 73 // noticing seems prohibitive. 74 // 75 // Consider the following example where the mutator writes into 76 // a slot and then loads the slot's mark bit while the GC thread 77 // writes to the slot's mark bit and then as part of scanning reads 78 // the slot. 79 // 80 // Initially both [slot] and [slotmark] are 0 (nil) 81 // Mutator thread GC thread 82 // st [slot], ptr st [slotmark], 1 83 // 84 // ld r1, [slotmark] ld r2, [slot] 85 // 86 // Without an expensive memory barrier between the st and the ld, the final 87 // result on most HW (including 386/amd64) can be r1==r2==0. This is a classic 88 // example of what can happen when loads are allowed to be reordered with older 89 // stores (avoiding such reorderings lies at the heart of the classic 90 // Peterson/Dekker algorithms for mutual exclusion). Rather than require memory 91 // barriers, which will slow down both the mutator and the GC, we always grey 92 // the ptr object regardless of the slot's color. 93 // 94 // Another place where we intentionally omit memory barriers is when 95 // accessing mheap_.arena_used to check if a pointer points into the 96 // heap. On relaxed memory machines, it's possible for a mutator to 97 // extend the size of the heap by updating arena_used, allocate an 98 // object from this new region, and publish a pointer to that object, 99 // but for tracing running on another processor to observe the pointer 100 // but use the old value of arena_used. In this case, tracing will not 101 // mark the object, even though it's reachable. However, the mutator 102 // is guaranteed to execute a write barrier when it publishes the 103 // pointer, so it will take care of marking the object. A general 104 // consequence of this is that the garbage collector may cache the 105 // value of mheap_.arena_used. (See issue #9984.) 106 // 107 // 108 // Stack writes: 109 // 110 // The compiler omits write barriers for writes to the current frame, 111 // but if a stack pointer has been passed down the call stack, the 112 // compiler will generate a write barrier for writes through that 113 // pointer (because it doesn't know it's not a heap pointer). 114 // 115 // One might be tempted to ignore the write barrier if slot points 116 // into to the stack. Don't do it! Mark termination only re-scans 117 // frames that have potentially been active since the concurrent scan, 118 // so it depends on write barriers to track changes to pointers in 119 // stack frames that have not been active. 120 // 121 // 122 // Global writes: 123 // 124 // The Go garbage collector requires write barriers when heap pointers 125 // are stored in globals. Many garbage collectors ignore writes to 126 // globals and instead pick up global -> heap pointers during 127 // termination. This increases pause time, so we instead rely on write 128 // barriers for writes to globals so that we don't have to rescan 129 // global during mark termination. 130 // 131 // 132 // Publication ordering: 133 // 134 // The write barrier is *pre-publication*, meaning that the write 135 // barrier happens prior to the *slot = ptr write that may make ptr 136 // reachable by some goroutine that currently cannot reach it. 137 // 138 // 139 // Signal handler pointer writes: 140 // 141 // In general, the signal handler cannot safely invoke the write 142 // barrier because it may run without a P or even during the write 143 // barrier. 144 // 145 // There is exactly one exception: profbuf.go omits a barrier during 146 // signal handler profile logging. That's safe only because of the 147 // deletion barrier. See profbuf.go for a detailed argument. If we 148 // remove the deletion barrier, we'll have to work out a new way to 149 // handle the profile logging. 150 151 // typedmemmove copies a value of type typ to dst from src. 152 // Must be nosplit, see #16026. 153 // 154 // TODO: Perfect for go:nosplitrec since we can't have a safe point 155 // anywhere in the bulk barrier or memmove. 156 // 157 //go:nosplit 158 func typedmemmove(typ *abi.Type, dst, src unsafe.Pointer) { 159 if dst == src { 160 return 161 } 162 if writeBarrier.needed && typ.PtrBytes != 0 { 163 bulkBarrierPreWrite(uintptr(dst), uintptr(src), typ.PtrBytes) 164 } 165 // There's a race here: if some other goroutine can write to 166 // src, it may change some pointer in src after we've 167 // performed the write barrier but before we perform the 168 // memory copy. This safe because the write performed by that 169 // other goroutine must also be accompanied by a write 170 // barrier, so at worst we've unnecessarily greyed the old 171 // pointer that was in src. 172 memmove(dst, src, typ.Size_) 173 if goexperiment.CgoCheck2 { 174 cgoCheckMemmove2(typ, dst, src, 0, typ.Size_) 175 } 176 } 177 178 // wbZero performs the write barrier operations necessary before 179 // zeroing a region of memory at address dst of type typ. 180 // Does not actually do the zeroing. 181 // 182 //go:nowritebarrierrec 183 //go:nosplit 184 func wbZero(typ *_type, dst unsafe.Pointer) { 185 bulkBarrierPreWrite(uintptr(dst), 0, typ.PtrBytes) 186 } 187 188 // wbMove performs the write barrier operations necessary before 189 // copying a region of memory from src to dst of type typ. 190 // Does not actually do the copying. 191 // 192 //go:nowritebarrierrec 193 //go:nosplit 194 func wbMove(typ *_type, dst, src unsafe.Pointer) { 195 bulkBarrierPreWrite(uintptr(dst), uintptr(src), typ.PtrBytes) 196 } 197 198 //go:linkname reflect_typedmemmove reflect.typedmemmove 199 func reflect_typedmemmove(typ *_type, dst, src unsafe.Pointer) { 200 if raceenabled { 201 raceWriteObjectPC(typ, dst, getcallerpc(), abi.FuncPCABIInternal(reflect_typedmemmove)) 202 raceReadObjectPC(typ, src, getcallerpc(), abi.FuncPCABIInternal(reflect_typedmemmove)) 203 } 204 if msanenabled { 205 msanwrite(dst, typ.Size_) 206 msanread(src, typ.Size_) 207 } 208 if asanenabled { 209 asanwrite(dst, typ.Size_) 210 asanread(src, typ.Size_) 211 } 212 typedmemmove(typ, dst, src) 213 } 214 215 //go:linkname reflectlite_typedmemmove internal/reflectlite.typedmemmove 216 func reflectlite_typedmemmove(typ *_type, dst, src unsafe.Pointer) { 217 reflect_typedmemmove(typ, dst, src) 218 } 219 220 // reflectcallmove is invoked by reflectcall to copy the return values 221 // out of the stack and into the heap, invoking the necessary write 222 // barriers. dst, src, and size describe the return value area to 223 // copy. typ describes the entire frame (not just the return values). 224 // typ may be nil, which indicates write barriers are not needed. 225 // 226 // It must be nosplit and must only call nosplit functions because the 227 // stack map of reflectcall is wrong. 228 // 229 //go:nosplit 230 func reflectcallmove(typ *_type, dst, src unsafe.Pointer, size uintptr, regs *abi.RegArgs) { 231 if writeBarrier.needed && typ != nil && typ.PtrBytes != 0 && size >= goarch.PtrSize { 232 bulkBarrierPreWrite(uintptr(dst), uintptr(src), size) 233 } 234 memmove(dst, src, size) 235 236 // Move pointers returned in registers to a place where the GC can see them. 237 for i := range regs.Ints { 238 if regs.ReturnIsPtr.Get(i) { 239 regs.Ptrs[i] = unsafe.Pointer(regs.Ints[i]) 240 } 241 } 242 } 243 244 //go:nosplit 245 func typedslicecopy(typ *_type, dstPtr unsafe.Pointer, dstLen int, srcPtr unsafe.Pointer, srcLen int) int { 246 n := dstLen 247 if n > srcLen { 248 n = srcLen 249 } 250 if n == 0 { 251 return 0 252 } 253 254 // The compiler emits calls to typedslicecopy before 255 // instrumentation runs, so unlike the other copying and 256 // assignment operations, it's not instrumented in the calling 257 // code and needs its own instrumentation. 258 if raceenabled { 259 callerpc := getcallerpc() 260 pc := abi.FuncPCABIInternal(slicecopy) 261 racewriterangepc(dstPtr, uintptr(n)*typ.Size_, callerpc, pc) 262 racereadrangepc(srcPtr, uintptr(n)*typ.Size_, callerpc, pc) 263 } 264 if msanenabled { 265 msanwrite(dstPtr, uintptr(n)*typ.Size_) 266 msanread(srcPtr, uintptr(n)*typ.Size_) 267 } 268 if asanenabled { 269 asanwrite(dstPtr, uintptr(n)*typ.Size_) 270 asanread(srcPtr, uintptr(n)*typ.Size_) 271 } 272 273 if goexperiment.CgoCheck2 { 274 cgoCheckSliceCopy(typ, dstPtr, srcPtr, n) 275 } 276 277 if dstPtr == srcPtr { 278 return n 279 } 280 281 // Note: No point in checking typ.PtrBytes here: 282 // compiler only emits calls to typedslicecopy for types with pointers, 283 // and growslice and reflect_typedslicecopy check for pointers 284 // before calling typedslicecopy. 285 size := uintptr(n) * typ.Size_ 286 if writeBarrier.needed { 287 pwsize := size - typ.Size_ + typ.PtrBytes 288 bulkBarrierPreWrite(uintptr(dstPtr), uintptr(srcPtr), pwsize) 289 } 290 // See typedmemmove for a discussion of the race between the 291 // barrier and memmove. 292 memmove(dstPtr, srcPtr, size) 293 return n 294 } 295 296 //go:linkname reflect_typedslicecopy reflect.typedslicecopy 297 func reflect_typedslicecopy(elemType *_type, dst, src slice) int { 298 if elemType.PtrBytes == 0 { 299 return slicecopy(dst.array, dst.len, src.array, src.len, elemType.Size_) 300 } 301 return typedslicecopy(elemType, dst.array, dst.len, src.array, src.len) 302 } 303 304 // typedmemclr clears the typed memory at ptr with type typ. The 305 // memory at ptr must already be initialized (and hence in type-safe 306 // state). If the memory is being initialized for the first time, see 307 // memclrNoHeapPointers. 308 // 309 // If the caller knows that typ has pointers, it can alternatively 310 // call memclrHasPointers. 311 // 312 // TODO: A "go:nosplitrec" annotation would be perfect for this. 313 // 314 //go:nosplit 315 func typedmemclr(typ *_type, ptr unsafe.Pointer) { 316 if writeBarrier.needed && typ.PtrBytes != 0 { 317 bulkBarrierPreWrite(uintptr(ptr), 0, typ.PtrBytes) 318 } 319 memclrNoHeapPointers(ptr, typ.Size_) 320 } 321 322 //go:linkname reflect_typedmemclr reflect.typedmemclr 323 func reflect_typedmemclr(typ *_type, ptr unsafe.Pointer) { 324 typedmemclr(typ, ptr) 325 } 326 327 //go:linkname reflect_typedmemclrpartial reflect.typedmemclrpartial 328 func reflect_typedmemclrpartial(typ *_type, ptr unsafe.Pointer, off, size uintptr) { 329 if writeBarrier.needed && typ.PtrBytes != 0 { 330 bulkBarrierPreWrite(uintptr(ptr), 0, size) 331 } 332 memclrNoHeapPointers(ptr, size) 333 } 334 335 //go:linkname reflect_typedarrayclear reflect.typedarrayclear 336 func reflect_typedarrayclear(typ *_type, ptr unsafe.Pointer, len int) { 337 size := typ.Size_ * uintptr(len) 338 if writeBarrier.needed && typ.PtrBytes != 0 { 339 bulkBarrierPreWrite(uintptr(ptr), 0, size) 340 } 341 memclrNoHeapPointers(ptr, size) 342 } 343 344 // memclrHasPointers clears n bytes of typed memory starting at ptr. 345 // The caller must ensure that the type of the object at ptr has 346 // pointers, usually by checking typ.PtrBytes. However, ptr 347 // does not have to point to the start of the allocation. 348 // 349 //go:nosplit 350 func memclrHasPointers(ptr unsafe.Pointer, n uintptr) { 351 bulkBarrierPreWrite(uintptr(ptr), 0, n) 352 memclrNoHeapPointers(ptr, n) 353 }