github.com/twelsh-aw/go/src@v0.0.0-20230516233729-a56fe86a7c81/runtime/mgcsweep.go (about)

     1  // Copyright 2009 The Go Authors. All rights reserved.
     2  // Use of this source code is governed by a BSD-style
     3  // license that can be found in the LICENSE file.
     4  
     5  // Garbage collector: sweeping
     6  
     7  // The sweeper consists of two different algorithms:
     8  //
     9  // * The object reclaimer finds and frees unmarked slots in spans. It
    10  //   can free a whole span if none of the objects are marked, but that
    11  //   isn't its goal. This can be driven either synchronously by
    12  //   mcentral.cacheSpan for mcentral spans, or asynchronously by
    13  //   sweepone, which looks at all the mcentral lists.
    14  //
    15  // * The span reclaimer looks for spans that contain no marked objects
    16  //   and frees whole spans. This is a separate algorithm because
    17  //   freeing whole spans is the hardest task for the object reclaimer,
    18  //   but is critical when allocating new spans. The entry point for
    19  //   this is mheap_.reclaim and it's driven by a sequential scan of
    20  //   the page marks bitmap in the heap arenas.
    21  //
    22  // Both algorithms ultimately call mspan.sweep, which sweeps a single
    23  // heap span.
    24  
    25  package runtime
    26  
    27  import (
    28  	"runtime/internal/atomic"
    29  	"unsafe"
    30  )
    31  
    32  var sweep sweepdata
    33  
    34  // State of background sweep.
    35  type sweepdata struct {
    36  	lock   mutex
    37  	g      *g
    38  	parked bool
    39  
    40  	nbgsweep    uint32
    41  	npausesweep uint32
    42  
    43  	// active tracks outstanding sweepers and the sweep
    44  	// termination condition.
    45  	active activeSweep
    46  
    47  	// centralIndex is the current unswept span class.
    48  	// It represents an index into the mcentral span
    49  	// sets. Accessed and updated via its load and
    50  	// update methods. Not protected by a lock.
    51  	//
    52  	// Reset at mark termination.
    53  	// Used by mheap.nextSpanForSweep.
    54  	centralIndex sweepClass
    55  }
    56  
    57  // sweepClass is a spanClass and one bit to represent whether we're currently
    58  // sweeping partial or full spans.
    59  type sweepClass uint32
    60  
    61  const (
    62  	numSweepClasses            = numSpanClasses * 2
    63  	sweepClassDone  sweepClass = sweepClass(^uint32(0))
    64  )
    65  
    66  func (s *sweepClass) load() sweepClass {
    67  	return sweepClass(atomic.Load((*uint32)(s)))
    68  }
    69  
    70  func (s *sweepClass) update(sNew sweepClass) {
    71  	// Only update *s if its current value is less than sNew,
    72  	// since *s increases monotonically.
    73  	sOld := s.load()
    74  	for sOld < sNew && !atomic.Cas((*uint32)(s), uint32(sOld), uint32(sNew)) {
    75  		sOld = s.load()
    76  	}
    77  	// TODO(mknyszek): This isn't the only place we have
    78  	// an atomic monotonically increasing counter. It would
    79  	// be nice to have an "atomic max" which is just implemented
    80  	// as the above on most architectures. Some architectures
    81  	// like RISC-V however have native support for an atomic max.
    82  }
    83  
    84  func (s *sweepClass) clear() {
    85  	atomic.Store((*uint32)(s), 0)
    86  }
    87  
    88  // split returns the underlying span class as well as
    89  // whether we're interested in the full or partial
    90  // unswept lists for that class, indicated as a boolean
    91  // (true means "full").
    92  func (s sweepClass) split() (spc spanClass, full bool) {
    93  	return spanClass(s >> 1), s&1 == 0
    94  }
    95  
    96  // nextSpanForSweep finds and pops the next span for sweeping from the
    97  // central sweep buffers. It returns ownership of the span to the caller.
    98  // Returns nil if no such span exists.
    99  func (h *mheap) nextSpanForSweep() *mspan {
   100  	sg := h.sweepgen
   101  	for sc := sweep.centralIndex.load(); sc < numSweepClasses; sc++ {
   102  		spc, full := sc.split()
   103  		c := &h.central[spc].mcentral
   104  		var s *mspan
   105  		if full {
   106  			s = c.fullUnswept(sg).pop()
   107  		} else {
   108  			s = c.partialUnswept(sg).pop()
   109  		}
   110  		if s != nil {
   111  			// Write down that we found something so future sweepers
   112  			// can start from here.
   113  			sweep.centralIndex.update(sc)
   114  			return s
   115  		}
   116  	}
   117  	// Write down that we found nothing.
   118  	sweep.centralIndex.update(sweepClassDone)
   119  	return nil
   120  }
   121  
   122  const sweepDrainedMask = 1 << 31
   123  
   124  // activeSweep is a type that captures whether sweeping
   125  // is done, and whether there are any outstanding sweepers.
   126  //
   127  // Every potential sweeper must call begin() before they look
   128  // for work, and end() after they've finished sweeping.
   129  type activeSweep struct {
   130  	// state is divided into two parts.
   131  	//
   132  	// The top bit (masked by sweepDrainedMask) is a boolean
   133  	// value indicating whether all the sweep work has been
   134  	// drained from the queue.
   135  	//
   136  	// The rest of the bits are a counter, indicating the
   137  	// number of outstanding concurrent sweepers.
   138  	state atomic.Uint32
   139  }
   140  
   141  // begin registers a new sweeper. Returns a sweepLocker
   142  // for acquiring spans for sweeping. Any outstanding sweeper blocks
   143  // sweep termination.
   144  //
   145  // If the sweepLocker is invalid, the caller can be sure that all
   146  // outstanding sweep work has been drained, so there is nothing left
   147  // to sweep. Note that there may be sweepers currently running, so
   148  // this does not indicate that all sweeping has completed.
   149  //
   150  // Even if the sweepLocker is invalid, its sweepGen is always valid.
   151  func (a *activeSweep) begin() sweepLocker {
   152  	for {
   153  		state := a.state.Load()
   154  		if state&sweepDrainedMask != 0 {
   155  			return sweepLocker{mheap_.sweepgen, false}
   156  		}
   157  		if a.state.CompareAndSwap(state, state+1) {
   158  			return sweepLocker{mheap_.sweepgen, true}
   159  		}
   160  	}
   161  }
   162  
   163  // end deregisters a sweeper. Must be called once for each time
   164  // begin is called if the sweepLocker is valid.
   165  func (a *activeSweep) end(sl sweepLocker) {
   166  	if sl.sweepGen != mheap_.sweepgen {
   167  		throw("sweeper left outstanding across sweep generations")
   168  	}
   169  	for {
   170  		state := a.state.Load()
   171  		if (state&^sweepDrainedMask)-1 >= sweepDrainedMask {
   172  			throw("mismatched begin/end of activeSweep")
   173  		}
   174  		if a.state.CompareAndSwap(state, state-1) {
   175  			if state != sweepDrainedMask {
   176  				return
   177  			}
   178  			if debug.gcpacertrace > 0 {
   179  				live := gcController.heapLive.Load()
   180  				print("pacer: sweep done at heap size ", live>>20, "MB; allocated ", (live-mheap_.sweepHeapLiveBasis)>>20, "MB during sweep; swept ", mheap_.pagesSwept.Load(), " pages at ", mheap_.sweepPagesPerByte, " pages/byte\n")
   181  			}
   182  			return
   183  		}
   184  	}
   185  }
   186  
   187  // markDrained marks the active sweep cycle as having drained
   188  // all remaining work. This is safe to be called concurrently
   189  // with all other methods of activeSweep, though may race.
   190  //
   191  // Returns true if this call was the one that actually performed
   192  // the mark.
   193  func (a *activeSweep) markDrained() bool {
   194  	for {
   195  		state := a.state.Load()
   196  		if state&sweepDrainedMask != 0 {
   197  			return false
   198  		}
   199  		if a.state.CompareAndSwap(state, state|sweepDrainedMask) {
   200  			return true
   201  		}
   202  	}
   203  }
   204  
   205  // sweepers returns the current number of active sweepers.
   206  func (a *activeSweep) sweepers() uint32 {
   207  	return a.state.Load() &^ sweepDrainedMask
   208  }
   209  
   210  // isDone returns true if all sweep work has been drained and no more
   211  // outstanding sweepers exist. That is, when the sweep phase is
   212  // completely done.
   213  func (a *activeSweep) isDone() bool {
   214  	return a.state.Load() == sweepDrainedMask
   215  }
   216  
   217  // reset sets up the activeSweep for the next sweep cycle.
   218  //
   219  // The world must be stopped.
   220  func (a *activeSweep) reset() {
   221  	assertWorldStopped()
   222  	a.state.Store(0)
   223  }
   224  
   225  // finishsweep_m ensures that all spans are swept.
   226  //
   227  // The world must be stopped. This ensures there are no sweeps in
   228  // progress.
   229  //
   230  //go:nowritebarrier
   231  func finishsweep_m() {
   232  	assertWorldStopped()
   233  
   234  	// Sweeping must be complete before marking commences, so
   235  	// sweep any unswept spans. If this is a concurrent GC, there
   236  	// shouldn't be any spans left to sweep, so this should finish
   237  	// instantly. If GC was forced before the concurrent sweep
   238  	// finished, there may be spans to sweep.
   239  	for sweepone() != ^uintptr(0) {
   240  		sweep.npausesweep++
   241  	}
   242  
   243  	// Make sure there aren't any outstanding sweepers left.
   244  	// At this point, with the world stopped, it means one of two
   245  	// things. Either we were able to preempt a sweeper, or that
   246  	// a sweeper didn't call sweep.active.end when it should have.
   247  	// Both cases indicate a bug, so throw.
   248  	if sweep.active.sweepers() != 0 {
   249  		throw("active sweepers found at start of mark phase")
   250  	}
   251  
   252  	// Reset all the unswept buffers, which should be empty.
   253  	// Do this in sweep termination as opposed to mark termination
   254  	// so that we can catch unswept spans and reclaim blocks as
   255  	// soon as possible.
   256  	sg := mheap_.sweepgen
   257  	for i := range mheap_.central {
   258  		c := &mheap_.central[i].mcentral
   259  		c.partialUnswept(sg).reset()
   260  		c.fullUnswept(sg).reset()
   261  	}
   262  
   263  	// Sweeping is done, so there won't be any new memory to
   264  	// scavenge for a bit.
   265  	//
   266  	// If the scavenger isn't already awake, wake it up. There's
   267  	// definitely work for it to do at this point.
   268  	scavenger.wake()
   269  
   270  	nextMarkBitArenaEpoch()
   271  }
   272  
   273  func bgsweep(c chan int) {
   274  	sweep.g = getg()
   275  
   276  	lockInit(&sweep.lock, lockRankSweep)
   277  	lock(&sweep.lock)
   278  	sweep.parked = true
   279  	c <- 1
   280  	goparkunlock(&sweep.lock, waitReasonGCSweepWait, traceEvGoBlock, 1)
   281  
   282  	for {
   283  		// bgsweep attempts to be a "low priority" goroutine by intentionally
   284  		// yielding time. It's OK if it doesn't run, because goroutines allocating
   285  		// memory will sweep and ensure that all spans are swept before the next
   286  		// GC cycle. We really only want to run when we're idle.
   287  		//
   288  		// However, calling Gosched after each span swept produces a tremendous
   289  		// amount of tracing events, sometimes up to 50% of events in a trace. It's
   290  		// also inefficient to call into the scheduler so much because sweeping a
   291  		// single span is in general a very fast operation, taking as little as 30 ns
   292  		// on modern hardware. (See #54767.)
   293  		//
   294  		// As a result, bgsweep sweeps in batches, and only calls into the scheduler
   295  		// at the end of every batch. Furthermore, it only yields its time if there
   296  		// isn't spare idle time available on other cores. If there's available idle
   297  		// time, helping to sweep can reduce allocation latencies by getting ahead of
   298  		// the proportional sweeper and having spans ready to go for allocation.
   299  		const sweepBatchSize = 10
   300  		nSwept := 0
   301  		for sweepone() != ^uintptr(0) {
   302  			sweep.nbgsweep++
   303  			nSwept++
   304  			if nSwept%sweepBatchSize == 0 {
   305  				goschedIfBusy()
   306  			}
   307  		}
   308  		for freeSomeWbufs(true) {
   309  			// N.B. freeSomeWbufs is already batched internally.
   310  			goschedIfBusy()
   311  		}
   312  		lock(&sweep.lock)
   313  		if !isSweepDone() {
   314  			// This can happen if a GC runs between
   315  			// gosweepone returning ^0 above
   316  			// and the lock being acquired.
   317  			unlock(&sweep.lock)
   318  			continue
   319  		}
   320  		sweep.parked = true
   321  		goparkunlock(&sweep.lock, waitReasonGCSweepWait, traceEvGoBlock, 1)
   322  	}
   323  }
   324  
   325  // sweepLocker acquires sweep ownership of spans.
   326  type sweepLocker struct {
   327  	// sweepGen is the sweep generation of the heap.
   328  	sweepGen uint32
   329  	valid    bool
   330  }
   331  
   332  // sweepLocked represents sweep ownership of a span.
   333  type sweepLocked struct {
   334  	*mspan
   335  }
   336  
   337  // tryAcquire attempts to acquire sweep ownership of span s. If it
   338  // successfully acquires ownership, it blocks sweep completion.
   339  func (l *sweepLocker) tryAcquire(s *mspan) (sweepLocked, bool) {
   340  	if !l.valid {
   341  		throw("use of invalid sweepLocker")
   342  	}
   343  	// Check before attempting to CAS.
   344  	if atomic.Load(&s.sweepgen) != l.sweepGen-2 {
   345  		return sweepLocked{}, false
   346  	}
   347  	// Attempt to acquire sweep ownership of s.
   348  	if !atomic.Cas(&s.sweepgen, l.sweepGen-2, l.sweepGen-1) {
   349  		return sweepLocked{}, false
   350  	}
   351  	return sweepLocked{s}, true
   352  }
   353  
   354  // sweepone sweeps some unswept heap span and returns the number of pages returned
   355  // to the heap, or ^uintptr(0) if there was nothing to sweep.
   356  func sweepone() uintptr {
   357  	gp := getg()
   358  
   359  	// Increment locks to ensure that the goroutine is not preempted
   360  	// in the middle of sweep thus leaving the span in an inconsistent state for next GC
   361  	gp.m.locks++
   362  
   363  	// TODO(austin): sweepone is almost always called in a loop;
   364  	// lift the sweepLocker into its callers.
   365  	sl := sweep.active.begin()
   366  	if !sl.valid {
   367  		gp.m.locks--
   368  		return ^uintptr(0)
   369  	}
   370  
   371  	// Find a span to sweep.
   372  	npages := ^uintptr(0)
   373  	var noMoreWork bool
   374  	for {
   375  		s := mheap_.nextSpanForSweep()
   376  		if s == nil {
   377  			noMoreWork = sweep.active.markDrained()
   378  			break
   379  		}
   380  		if state := s.state.get(); state != mSpanInUse {
   381  			// This can happen if direct sweeping already
   382  			// swept this span, but in that case the sweep
   383  			// generation should always be up-to-date.
   384  			if !(s.sweepgen == sl.sweepGen || s.sweepgen == sl.sweepGen+3) {
   385  				print("runtime: bad span s.state=", state, " s.sweepgen=", s.sweepgen, " sweepgen=", sl.sweepGen, "\n")
   386  				throw("non in-use span in unswept list")
   387  			}
   388  			continue
   389  		}
   390  		if s, ok := sl.tryAcquire(s); ok {
   391  			// Sweep the span we found.
   392  			npages = s.npages
   393  			if s.sweep(false) {
   394  				// Whole span was freed. Count it toward the
   395  				// page reclaimer credit since these pages can
   396  				// now be used for span allocation.
   397  				mheap_.reclaimCredit.Add(npages)
   398  			} else {
   399  				// Span is still in-use, so this returned no
   400  				// pages to the heap and the span needs to
   401  				// move to the swept in-use list.
   402  				npages = 0
   403  			}
   404  			break
   405  		}
   406  	}
   407  	sweep.active.end(sl)
   408  
   409  	if noMoreWork {
   410  		// The sweep list is empty. There may still be
   411  		// concurrent sweeps running, but we're at least very
   412  		// close to done sweeping.
   413  
   414  		// Move the scavenge gen forward (signaling
   415  		// that there's new work to do) and wake the scavenger.
   416  		//
   417  		// The scavenger is signaled by the last sweeper because once
   418  		// sweeping is done, we will definitely have useful work for
   419  		// the scavenger to do, since the scavenger only runs over the
   420  		// heap once per GC cycle. This update is not done during sweep
   421  		// termination because in some cases there may be a long delay
   422  		// between sweep done and sweep termination (e.g. not enough
   423  		// allocations to trigger a GC) which would be nice to fill in
   424  		// with scavenging work.
   425  		if debug.scavtrace > 0 {
   426  			systemstack(func() {
   427  				lock(&mheap_.lock)
   428  				released := atomic.Loaduintptr(&mheap_.pages.scav.released)
   429  				printScavTrace(released, false)
   430  				atomic.Storeuintptr(&mheap_.pages.scav.released, 0)
   431  				unlock(&mheap_.lock)
   432  			})
   433  		}
   434  		scavenger.ready()
   435  	}
   436  
   437  	gp.m.locks--
   438  	return npages
   439  }
   440  
   441  // isSweepDone reports whether all spans are swept.
   442  //
   443  // Note that this condition may transition from false to true at any
   444  // time as the sweeper runs. It may transition from true to false if a
   445  // GC runs; to prevent that the caller must be non-preemptible or must
   446  // somehow block GC progress.
   447  func isSweepDone() bool {
   448  	return sweep.active.isDone()
   449  }
   450  
   451  // Returns only when span s has been swept.
   452  //
   453  //go:nowritebarrier
   454  func (s *mspan) ensureSwept() {
   455  	// Caller must disable preemption.
   456  	// Otherwise when this function returns the span can become unswept again
   457  	// (if GC is triggered on another goroutine).
   458  	gp := getg()
   459  	if gp.m.locks == 0 && gp.m.mallocing == 0 && gp != gp.m.g0 {
   460  		throw("mspan.ensureSwept: m is not locked")
   461  	}
   462  
   463  	// If this operation fails, then that means that there are
   464  	// no more spans to be swept. In this case, either s has already
   465  	// been swept, or is about to be acquired for sweeping and swept.
   466  	sl := sweep.active.begin()
   467  	if sl.valid {
   468  		// The caller must be sure that the span is a mSpanInUse span.
   469  		if s, ok := sl.tryAcquire(s); ok {
   470  			s.sweep(false)
   471  			sweep.active.end(sl)
   472  			return
   473  		}
   474  		sweep.active.end(sl)
   475  	}
   476  
   477  	// Unfortunately we can't sweep the span ourselves. Somebody else
   478  	// got to it first. We don't have efficient means to wait, but that's
   479  	// OK, it will be swept fairly soon.
   480  	for {
   481  		spangen := atomic.Load(&s.sweepgen)
   482  		if spangen == sl.sweepGen || spangen == sl.sweepGen+3 {
   483  			break
   484  		}
   485  		osyield()
   486  	}
   487  }
   488  
   489  // sweep frees or collects finalizers for blocks not marked in the mark phase.
   490  // It clears the mark bits in preparation for the next GC round.
   491  // Returns true if the span was returned to heap.
   492  // If preserve=true, don't return it to heap nor relink in mcentral lists;
   493  // caller takes care of it.
   494  func (sl *sweepLocked) sweep(preserve bool) bool {
   495  	// It's critical that we enter this function with preemption disabled,
   496  	// GC must not start while we are in the middle of this function.
   497  	gp := getg()
   498  	if gp.m.locks == 0 && gp.m.mallocing == 0 && gp != gp.m.g0 {
   499  		throw("mspan.sweep: m is not locked")
   500  	}
   501  
   502  	s := sl.mspan
   503  	if !preserve {
   504  		// We'll release ownership of this span. Nil it out to
   505  		// prevent the caller from accidentally using it.
   506  		sl.mspan = nil
   507  	}
   508  
   509  	sweepgen := mheap_.sweepgen
   510  	if state := s.state.get(); state != mSpanInUse || s.sweepgen != sweepgen-1 {
   511  		print("mspan.sweep: state=", state, " sweepgen=", s.sweepgen, " mheap.sweepgen=", sweepgen, "\n")
   512  		throw("mspan.sweep: bad span state")
   513  	}
   514  
   515  	if traceEnabled() {
   516  		traceGCSweepSpan(s.npages * _PageSize)
   517  	}
   518  
   519  	mheap_.pagesSwept.Add(int64(s.npages))
   520  
   521  	spc := s.spanclass
   522  	size := s.elemsize
   523  
   524  	// The allocBits indicate which unmarked objects don't need to be
   525  	// processed since they were free at the end of the last GC cycle
   526  	// and were not allocated since then.
   527  	// If the allocBits index is >= s.freeindex and the bit
   528  	// is not marked then the object remains unallocated
   529  	// since the last GC.
   530  	// This situation is analogous to being on a freelist.
   531  
   532  	// Unlink & free special records for any objects we're about to free.
   533  	// Two complications here:
   534  	// 1. An object can have both finalizer and profile special records.
   535  	//    In such case we need to queue finalizer for execution,
   536  	//    mark the object as live and preserve the profile special.
   537  	// 2. A tiny object can have several finalizers setup for different offsets.
   538  	//    If such object is not marked, we need to queue all finalizers at once.
   539  	// Both 1 and 2 are possible at the same time.
   540  	hadSpecials := s.specials != nil
   541  	siter := newSpecialsIter(s)
   542  	for siter.valid() {
   543  		// A finalizer can be set for an inner byte of an object, find object beginning.
   544  		objIndex := uintptr(siter.s.offset) / size
   545  		p := s.base() + objIndex*size
   546  		mbits := s.markBitsForIndex(objIndex)
   547  		if !mbits.isMarked() {
   548  			// This object is not marked and has at least one special record.
   549  			// Pass 1: see if it has at least one finalizer.
   550  			hasFin := false
   551  			endOffset := p - s.base() + size
   552  			for tmp := siter.s; tmp != nil && uintptr(tmp.offset) < endOffset; tmp = tmp.next {
   553  				if tmp.kind == _KindSpecialFinalizer {
   554  					// Stop freeing of object if it has a finalizer.
   555  					mbits.setMarkedNonAtomic()
   556  					hasFin = true
   557  					break
   558  				}
   559  			}
   560  			// Pass 2: queue all finalizers _or_ handle profile record.
   561  			for siter.valid() && uintptr(siter.s.offset) < endOffset {
   562  				// Find the exact byte for which the special was setup
   563  				// (as opposed to object beginning).
   564  				special := siter.s
   565  				p := s.base() + uintptr(special.offset)
   566  				if special.kind == _KindSpecialFinalizer || !hasFin {
   567  					siter.unlinkAndNext()
   568  					freeSpecial(special, unsafe.Pointer(p), size)
   569  				} else {
   570  					// The object has finalizers, so we're keeping it alive.
   571  					// All other specials only apply when an object is freed,
   572  					// so just keep the special record.
   573  					siter.next()
   574  				}
   575  			}
   576  		} else {
   577  			// object is still live
   578  			if siter.s.kind == _KindSpecialReachable {
   579  				special := siter.unlinkAndNext()
   580  				(*specialReachable)(unsafe.Pointer(special)).reachable = true
   581  				freeSpecial(special, unsafe.Pointer(p), size)
   582  			} else {
   583  				// keep special record
   584  				siter.next()
   585  			}
   586  		}
   587  	}
   588  	if hadSpecials && s.specials == nil {
   589  		spanHasNoSpecials(s)
   590  	}
   591  
   592  	if debug.allocfreetrace != 0 || debug.clobberfree != 0 || raceenabled || msanenabled || asanenabled {
   593  		// Find all newly freed objects. This doesn't have to
   594  		// efficient; allocfreetrace has massive overhead.
   595  		mbits := s.markBitsForBase()
   596  		abits := s.allocBitsForIndex(0)
   597  		for i := uintptr(0); i < s.nelems; i++ {
   598  			if !mbits.isMarked() && (abits.index < s.freeindex || abits.isMarked()) {
   599  				x := s.base() + i*s.elemsize
   600  				if debug.allocfreetrace != 0 {
   601  					tracefree(unsafe.Pointer(x), size)
   602  				}
   603  				if debug.clobberfree != 0 {
   604  					clobberfree(unsafe.Pointer(x), size)
   605  				}
   606  				// User arenas are handled on explicit free.
   607  				if raceenabled && !s.isUserArenaChunk {
   608  					racefree(unsafe.Pointer(x), size)
   609  				}
   610  				if msanenabled && !s.isUserArenaChunk {
   611  					msanfree(unsafe.Pointer(x), size)
   612  				}
   613  				if asanenabled && !s.isUserArenaChunk {
   614  					asanpoison(unsafe.Pointer(x), size)
   615  				}
   616  			}
   617  			mbits.advance()
   618  			abits.advance()
   619  		}
   620  	}
   621  
   622  	// Check for zombie objects.
   623  	if s.freeindex < s.nelems {
   624  		// Everything < freeindex is allocated and hence
   625  		// cannot be zombies.
   626  		//
   627  		// Check the first bitmap byte, where we have to be
   628  		// careful with freeindex.
   629  		obj := s.freeindex
   630  		if (*s.gcmarkBits.bytep(obj / 8)&^*s.allocBits.bytep(obj / 8))>>(obj%8) != 0 {
   631  			s.reportZombies()
   632  		}
   633  		// Check remaining bytes.
   634  		for i := obj/8 + 1; i < divRoundUp(s.nelems, 8); i++ {
   635  			if *s.gcmarkBits.bytep(i)&^*s.allocBits.bytep(i) != 0 {
   636  				s.reportZombies()
   637  			}
   638  		}
   639  	}
   640  
   641  	// Count the number of free objects in this span.
   642  	nalloc := uint16(s.countAlloc())
   643  	nfreed := s.allocCount - nalloc
   644  	if nalloc > s.allocCount {
   645  		// The zombie check above should have caught this in
   646  		// more detail.
   647  		print("runtime: nelems=", s.nelems, " nalloc=", nalloc, " previous allocCount=", s.allocCount, " nfreed=", nfreed, "\n")
   648  		throw("sweep increased allocation count")
   649  	}
   650  
   651  	s.allocCount = nalloc
   652  	s.freeindex = 0 // reset allocation index to start of span.
   653  	s.freeIndexForScan = 0
   654  	if traceEnabled() {
   655  		getg().m.p.ptr().traceReclaimed += uintptr(nfreed) * s.elemsize
   656  	}
   657  
   658  	// gcmarkBits becomes the allocBits.
   659  	// get a fresh cleared gcmarkBits in preparation for next GC
   660  	s.allocBits = s.gcmarkBits
   661  	s.gcmarkBits = newMarkBits(s.nelems)
   662  
   663  	// Initialize alloc bits cache.
   664  	s.refillAllocCache(0)
   665  
   666  	// The span must be in our exclusive ownership until we update sweepgen,
   667  	// check for potential races.
   668  	if state := s.state.get(); state != mSpanInUse || s.sweepgen != sweepgen-1 {
   669  		print("mspan.sweep: state=", state, " sweepgen=", s.sweepgen, " mheap.sweepgen=", sweepgen, "\n")
   670  		throw("mspan.sweep: bad span state after sweep")
   671  	}
   672  	if s.sweepgen == sweepgen+1 || s.sweepgen == sweepgen+3 {
   673  		throw("swept cached span")
   674  	}
   675  
   676  	// We need to set s.sweepgen = h.sweepgen only when all blocks are swept,
   677  	// because of the potential for a concurrent free/SetFinalizer.
   678  	//
   679  	// But we need to set it before we make the span available for allocation
   680  	// (return it to heap or mcentral), because allocation code assumes that a
   681  	// span is already swept if available for allocation.
   682  	//
   683  	// Serialization point.
   684  	// At this point the mark bits are cleared and allocation ready
   685  	// to go so release the span.
   686  	atomic.Store(&s.sweepgen, sweepgen)
   687  
   688  	if s.isUserArenaChunk {
   689  		if preserve {
   690  			// This is a case that should never be handled by a sweeper that
   691  			// preserves the span for reuse.
   692  			throw("sweep: tried to preserve a user arena span")
   693  		}
   694  		if nalloc > 0 {
   695  			// There still exist pointers into the span or the span hasn't been
   696  			// freed yet. It's not ready to be reused. Put it back on the
   697  			// full swept list for the next cycle.
   698  			mheap_.central[spc].mcentral.fullSwept(sweepgen).push(s)
   699  			return false
   700  		}
   701  
   702  		// It's only at this point that the sweeper doesn't actually need to look
   703  		// at this arena anymore, so subtract from pagesInUse now.
   704  		mheap_.pagesInUse.Add(-s.npages)
   705  		s.state.set(mSpanDead)
   706  
   707  		// The arena is ready to be recycled. Remove it from the quarantine list
   708  		// and place it on the ready list. Don't add it back to any sweep lists.
   709  		systemstack(func() {
   710  			// It's the arena code's responsibility to get the chunk on the quarantine
   711  			// list by the time all references to the chunk are gone.
   712  			if s.list != &mheap_.userArena.quarantineList {
   713  				throw("user arena span is on the wrong list")
   714  			}
   715  			lock(&mheap_.lock)
   716  			mheap_.userArena.quarantineList.remove(s)
   717  			mheap_.userArena.readyList.insert(s)
   718  			unlock(&mheap_.lock)
   719  		})
   720  		return false
   721  	}
   722  
   723  	if spc.sizeclass() != 0 {
   724  		// Handle spans for small objects.
   725  		if nfreed > 0 {
   726  			// Only mark the span as needing zeroing if we've freed any
   727  			// objects, because a fresh span that had been allocated into,
   728  			// wasn't totally filled, but then swept, still has all of its
   729  			// free slots zeroed.
   730  			s.needzero = 1
   731  			stats := memstats.heapStats.acquire()
   732  			atomic.Xadd64(&stats.smallFreeCount[spc.sizeclass()], int64(nfreed))
   733  			memstats.heapStats.release()
   734  
   735  			// Count the frees in the inconsistent, internal stats.
   736  			gcController.totalFree.Add(int64(nfreed) * int64(s.elemsize))
   737  		}
   738  		if !preserve {
   739  			// The caller may not have removed this span from whatever
   740  			// unswept set its on but taken ownership of the span for
   741  			// sweeping by updating sweepgen. If this span still is in
   742  			// an unswept set, then the mcentral will pop it off the
   743  			// set, check its sweepgen, and ignore it.
   744  			if nalloc == 0 {
   745  				// Free totally free span directly back to the heap.
   746  				mheap_.freeSpan(s)
   747  				return true
   748  			}
   749  			// Return span back to the right mcentral list.
   750  			if uintptr(nalloc) == s.nelems {
   751  				mheap_.central[spc].mcentral.fullSwept(sweepgen).push(s)
   752  			} else {
   753  				mheap_.central[spc].mcentral.partialSwept(sweepgen).push(s)
   754  			}
   755  		}
   756  	} else if !preserve {
   757  		// Handle spans for large objects.
   758  		if nfreed != 0 {
   759  			// Free large object span to heap.
   760  
   761  			// NOTE(rsc,dvyukov): The original implementation of efence
   762  			// in CL 22060046 used sysFree instead of sysFault, so that
   763  			// the operating system would eventually give the memory
   764  			// back to us again, so that an efence program could run
   765  			// longer without running out of memory. Unfortunately,
   766  			// calling sysFree here without any kind of adjustment of the
   767  			// heap data structures means that when the memory does
   768  			// come back to us, we have the wrong metadata for it, either in
   769  			// the mspan structures or in the garbage collection bitmap.
   770  			// Using sysFault here means that the program will run out of
   771  			// memory fairly quickly in efence mode, but at least it won't
   772  			// have mysterious crashes due to confused memory reuse.
   773  			// It should be possible to switch back to sysFree if we also
   774  			// implement and then call some kind of mheap.deleteSpan.
   775  			if debug.efence > 0 {
   776  				s.limit = 0 // prevent mlookup from finding this span
   777  				sysFault(unsafe.Pointer(s.base()), size)
   778  			} else {
   779  				mheap_.freeSpan(s)
   780  			}
   781  
   782  			// Count the free in the consistent, external stats.
   783  			stats := memstats.heapStats.acquire()
   784  			atomic.Xadd64(&stats.largeFreeCount, 1)
   785  			atomic.Xadd64(&stats.largeFree, int64(size))
   786  			memstats.heapStats.release()
   787  
   788  			// Count the free in the inconsistent, internal stats.
   789  			gcController.totalFree.Add(int64(size))
   790  
   791  			return true
   792  		}
   793  
   794  		// Add a large span directly onto the full+swept list.
   795  		mheap_.central[spc].mcentral.fullSwept(sweepgen).push(s)
   796  	}
   797  	return false
   798  }
   799  
   800  // reportZombies reports any marked but free objects in s and throws.
   801  //
   802  // This generally means one of the following:
   803  //
   804  // 1. User code converted a pointer to a uintptr and then back
   805  // unsafely, and a GC ran while the uintptr was the only reference to
   806  // an object.
   807  //
   808  // 2. User code (or a compiler bug) constructed a bad pointer that
   809  // points to a free slot, often a past-the-end pointer.
   810  //
   811  // 3. The GC two cycles ago missed a pointer and freed a live object,
   812  // but it was still live in the last cycle, so this GC cycle found a
   813  // pointer to that object and marked it.
   814  func (s *mspan) reportZombies() {
   815  	printlock()
   816  	print("runtime: marked free object in span ", s, ", elemsize=", s.elemsize, " freeindex=", s.freeindex, " (bad use of unsafe.Pointer? try -d=checkptr)\n")
   817  	mbits := s.markBitsForBase()
   818  	abits := s.allocBitsForIndex(0)
   819  	for i := uintptr(0); i < s.nelems; i++ {
   820  		addr := s.base() + i*s.elemsize
   821  		print(hex(addr))
   822  		alloc := i < s.freeindex || abits.isMarked()
   823  		if alloc {
   824  			print(" alloc")
   825  		} else {
   826  			print(" free ")
   827  		}
   828  		if mbits.isMarked() {
   829  			print(" marked  ")
   830  		} else {
   831  			print(" unmarked")
   832  		}
   833  		zombie := mbits.isMarked() && !alloc
   834  		if zombie {
   835  			print(" zombie")
   836  		}
   837  		print("\n")
   838  		if zombie {
   839  			length := s.elemsize
   840  			if length > 1024 {
   841  				length = 1024
   842  			}
   843  			hexdumpWords(addr, addr+length, nil)
   844  		}
   845  		mbits.advance()
   846  		abits.advance()
   847  	}
   848  	throw("found pointer to free object")
   849  }
   850  
   851  // deductSweepCredit deducts sweep credit for allocating a span of
   852  // size spanBytes. This must be performed *before* the span is
   853  // allocated to ensure the system has enough credit. If necessary, it
   854  // performs sweeping to prevent going in to debt. If the caller will
   855  // also sweep pages (e.g., for a large allocation), it can pass a
   856  // non-zero callerSweepPages to leave that many pages unswept.
   857  //
   858  // deductSweepCredit makes a worst-case assumption that all spanBytes
   859  // bytes of the ultimately allocated span will be available for object
   860  // allocation.
   861  //
   862  // deductSweepCredit is the core of the "proportional sweep" system.
   863  // It uses statistics gathered by the garbage collector to perform
   864  // enough sweeping so that all pages are swept during the concurrent
   865  // sweep phase between GC cycles.
   866  //
   867  // mheap_ must NOT be locked.
   868  func deductSweepCredit(spanBytes uintptr, callerSweepPages uintptr) {
   869  	if mheap_.sweepPagesPerByte == 0 {
   870  		// Proportional sweep is done or disabled.
   871  		return
   872  	}
   873  
   874  	if traceEnabled() {
   875  		traceGCSweepStart()
   876  	}
   877  
   878  	// Fix debt if necessary.
   879  retry:
   880  	sweptBasis := mheap_.pagesSweptBasis.Load()
   881  	live := gcController.heapLive.Load()
   882  	liveBasis := mheap_.sweepHeapLiveBasis
   883  	newHeapLive := spanBytes
   884  	if liveBasis < live {
   885  		// Only do this subtraction when we don't overflow. Otherwise, pagesTarget
   886  		// might be computed as something really huge, causing us to get stuck
   887  		// sweeping here until the next mark phase.
   888  		//
   889  		// Overflow can happen here if gcPaceSweeper is called concurrently with
   890  		// sweeping (i.e. not during a STW, like it usually is) because this code
   891  		// is intentionally racy. A concurrent call to gcPaceSweeper can happen
   892  		// if a GC tuning parameter is modified and we read an older value of
   893  		// heapLive than what was used to set the basis.
   894  		//
   895  		// This state should be transient, so it's fine to just let newHeapLive
   896  		// be a relatively small number. We'll probably just skip this attempt to
   897  		// sweep.
   898  		//
   899  		// See issue #57523.
   900  		newHeapLive += uintptr(live - liveBasis)
   901  	}
   902  	pagesTarget := int64(mheap_.sweepPagesPerByte*float64(newHeapLive)) - int64(callerSweepPages)
   903  	for pagesTarget > int64(mheap_.pagesSwept.Load()-sweptBasis) {
   904  		if sweepone() == ^uintptr(0) {
   905  			mheap_.sweepPagesPerByte = 0
   906  			break
   907  		}
   908  		if mheap_.pagesSweptBasis.Load() != sweptBasis {
   909  			// Sweep pacing changed. Recompute debt.
   910  			goto retry
   911  		}
   912  	}
   913  
   914  	if traceEnabled() {
   915  		traceGCSweepDone()
   916  	}
   917  }
   918  
   919  // clobberfree sets the memory content at x to bad content, for debugging
   920  // purposes.
   921  func clobberfree(x unsafe.Pointer, size uintptr) {
   922  	// size (span.elemsize) is always a multiple of 4.
   923  	for i := uintptr(0); i < size; i += 4 {
   924  		*(*uint32)(add(x, i)) = 0xdeadbeef
   925  	}
   926  }
   927  
   928  // gcPaceSweeper updates the sweeper's pacing parameters.
   929  //
   930  // Must be called whenever the GC's pacing is updated.
   931  //
   932  // The world must be stopped, or mheap_.lock must be held.
   933  func gcPaceSweeper(trigger uint64) {
   934  	assertWorldStoppedOrLockHeld(&mheap_.lock)
   935  
   936  	// Update sweep pacing.
   937  	if isSweepDone() {
   938  		mheap_.sweepPagesPerByte = 0
   939  	} else {
   940  		// Concurrent sweep needs to sweep all of the in-use
   941  		// pages by the time the allocated heap reaches the GC
   942  		// trigger. Compute the ratio of in-use pages to sweep
   943  		// per byte allocated, accounting for the fact that
   944  		// some might already be swept.
   945  		heapLiveBasis := gcController.heapLive.Load()
   946  		heapDistance := int64(trigger) - int64(heapLiveBasis)
   947  		// Add a little margin so rounding errors and
   948  		// concurrent sweep are less likely to leave pages
   949  		// unswept when GC starts.
   950  		heapDistance -= 1024 * 1024
   951  		if heapDistance < _PageSize {
   952  			// Avoid setting the sweep ratio extremely high
   953  			heapDistance = _PageSize
   954  		}
   955  		pagesSwept := mheap_.pagesSwept.Load()
   956  		pagesInUse := mheap_.pagesInUse.Load()
   957  		sweepDistancePages := int64(pagesInUse) - int64(pagesSwept)
   958  		if sweepDistancePages <= 0 {
   959  			mheap_.sweepPagesPerByte = 0
   960  		} else {
   961  			mheap_.sweepPagesPerByte = float64(sweepDistancePages) / float64(heapDistance)
   962  			mheap_.sweepHeapLiveBasis = heapLiveBasis
   963  			// Write pagesSweptBasis last, since this
   964  			// signals concurrent sweeps to recompute
   965  			// their debt.
   966  			mheap_.pagesSweptBasis.Store(pagesSwept)
   967  		}
   968  	}
   969  }