github.com/twelsh-aw/go/src@v0.0.0-20230516233729-a56fe86a7c81/runtime/mheap.go (about)

     1  // Copyright 2009 The Go Authors. All rights reserved.
     2  // Use of this source code is governed by a BSD-style
     3  // license that can be found in the LICENSE file.
     4  
     5  // Page heap.
     6  //
     7  // See malloc.go for overview.
     8  
     9  package runtime
    10  
    11  import (
    12  	"internal/cpu"
    13  	"internal/goarch"
    14  	"runtime/internal/atomic"
    15  	"runtime/internal/sys"
    16  	"unsafe"
    17  )
    18  
    19  const (
    20  	// minPhysPageSize is a lower-bound on the physical page size. The
    21  	// true physical page size may be larger than this. In contrast,
    22  	// sys.PhysPageSize is an upper-bound on the physical page size.
    23  	minPhysPageSize = 4096
    24  
    25  	// maxPhysPageSize is the maximum page size the runtime supports.
    26  	maxPhysPageSize = 512 << 10
    27  
    28  	// maxPhysHugePageSize sets an upper-bound on the maximum huge page size
    29  	// that the runtime supports.
    30  	maxPhysHugePageSize = pallocChunkBytes
    31  
    32  	// pagesPerReclaimerChunk indicates how many pages to scan from the
    33  	// pageInUse bitmap at a time. Used by the page reclaimer.
    34  	//
    35  	// Higher values reduce contention on scanning indexes (such as
    36  	// h.reclaimIndex), but increase the minimum latency of the
    37  	// operation.
    38  	//
    39  	// The time required to scan this many pages can vary a lot depending
    40  	// on how many spans are actually freed. Experimentally, it can
    41  	// scan for pages at ~300 GB/ms on a 2.6GHz Core i7, but can only
    42  	// free spans at ~32 MB/ms. Using 512 pages bounds this at
    43  	// roughly 100µs.
    44  	//
    45  	// Must be a multiple of the pageInUse bitmap element size and
    46  	// must also evenly divide pagesPerArena.
    47  	pagesPerReclaimerChunk = 512
    48  
    49  	// physPageAlignedStacks indicates whether stack allocations must be
    50  	// physical page aligned. This is a requirement for MAP_STACK on
    51  	// OpenBSD.
    52  	physPageAlignedStacks = GOOS == "openbsd"
    53  )
    54  
    55  // Main malloc heap.
    56  // The heap itself is the "free" and "scav" treaps,
    57  // but all the other global data is here too.
    58  //
    59  // mheap must not be heap-allocated because it contains mSpanLists,
    60  // which must not be heap-allocated.
    61  type mheap struct {
    62  	_ sys.NotInHeap
    63  
    64  	// lock must only be acquired on the system stack, otherwise a g
    65  	// could self-deadlock if its stack grows with the lock held.
    66  	lock mutex
    67  
    68  	pages pageAlloc // page allocation data structure
    69  
    70  	sweepgen uint32 // sweep generation, see comment in mspan; written during STW
    71  
    72  	// allspans is a slice of all mspans ever created. Each mspan
    73  	// appears exactly once.
    74  	//
    75  	// The memory for allspans is manually managed and can be
    76  	// reallocated and move as the heap grows.
    77  	//
    78  	// In general, allspans is protected by mheap_.lock, which
    79  	// prevents concurrent access as well as freeing the backing
    80  	// store. Accesses during STW might not hold the lock, but
    81  	// must ensure that allocation cannot happen around the
    82  	// access (since that may free the backing store).
    83  	allspans []*mspan // all spans out there
    84  
    85  	// Proportional sweep
    86  	//
    87  	// These parameters represent a linear function from gcController.heapLive
    88  	// to page sweep count. The proportional sweep system works to
    89  	// stay in the black by keeping the current page sweep count
    90  	// above this line at the current gcController.heapLive.
    91  	//
    92  	// The line has slope sweepPagesPerByte and passes through a
    93  	// basis point at (sweepHeapLiveBasis, pagesSweptBasis). At
    94  	// any given time, the system is at (gcController.heapLive,
    95  	// pagesSwept) in this space.
    96  	//
    97  	// It is important that the line pass through a point we
    98  	// control rather than simply starting at a 0,0 origin
    99  	// because that lets us adjust sweep pacing at any time while
   100  	// accounting for current progress. If we could only adjust
   101  	// the slope, it would create a discontinuity in debt if any
   102  	// progress has already been made.
   103  	pagesInUse         atomic.Uintptr // pages of spans in stats mSpanInUse
   104  	pagesSwept         atomic.Uint64  // pages swept this cycle
   105  	pagesSweptBasis    atomic.Uint64  // pagesSwept to use as the origin of the sweep ratio
   106  	sweepHeapLiveBasis uint64         // value of gcController.heapLive to use as the origin of sweep ratio; written with lock, read without
   107  	sweepPagesPerByte  float64        // proportional sweep ratio; written with lock, read without
   108  
   109  	// Page reclaimer state
   110  
   111  	// reclaimIndex is the page index in allArenas of next page to
   112  	// reclaim. Specifically, it refers to page (i %
   113  	// pagesPerArena) of arena allArenas[i / pagesPerArena].
   114  	//
   115  	// If this is >= 1<<63, the page reclaimer is done scanning
   116  	// the page marks.
   117  	reclaimIndex atomic.Uint64
   118  
   119  	// reclaimCredit is spare credit for extra pages swept. Since
   120  	// the page reclaimer works in large chunks, it may reclaim
   121  	// more than requested. Any spare pages released go to this
   122  	// credit pool.
   123  	reclaimCredit atomic.Uintptr
   124  
   125  	// arenas is the heap arena map. It points to the metadata for
   126  	// the heap for every arena frame of the entire usable virtual
   127  	// address space.
   128  	//
   129  	// Use arenaIndex to compute indexes into this array.
   130  	//
   131  	// For regions of the address space that are not backed by the
   132  	// Go heap, the arena map contains nil.
   133  	//
   134  	// Modifications are protected by mheap_.lock. Reads can be
   135  	// performed without locking; however, a given entry can
   136  	// transition from nil to non-nil at any time when the lock
   137  	// isn't held. (Entries never transitions back to nil.)
   138  	//
   139  	// In general, this is a two-level mapping consisting of an L1
   140  	// map and possibly many L2 maps. This saves space when there
   141  	// are a huge number of arena frames. However, on many
   142  	// platforms (even 64-bit), arenaL1Bits is 0, making this
   143  	// effectively a single-level map. In this case, arenas[0]
   144  	// will never be nil.
   145  	arenas [1 << arenaL1Bits]*[1 << arenaL2Bits]*heapArena
   146  
   147  	// arenasHugePages indicates whether arenas' L2 entries are eligible
   148  	// to be backed by huge pages.
   149  	arenasHugePages bool
   150  
   151  	// heapArenaAlloc is pre-reserved space for allocating heapArena
   152  	// objects. This is only used on 32-bit, where we pre-reserve
   153  	// this space to avoid interleaving it with the heap itself.
   154  	heapArenaAlloc linearAlloc
   155  
   156  	// arenaHints is a list of addresses at which to attempt to
   157  	// add more heap arenas. This is initially populated with a
   158  	// set of general hint addresses, and grown with the bounds of
   159  	// actual heap arena ranges.
   160  	arenaHints *arenaHint
   161  
   162  	// arena is a pre-reserved space for allocating heap arenas
   163  	// (the actual arenas). This is only used on 32-bit.
   164  	arena linearAlloc
   165  
   166  	// allArenas is the arenaIndex of every mapped arena. This can
   167  	// be used to iterate through the address space.
   168  	//
   169  	// Access is protected by mheap_.lock. However, since this is
   170  	// append-only and old backing arrays are never freed, it is
   171  	// safe to acquire mheap_.lock, copy the slice header, and
   172  	// then release mheap_.lock.
   173  	allArenas []arenaIdx
   174  
   175  	// sweepArenas is a snapshot of allArenas taken at the
   176  	// beginning of the sweep cycle. This can be read safely by
   177  	// simply blocking GC (by disabling preemption).
   178  	sweepArenas []arenaIdx
   179  
   180  	// markArenas is a snapshot of allArenas taken at the beginning
   181  	// of the mark cycle. Because allArenas is append-only, neither
   182  	// this slice nor its contents will change during the mark, so
   183  	// it can be read safely.
   184  	markArenas []arenaIdx
   185  
   186  	// curArena is the arena that the heap is currently growing
   187  	// into. This should always be physPageSize-aligned.
   188  	curArena struct {
   189  		base, end uintptr
   190  	}
   191  
   192  	// central free lists for small size classes.
   193  	// the padding makes sure that the mcentrals are
   194  	// spaced CacheLinePadSize bytes apart, so that each mcentral.lock
   195  	// gets its own cache line.
   196  	// central is indexed by spanClass.
   197  	central [numSpanClasses]struct {
   198  		mcentral mcentral
   199  		pad      [(cpu.CacheLinePadSize - unsafe.Sizeof(mcentral{})%cpu.CacheLinePadSize) % cpu.CacheLinePadSize]byte
   200  	}
   201  
   202  	spanalloc             fixalloc // allocator for span*
   203  	cachealloc            fixalloc // allocator for mcache*
   204  	specialfinalizeralloc fixalloc // allocator for specialfinalizer*
   205  	specialprofilealloc   fixalloc // allocator for specialprofile*
   206  	specialReachableAlloc fixalloc // allocator for specialReachable
   207  	speciallock           mutex    // lock for special record allocators.
   208  	arenaHintAlloc        fixalloc // allocator for arenaHints
   209  
   210  	// User arena state.
   211  	//
   212  	// Protected by mheap_.lock.
   213  	userArena struct {
   214  		// arenaHints is a list of addresses at which to attempt to
   215  		// add more heap arenas for user arena chunks. This is initially
   216  		// populated with a set of general hint addresses, and grown with
   217  		// the bounds of actual heap arena ranges.
   218  		arenaHints *arenaHint
   219  
   220  		// quarantineList is a list of user arena spans that have been set to fault, but
   221  		// are waiting for all pointers into them to go away. Sweeping handles
   222  		// identifying when this is true, and moves the span to the ready list.
   223  		quarantineList mSpanList
   224  
   225  		// readyList is a list of empty user arena spans that are ready for reuse.
   226  		readyList mSpanList
   227  	}
   228  
   229  	unused *specialfinalizer // never set, just here to force the specialfinalizer type into DWARF
   230  }
   231  
   232  var mheap_ mheap
   233  
   234  // A heapArena stores metadata for a heap arena. heapArenas are stored
   235  // outside of the Go heap and accessed via the mheap_.arenas index.
   236  type heapArena struct {
   237  	_ sys.NotInHeap
   238  
   239  	// bitmap stores the pointer/scalar bitmap for the words in
   240  	// this arena. See mbitmap.go for a description.
   241  	// This array uses 1 bit per word of heap, or 1.6% of the heap size (for 64-bit).
   242  	bitmap [heapArenaBitmapWords]uintptr
   243  
   244  	// If the ith bit of noMorePtrs is true, then there are no more
   245  	// pointers for the object containing the word described by the
   246  	// high bit of bitmap[i].
   247  	// In that case, bitmap[i+1], ... must be zero until the start
   248  	// of the next object.
   249  	// We never operate on these entries using bit-parallel techniques,
   250  	// so it is ok if they are small. Also, they can't be bigger than
   251  	// uint16 because at that size a single noMorePtrs entry
   252  	// represents 8K of memory, the minimum size of a span. Any larger
   253  	// and we'd have to worry about concurrent updates.
   254  	// This array uses 1 bit per word of bitmap, or .024% of the heap size (for 64-bit).
   255  	noMorePtrs [heapArenaBitmapWords / 8]uint8
   256  
   257  	// spans maps from virtual address page ID within this arena to *mspan.
   258  	// For allocated spans, their pages map to the span itself.
   259  	// For free spans, only the lowest and highest pages map to the span itself.
   260  	// Internal pages map to an arbitrary span.
   261  	// For pages that have never been allocated, spans entries are nil.
   262  	//
   263  	// Modifications are protected by mheap.lock. Reads can be
   264  	// performed without locking, but ONLY from indexes that are
   265  	// known to contain in-use or stack spans. This means there
   266  	// must not be a safe-point between establishing that an
   267  	// address is live and looking it up in the spans array.
   268  	spans [pagesPerArena]*mspan
   269  
   270  	// pageInUse is a bitmap that indicates which spans are in
   271  	// state mSpanInUse. This bitmap is indexed by page number,
   272  	// but only the bit corresponding to the first page in each
   273  	// span is used.
   274  	//
   275  	// Reads and writes are atomic.
   276  	pageInUse [pagesPerArena / 8]uint8
   277  
   278  	// pageMarks is a bitmap that indicates which spans have any
   279  	// marked objects on them. Like pageInUse, only the bit
   280  	// corresponding to the first page in each span is used.
   281  	//
   282  	// Writes are done atomically during marking. Reads are
   283  	// non-atomic and lock-free since they only occur during
   284  	// sweeping (and hence never race with writes).
   285  	//
   286  	// This is used to quickly find whole spans that can be freed.
   287  	//
   288  	// TODO(austin): It would be nice if this was uint64 for
   289  	// faster scanning, but we don't have 64-bit atomic bit
   290  	// operations.
   291  	pageMarks [pagesPerArena / 8]uint8
   292  
   293  	// pageSpecials is a bitmap that indicates which spans have
   294  	// specials (finalizers or other). Like pageInUse, only the bit
   295  	// corresponding to the first page in each span is used.
   296  	//
   297  	// Writes are done atomically whenever a special is added to
   298  	// a span and whenever the last special is removed from a span.
   299  	// Reads are done atomically to find spans containing specials
   300  	// during marking.
   301  	pageSpecials [pagesPerArena / 8]uint8
   302  
   303  	// checkmarks stores the debug.gccheckmark state. It is only
   304  	// used if debug.gccheckmark > 0.
   305  	checkmarks *checkmarksMap
   306  
   307  	// zeroedBase marks the first byte of the first page in this
   308  	// arena which hasn't been used yet and is therefore already
   309  	// zero. zeroedBase is relative to the arena base.
   310  	// Increases monotonically until it hits heapArenaBytes.
   311  	//
   312  	// This field is sufficient to determine if an allocation
   313  	// needs to be zeroed because the page allocator follows an
   314  	// address-ordered first-fit policy.
   315  	//
   316  	// Read atomically and written with an atomic CAS.
   317  	zeroedBase uintptr
   318  }
   319  
   320  // arenaHint is a hint for where to grow the heap arenas. See
   321  // mheap_.arenaHints.
   322  type arenaHint struct {
   323  	_    sys.NotInHeap
   324  	addr uintptr
   325  	down bool
   326  	next *arenaHint
   327  }
   328  
   329  // An mspan is a run of pages.
   330  //
   331  // When a mspan is in the heap free treap, state == mSpanFree
   332  // and heapmap(s->start) == span, heapmap(s->start+s->npages-1) == span.
   333  // If the mspan is in the heap scav treap, then in addition to the
   334  // above scavenged == true. scavenged == false in all other cases.
   335  //
   336  // When a mspan is allocated, state == mSpanInUse or mSpanManual
   337  // and heapmap(i) == span for all s->start <= i < s->start+s->npages.
   338  
   339  // Every mspan is in one doubly-linked list, either in the mheap's
   340  // busy list or one of the mcentral's span lists.
   341  
   342  // An mspan representing actual memory has state mSpanInUse,
   343  // mSpanManual, or mSpanFree. Transitions between these states are
   344  // constrained as follows:
   345  //
   346  //   - A span may transition from free to in-use or manual during any GC
   347  //     phase.
   348  //
   349  //   - During sweeping (gcphase == _GCoff), a span may transition from
   350  //     in-use to free (as a result of sweeping) or manual to free (as a
   351  //     result of stacks being freed).
   352  //
   353  //   - During GC (gcphase != _GCoff), a span *must not* transition from
   354  //     manual or in-use to free. Because concurrent GC may read a pointer
   355  //     and then look up its span, the span state must be monotonic.
   356  //
   357  // Setting mspan.state to mSpanInUse or mSpanManual must be done
   358  // atomically and only after all other span fields are valid.
   359  // Likewise, if inspecting a span is contingent on it being
   360  // mSpanInUse, the state should be loaded atomically and checked
   361  // before depending on other fields. This allows the garbage collector
   362  // to safely deal with potentially invalid pointers, since resolving
   363  // such pointers may race with a span being allocated.
   364  type mSpanState uint8
   365  
   366  const (
   367  	mSpanDead   mSpanState = iota
   368  	mSpanInUse             // allocated for garbage collected heap
   369  	mSpanManual            // allocated for manual management (e.g., stack allocator)
   370  )
   371  
   372  // mSpanStateNames are the names of the span states, indexed by
   373  // mSpanState.
   374  var mSpanStateNames = []string{
   375  	"mSpanDead",
   376  	"mSpanInUse",
   377  	"mSpanManual",
   378  }
   379  
   380  // mSpanStateBox holds an atomic.Uint8 to provide atomic operations on
   381  // an mSpanState. This is a separate type to disallow accidental comparison
   382  // or assignment with mSpanState.
   383  type mSpanStateBox struct {
   384  	s atomic.Uint8
   385  }
   386  
   387  // It is nosplit to match get, below.
   388  
   389  //go:nosplit
   390  func (b *mSpanStateBox) set(s mSpanState) {
   391  	b.s.Store(uint8(s))
   392  }
   393  
   394  // It is nosplit because it's called indirectly by typedmemclr,
   395  // which must not be preempted.
   396  
   397  //go:nosplit
   398  func (b *mSpanStateBox) get() mSpanState {
   399  	return mSpanState(b.s.Load())
   400  }
   401  
   402  // mSpanList heads a linked list of spans.
   403  type mSpanList struct {
   404  	_     sys.NotInHeap
   405  	first *mspan // first span in list, or nil if none
   406  	last  *mspan // last span in list, or nil if none
   407  }
   408  
   409  type mspan struct {
   410  	_    sys.NotInHeap
   411  	next *mspan     // next span in list, or nil if none
   412  	prev *mspan     // previous span in list, or nil if none
   413  	list *mSpanList // For debugging. TODO: Remove.
   414  
   415  	startAddr uintptr // address of first byte of span aka s.base()
   416  	npages    uintptr // number of pages in span
   417  
   418  	manualFreeList gclinkptr // list of free objects in mSpanManual spans
   419  
   420  	// freeindex is the slot index between 0 and nelems at which to begin scanning
   421  	// for the next free object in this span.
   422  	// Each allocation scans allocBits starting at freeindex until it encounters a 0
   423  	// indicating a free object. freeindex is then adjusted so that subsequent scans begin
   424  	// just past the newly discovered free object.
   425  	//
   426  	// If freeindex == nelem, this span has no free objects.
   427  	//
   428  	// allocBits is a bitmap of objects in this span.
   429  	// If n >= freeindex and allocBits[n/8] & (1<<(n%8)) is 0
   430  	// then object n is free;
   431  	// otherwise, object n is allocated. Bits starting at nelem are
   432  	// undefined and should never be referenced.
   433  	//
   434  	// Object n starts at address n*elemsize + (start << pageShift).
   435  	freeindex uintptr
   436  	// TODO: Look up nelems from sizeclass and remove this field if it
   437  	// helps performance.
   438  	nelems uintptr // number of object in the span.
   439  
   440  	// Cache of the allocBits at freeindex. allocCache is shifted
   441  	// such that the lowest bit corresponds to the bit freeindex.
   442  	// allocCache holds the complement of allocBits, thus allowing
   443  	// ctz (count trailing zero) to use it directly.
   444  	// allocCache may contain bits beyond s.nelems; the caller must ignore
   445  	// these.
   446  	allocCache uint64
   447  
   448  	// allocBits and gcmarkBits hold pointers to a span's mark and
   449  	// allocation bits. The pointers are 8 byte aligned.
   450  	// There are three arenas where this data is held.
   451  	// free: Dirty arenas that are no longer accessed
   452  	//       and can be reused.
   453  	// next: Holds information to be used in the next GC cycle.
   454  	// current: Information being used during this GC cycle.
   455  	// previous: Information being used during the last GC cycle.
   456  	// A new GC cycle starts with the call to finishsweep_m.
   457  	// finishsweep_m moves the previous arena to the free arena,
   458  	// the current arena to the previous arena, and
   459  	// the next arena to the current arena.
   460  	// The next arena is populated as the spans request
   461  	// memory to hold gcmarkBits for the next GC cycle as well
   462  	// as allocBits for newly allocated spans.
   463  	//
   464  	// The pointer arithmetic is done "by hand" instead of using
   465  	// arrays to avoid bounds checks along critical performance
   466  	// paths.
   467  	// The sweep will free the old allocBits and set allocBits to the
   468  	// gcmarkBits. The gcmarkBits are replaced with a fresh zeroed
   469  	// out memory.
   470  	allocBits  *gcBits
   471  	gcmarkBits *gcBits
   472  
   473  	// sweep generation:
   474  	// if sweepgen == h->sweepgen - 2, the span needs sweeping
   475  	// if sweepgen == h->sweepgen - 1, the span is currently being swept
   476  	// if sweepgen == h->sweepgen, the span is swept and ready to use
   477  	// if sweepgen == h->sweepgen + 1, the span was cached before sweep began and is still cached, and needs sweeping
   478  	// if sweepgen == h->sweepgen + 3, the span was swept and then cached and is still cached
   479  	// h->sweepgen is incremented by 2 after every GC
   480  
   481  	sweepgen              uint32
   482  	divMul                uint32        // for divide by elemsize
   483  	allocCount            uint16        // number of allocated objects
   484  	spanclass             spanClass     // size class and noscan (uint8)
   485  	state                 mSpanStateBox // mSpanInUse etc; accessed atomically (get/set methods)
   486  	needzero              uint8         // needs to be zeroed before allocation
   487  	isUserArenaChunk      bool          // whether or not this span represents a user arena
   488  	allocCountBeforeCache uint16        // a copy of allocCount that is stored just before this span is cached
   489  	elemsize              uintptr       // computed from sizeclass or from npages
   490  	limit                 uintptr       // end of data in span
   491  	speciallock           mutex         // guards specials list
   492  	specials              *special      // linked list of special records sorted by offset.
   493  	userArenaChunkFree    addrRange     // interval for managing chunk allocation
   494  
   495  	// freeIndexForScan is like freeindex, except that freeindex is
   496  	// used by the allocator whereas freeIndexForScan is used by the
   497  	// GC scanner. They are two fields so that the GC sees the object
   498  	// is allocated only when the object and the heap bits are
   499  	// initialized (see also the assignment of freeIndexForScan in
   500  	// mallocgc, and issue 54596).
   501  	freeIndexForScan uintptr
   502  }
   503  
   504  func (s *mspan) base() uintptr {
   505  	return s.startAddr
   506  }
   507  
   508  func (s *mspan) layout() (size, n, total uintptr) {
   509  	total = s.npages << _PageShift
   510  	size = s.elemsize
   511  	if size > 0 {
   512  		n = total / size
   513  	}
   514  	return
   515  }
   516  
   517  // recordspan adds a newly allocated span to h.allspans.
   518  //
   519  // This only happens the first time a span is allocated from
   520  // mheap.spanalloc (it is not called when a span is reused).
   521  //
   522  // Write barriers are disallowed here because it can be called from
   523  // gcWork when allocating new workbufs. However, because it's an
   524  // indirect call from the fixalloc initializer, the compiler can't see
   525  // this.
   526  //
   527  // The heap lock must be held.
   528  //
   529  //go:nowritebarrierrec
   530  func recordspan(vh unsafe.Pointer, p unsafe.Pointer) {
   531  	h := (*mheap)(vh)
   532  	s := (*mspan)(p)
   533  
   534  	assertLockHeld(&h.lock)
   535  
   536  	if len(h.allspans) >= cap(h.allspans) {
   537  		n := 64 * 1024 / goarch.PtrSize
   538  		if n < cap(h.allspans)*3/2 {
   539  			n = cap(h.allspans) * 3 / 2
   540  		}
   541  		var new []*mspan
   542  		sp := (*slice)(unsafe.Pointer(&new))
   543  		sp.array = sysAlloc(uintptr(n)*goarch.PtrSize, &memstats.other_sys)
   544  		if sp.array == nil {
   545  			throw("runtime: cannot allocate memory")
   546  		}
   547  		sp.len = len(h.allspans)
   548  		sp.cap = n
   549  		if len(h.allspans) > 0 {
   550  			copy(new, h.allspans)
   551  		}
   552  		oldAllspans := h.allspans
   553  		*(*notInHeapSlice)(unsafe.Pointer(&h.allspans)) = *(*notInHeapSlice)(unsafe.Pointer(&new))
   554  		if len(oldAllspans) != 0 {
   555  			sysFree(unsafe.Pointer(&oldAllspans[0]), uintptr(cap(oldAllspans))*unsafe.Sizeof(oldAllspans[0]), &memstats.other_sys)
   556  		}
   557  	}
   558  	h.allspans = h.allspans[:len(h.allspans)+1]
   559  	h.allspans[len(h.allspans)-1] = s
   560  }
   561  
   562  // A spanClass represents the size class and noscan-ness of a span.
   563  //
   564  // Each size class has a noscan spanClass and a scan spanClass. The
   565  // noscan spanClass contains only noscan objects, which do not contain
   566  // pointers and thus do not need to be scanned by the garbage
   567  // collector.
   568  type spanClass uint8
   569  
   570  const (
   571  	numSpanClasses = _NumSizeClasses << 1
   572  	tinySpanClass  = spanClass(tinySizeClass<<1 | 1)
   573  )
   574  
   575  func makeSpanClass(sizeclass uint8, noscan bool) spanClass {
   576  	return spanClass(sizeclass<<1) | spanClass(bool2int(noscan))
   577  }
   578  
   579  func (sc spanClass) sizeclass() int8 {
   580  	return int8(sc >> 1)
   581  }
   582  
   583  func (sc spanClass) noscan() bool {
   584  	return sc&1 != 0
   585  }
   586  
   587  // arenaIndex returns the index into mheap_.arenas of the arena
   588  // containing metadata for p. This index combines of an index into the
   589  // L1 map and an index into the L2 map and should be used as
   590  // mheap_.arenas[ai.l1()][ai.l2()].
   591  //
   592  // If p is outside the range of valid heap addresses, either l1() or
   593  // l2() will be out of bounds.
   594  //
   595  // It is nosplit because it's called by spanOf and several other
   596  // nosplit functions.
   597  //
   598  //go:nosplit
   599  func arenaIndex(p uintptr) arenaIdx {
   600  	return arenaIdx((p - arenaBaseOffset) / heapArenaBytes)
   601  }
   602  
   603  // arenaBase returns the low address of the region covered by heap
   604  // arena i.
   605  func arenaBase(i arenaIdx) uintptr {
   606  	return uintptr(i)*heapArenaBytes + arenaBaseOffset
   607  }
   608  
   609  type arenaIdx uint
   610  
   611  // l1 returns the "l1" portion of an arenaIdx.
   612  //
   613  // Marked nosplit because it's called by spanOf and other nosplit
   614  // functions.
   615  //
   616  //go:nosplit
   617  func (i arenaIdx) l1() uint {
   618  	if arenaL1Bits == 0 {
   619  		// Let the compiler optimize this away if there's no
   620  		// L1 map.
   621  		return 0
   622  	} else {
   623  		return uint(i) >> arenaL1Shift
   624  	}
   625  }
   626  
   627  // l2 returns the "l2" portion of an arenaIdx.
   628  //
   629  // Marked nosplit because it's called by spanOf and other nosplit funcs.
   630  // functions.
   631  //
   632  //go:nosplit
   633  func (i arenaIdx) l2() uint {
   634  	if arenaL1Bits == 0 {
   635  		return uint(i)
   636  	} else {
   637  		return uint(i) & (1<<arenaL2Bits - 1)
   638  	}
   639  }
   640  
   641  // inheap reports whether b is a pointer into a (potentially dead) heap object.
   642  // It returns false for pointers into mSpanManual spans.
   643  // Non-preemptible because it is used by write barriers.
   644  //
   645  //go:nowritebarrier
   646  //go:nosplit
   647  func inheap(b uintptr) bool {
   648  	return spanOfHeap(b) != nil
   649  }
   650  
   651  // inHeapOrStack is a variant of inheap that returns true for pointers
   652  // into any allocated heap span.
   653  //
   654  //go:nowritebarrier
   655  //go:nosplit
   656  func inHeapOrStack(b uintptr) bool {
   657  	s := spanOf(b)
   658  	if s == nil || b < s.base() {
   659  		return false
   660  	}
   661  	switch s.state.get() {
   662  	case mSpanInUse, mSpanManual:
   663  		return b < s.limit
   664  	default:
   665  		return false
   666  	}
   667  }
   668  
   669  // spanOf returns the span of p. If p does not point into the heap
   670  // arena or no span has ever contained p, spanOf returns nil.
   671  //
   672  // If p does not point to allocated memory, this may return a non-nil
   673  // span that does *not* contain p. If this is a possibility, the
   674  // caller should either call spanOfHeap or check the span bounds
   675  // explicitly.
   676  //
   677  // Must be nosplit because it has callers that are nosplit.
   678  //
   679  //go:nosplit
   680  func spanOf(p uintptr) *mspan {
   681  	// This function looks big, but we use a lot of constant
   682  	// folding around arenaL1Bits to get it under the inlining
   683  	// budget. Also, many of the checks here are safety checks
   684  	// that Go needs to do anyway, so the generated code is quite
   685  	// short.
   686  	ri := arenaIndex(p)
   687  	if arenaL1Bits == 0 {
   688  		// If there's no L1, then ri.l1() can't be out of bounds but ri.l2() can.
   689  		if ri.l2() >= uint(len(mheap_.arenas[0])) {
   690  			return nil
   691  		}
   692  	} else {
   693  		// If there's an L1, then ri.l1() can be out of bounds but ri.l2() can't.
   694  		if ri.l1() >= uint(len(mheap_.arenas)) {
   695  			return nil
   696  		}
   697  	}
   698  	l2 := mheap_.arenas[ri.l1()]
   699  	if arenaL1Bits != 0 && l2 == nil { // Should never happen if there's no L1.
   700  		return nil
   701  	}
   702  	ha := l2[ri.l2()]
   703  	if ha == nil {
   704  		return nil
   705  	}
   706  	return ha.spans[(p/pageSize)%pagesPerArena]
   707  }
   708  
   709  // spanOfUnchecked is equivalent to spanOf, but the caller must ensure
   710  // that p points into an allocated heap arena.
   711  //
   712  // Must be nosplit because it has callers that are nosplit.
   713  //
   714  //go:nosplit
   715  func spanOfUnchecked(p uintptr) *mspan {
   716  	ai := arenaIndex(p)
   717  	return mheap_.arenas[ai.l1()][ai.l2()].spans[(p/pageSize)%pagesPerArena]
   718  }
   719  
   720  // spanOfHeap is like spanOf, but returns nil if p does not point to a
   721  // heap object.
   722  //
   723  // Must be nosplit because it has callers that are nosplit.
   724  //
   725  //go:nosplit
   726  func spanOfHeap(p uintptr) *mspan {
   727  	s := spanOf(p)
   728  	// s is nil if it's never been allocated. Otherwise, we check
   729  	// its state first because we don't trust this pointer, so we
   730  	// have to synchronize with span initialization. Then, it's
   731  	// still possible we picked up a stale span pointer, so we
   732  	// have to check the span's bounds.
   733  	if s == nil || s.state.get() != mSpanInUse || p < s.base() || p >= s.limit {
   734  		return nil
   735  	}
   736  	return s
   737  }
   738  
   739  // pageIndexOf returns the arena, page index, and page mask for pointer p.
   740  // The caller must ensure p is in the heap.
   741  func pageIndexOf(p uintptr) (arena *heapArena, pageIdx uintptr, pageMask uint8) {
   742  	ai := arenaIndex(p)
   743  	arena = mheap_.arenas[ai.l1()][ai.l2()]
   744  	pageIdx = ((p / pageSize) / 8) % uintptr(len(arena.pageInUse))
   745  	pageMask = byte(1 << ((p / pageSize) % 8))
   746  	return
   747  }
   748  
   749  // Initialize the heap.
   750  func (h *mheap) init() {
   751  	lockInit(&h.lock, lockRankMheap)
   752  	lockInit(&h.speciallock, lockRankMheapSpecial)
   753  
   754  	h.spanalloc.init(unsafe.Sizeof(mspan{}), recordspan, unsafe.Pointer(h), &memstats.mspan_sys)
   755  	h.cachealloc.init(unsafe.Sizeof(mcache{}), nil, nil, &memstats.mcache_sys)
   756  	h.specialfinalizeralloc.init(unsafe.Sizeof(specialfinalizer{}), nil, nil, &memstats.other_sys)
   757  	h.specialprofilealloc.init(unsafe.Sizeof(specialprofile{}), nil, nil, &memstats.other_sys)
   758  	h.specialReachableAlloc.init(unsafe.Sizeof(specialReachable{}), nil, nil, &memstats.other_sys)
   759  	h.arenaHintAlloc.init(unsafe.Sizeof(arenaHint{}), nil, nil, &memstats.other_sys)
   760  
   761  	// Don't zero mspan allocations. Background sweeping can
   762  	// inspect a span concurrently with allocating it, so it's
   763  	// important that the span's sweepgen survive across freeing
   764  	// and re-allocating a span to prevent background sweeping
   765  	// from improperly cas'ing it from 0.
   766  	//
   767  	// This is safe because mspan contains no heap pointers.
   768  	h.spanalloc.zero = false
   769  
   770  	// h->mapcache needs no init
   771  
   772  	for i := range h.central {
   773  		h.central[i].mcentral.init(spanClass(i))
   774  	}
   775  
   776  	h.pages.init(&h.lock, &memstats.gcMiscSys, false)
   777  }
   778  
   779  // reclaim sweeps and reclaims at least npage pages into the heap.
   780  // It is called before allocating npage pages to keep growth in check.
   781  //
   782  // reclaim implements the page-reclaimer half of the sweeper.
   783  //
   784  // h.lock must NOT be held.
   785  func (h *mheap) reclaim(npage uintptr) {
   786  	// TODO(austin): Half of the time spent freeing spans is in
   787  	// locking/unlocking the heap (even with low contention). We
   788  	// could make the slow path here several times faster by
   789  	// batching heap frees.
   790  
   791  	// Bail early if there's no more reclaim work.
   792  	if h.reclaimIndex.Load() >= 1<<63 {
   793  		return
   794  	}
   795  
   796  	// Disable preemption so the GC can't start while we're
   797  	// sweeping, so we can read h.sweepArenas, and so
   798  	// traceGCSweepStart/Done pair on the P.
   799  	mp := acquirem()
   800  
   801  	if traceEnabled() {
   802  		traceGCSweepStart()
   803  	}
   804  
   805  	arenas := h.sweepArenas
   806  	locked := false
   807  	for npage > 0 {
   808  		// Pull from accumulated credit first.
   809  		if credit := h.reclaimCredit.Load(); credit > 0 {
   810  			take := credit
   811  			if take > npage {
   812  				// Take only what we need.
   813  				take = npage
   814  			}
   815  			if h.reclaimCredit.CompareAndSwap(credit, credit-take) {
   816  				npage -= take
   817  			}
   818  			continue
   819  		}
   820  
   821  		// Claim a chunk of work.
   822  		idx := uintptr(h.reclaimIndex.Add(pagesPerReclaimerChunk) - pagesPerReclaimerChunk)
   823  		if idx/pagesPerArena >= uintptr(len(arenas)) {
   824  			// Page reclaiming is done.
   825  			h.reclaimIndex.Store(1 << 63)
   826  			break
   827  		}
   828  
   829  		if !locked {
   830  			// Lock the heap for reclaimChunk.
   831  			lock(&h.lock)
   832  			locked = true
   833  		}
   834  
   835  		// Scan this chunk.
   836  		nfound := h.reclaimChunk(arenas, idx, pagesPerReclaimerChunk)
   837  		if nfound <= npage {
   838  			npage -= nfound
   839  		} else {
   840  			// Put spare pages toward global credit.
   841  			h.reclaimCredit.Add(nfound - npage)
   842  			npage = 0
   843  		}
   844  	}
   845  	if locked {
   846  		unlock(&h.lock)
   847  	}
   848  
   849  	if traceEnabled() {
   850  		traceGCSweepDone()
   851  	}
   852  	releasem(mp)
   853  }
   854  
   855  // reclaimChunk sweeps unmarked spans that start at page indexes [pageIdx, pageIdx+n).
   856  // It returns the number of pages returned to the heap.
   857  //
   858  // h.lock must be held and the caller must be non-preemptible. Note: h.lock may be
   859  // temporarily unlocked and re-locked in order to do sweeping or if tracing is
   860  // enabled.
   861  func (h *mheap) reclaimChunk(arenas []arenaIdx, pageIdx, n uintptr) uintptr {
   862  	// The heap lock must be held because this accesses the
   863  	// heapArena.spans arrays using potentially non-live pointers.
   864  	// In particular, if a span were freed and merged concurrently
   865  	// with this probing heapArena.spans, it would be possible to
   866  	// observe arbitrary, stale span pointers.
   867  	assertLockHeld(&h.lock)
   868  
   869  	n0 := n
   870  	var nFreed uintptr
   871  	sl := sweep.active.begin()
   872  	if !sl.valid {
   873  		return 0
   874  	}
   875  	for n > 0 {
   876  		ai := arenas[pageIdx/pagesPerArena]
   877  		ha := h.arenas[ai.l1()][ai.l2()]
   878  
   879  		// Get a chunk of the bitmap to work on.
   880  		arenaPage := uint(pageIdx % pagesPerArena)
   881  		inUse := ha.pageInUse[arenaPage/8:]
   882  		marked := ha.pageMarks[arenaPage/8:]
   883  		if uintptr(len(inUse)) > n/8 {
   884  			inUse = inUse[:n/8]
   885  			marked = marked[:n/8]
   886  		}
   887  
   888  		// Scan this bitmap chunk for spans that are in-use
   889  		// but have no marked objects on them.
   890  		for i := range inUse {
   891  			inUseUnmarked := atomic.Load8(&inUse[i]) &^ marked[i]
   892  			if inUseUnmarked == 0 {
   893  				continue
   894  			}
   895  
   896  			for j := uint(0); j < 8; j++ {
   897  				if inUseUnmarked&(1<<j) != 0 {
   898  					s := ha.spans[arenaPage+uint(i)*8+j]
   899  					if s, ok := sl.tryAcquire(s); ok {
   900  						npages := s.npages
   901  						unlock(&h.lock)
   902  						if s.sweep(false) {
   903  							nFreed += npages
   904  						}
   905  						lock(&h.lock)
   906  						// Reload inUse. It's possible nearby
   907  						// spans were freed when we dropped the
   908  						// lock and we don't want to get stale
   909  						// pointers from the spans array.
   910  						inUseUnmarked = atomic.Load8(&inUse[i]) &^ marked[i]
   911  					}
   912  				}
   913  			}
   914  		}
   915  
   916  		// Advance.
   917  		pageIdx += uintptr(len(inUse) * 8)
   918  		n -= uintptr(len(inUse) * 8)
   919  	}
   920  	sweep.active.end(sl)
   921  	if traceEnabled() {
   922  		unlock(&h.lock)
   923  		// Account for pages scanned but not reclaimed.
   924  		traceGCSweepSpan((n0 - nFreed) * pageSize)
   925  		lock(&h.lock)
   926  	}
   927  
   928  	assertLockHeld(&h.lock) // Must be locked on return.
   929  	return nFreed
   930  }
   931  
   932  // spanAllocType represents the type of allocation to make, or
   933  // the type of allocation to be freed.
   934  type spanAllocType uint8
   935  
   936  const (
   937  	spanAllocHeap          spanAllocType = iota // heap span
   938  	spanAllocStack                              // stack span
   939  	spanAllocPtrScalarBits                      // unrolled GC prog bitmap span
   940  	spanAllocWorkBuf                            // work buf span
   941  )
   942  
   943  // manual returns true if the span allocation is manually managed.
   944  func (s spanAllocType) manual() bool {
   945  	return s != spanAllocHeap
   946  }
   947  
   948  // alloc allocates a new span of npage pages from the GC'd heap.
   949  //
   950  // spanclass indicates the span's size class and scannability.
   951  //
   952  // Returns a span that has been fully initialized. span.needzero indicates
   953  // whether the span has been zeroed. Note that it may not be.
   954  func (h *mheap) alloc(npages uintptr, spanclass spanClass) *mspan {
   955  	// Don't do any operations that lock the heap on the G stack.
   956  	// It might trigger stack growth, and the stack growth code needs
   957  	// to be able to allocate heap.
   958  	var s *mspan
   959  	systemstack(func() {
   960  		// To prevent excessive heap growth, before allocating n pages
   961  		// we need to sweep and reclaim at least n pages.
   962  		if !isSweepDone() {
   963  			h.reclaim(npages)
   964  		}
   965  		s = h.allocSpan(npages, spanAllocHeap, spanclass)
   966  	})
   967  	return s
   968  }
   969  
   970  // allocManual allocates a manually-managed span of npage pages.
   971  // allocManual returns nil if allocation fails.
   972  //
   973  // allocManual adds the bytes used to *stat, which should be a
   974  // memstats in-use field. Unlike allocations in the GC'd heap, the
   975  // allocation does *not* count toward heapInUse.
   976  //
   977  // The memory backing the returned span may not be zeroed if
   978  // span.needzero is set.
   979  //
   980  // allocManual must be called on the system stack because it may
   981  // acquire the heap lock via allocSpan. See mheap for details.
   982  //
   983  // If new code is written to call allocManual, do NOT use an
   984  // existing spanAllocType value and instead declare a new one.
   985  //
   986  //go:systemstack
   987  func (h *mheap) allocManual(npages uintptr, typ spanAllocType) *mspan {
   988  	if !typ.manual() {
   989  		throw("manual span allocation called with non-manually-managed type")
   990  	}
   991  	return h.allocSpan(npages, typ, 0)
   992  }
   993  
   994  // setSpans modifies the span map so [spanOf(base), spanOf(base+npage*pageSize))
   995  // is s.
   996  func (h *mheap) setSpans(base, npage uintptr, s *mspan) {
   997  	p := base / pageSize
   998  	ai := arenaIndex(base)
   999  	ha := h.arenas[ai.l1()][ai.l2()]
  1000  	for n := uintptr(0); n < npage; n++ {
  1001  		i := (p + n) % pagesPerArena
  1002  		if i == 0 {
  1003  			ai = arenaIndex(base + n*pageSize)
  1004  			ha = h.arenas[ai.l1()][ai.l2()]
  1005  		}
  1006  		ha.spans[i] = s
  1007  	}
  1008  }
  1009  
  1010  // allocNeedsZero checks if the region of address space [base, base+npage*pageSize),
  1011  // assumed to be allocated, needs to be zeroed, updating heap arena metadata for
  1012  // future allocations.
  1013  //
  1014  // This must be called each time pages are allocated from the heap, even if the page
  1015  // allocator can otherwise prove the memory it's allocating is already zero because
  1016  // they're fresh from the operating system. It updates heapArena metadata that is
  1017  // critical for future page allocations.
  1018  //
  1019  // There are no locking constraints on this method.
  1020  func (h *mheap) allocNeedsZero(base, npage uintptr) (needZero bool) {
  1021  	for npage > 0 {
  1022  		ai := arenaIndex(base)
  1023  		ha := h.arenas[ai.l1()][ai.l2()]
  1024  
  1025  		zeroedBase := atomic.Loaduintptr(&ha.zeroedBase)
  1026  		arenaBase := base % heapArenaBytes
  1027  		if arenaBase < zeroedBase {
  1028  			// We extended into the non-zeroed part of the
  1029  			// arena, so this region needs to be zeroed before use.
  1030  			//
  1031  			// zeroedBase is monotonically increasing, so if we see this now then
  1032  			// we can be sure we need to zero this memory region.
  1033  			//
  1034  			// We still need to update zeroedBase for this arena, and
  1035  			// potentially more arenas.
  1036  			needZero = true
  1037  		}
  1038  		// We may observe arenaBase > zeroedBase if we're racing with one or more
  1039  		// allocations which are acquiring memory directly before us in the address
  1040  		// space. But, because we know no one else is acquiring *this* memory, it's
  1041  		// still safe to not zero.
  1042  
  1043  		// Compute how far into the arena we extend into, capped
  1044  		// at heapArenaBytes.
  1045  		arenaLimit := arenaBase + npage*pageSize
  1046  		if arenaLimit > heapArenaBytes {
  1047  			arenaLimit = heapArenaBytes
  1048  		}
  1049  		// Increase ha.zeroedBase so it's >= arenaLimit.
  1050  		// We may be racing with other updates.
  1051  		for arenaLimit > zeroedBase {
  1052  			if atomic.Casuintptr(&ha.zeroedBase, zeroedBase, arenaLimit) {
  1053  				break
  1054  			}
  1055  			zeroedBase = atomic.Loaduintptr(&ha.zeroedBase)
  1056  			// Double check basic conditions of zeroedBase.
  1057  			if zeroedBase <= arenaLimit && zeroedBase > arenaBase {
  1058  				// The zeroedBase moved into the space we were trying to
  1059  				// claim. That's very bad, and indicates someone allocated
  1060  				// the same region we did.
  1061  				throw("potentially overlapping in-use allocations detected")
  1062  			}
  1063  		}
  1064  
  1065  		// Move base forward and subtract from npage to move into
  1066  		// the next arena, or finish.
  1067  		base += arenaLimit - arenaBase
  1068  		npage -= (arenaLimit - arenaBase) / pageSize
  1069  	}
  1070  	return
  1071  }
  1072  
  1073  // tryAllocMSpan attempts to allocate an mspan object from
  1074  // the P-local cache, but may fail.
  1075  //
  1076  // h.lock need not be held.
  1077  //
  1078  // This caller must ensure that its P won't change underneath
  1079  // it during this function. Currently to ensure that we enforce
  1080  // that the function is run on the system stack, because that's
  1081  // the only place it is used now. In the future, this requirement
  1082  // may be relaxed if its use is necessary elsewhere.
  1083  //
  1084  //go:systemstack
  1085  func (h *mheap) tryAllocMSpan() *mspan {
  1086  	pp := getg().m.p.ptr()
  1087  	// If we don't have a p or the cache is empty, we can't do
  1088  	// anything here.
  1089  	if pp == nil || pp.mspancache.len == 0 {
  1090  		return nil
  1091  	}
  1092  	// Pull off the last entry in the cache.
  1093  	s := pp.mspancache.buf[pp.mspancache.len-1]
  1094  	pp.mspancache.len--
  1095  	return s
  1096  }
  1097  
  1098  // allocMSpanLocked allocates an mspan object.
  1099  //
  1100  // h.lock must be held.
  1101  //
  1102  // allocMSpanLocked must be called on the system stack because
  1103  // its caller holds the heap lock. See mheap for details.
  1104  // Running on the system stack also ensures that we won't
  1105  // switch Ps during this function. See tryAllocMSpan for details.
  1106  //
  1107  //go:systemstack
  1108  func (h *mheap) allocMSpanLocked() *mspan {
  1109  	assertLockHeld(&h.lock)
  1110  
  1111  	pp := getg().m.p.ptr()
  1112  	if pp == nil {
  1113  		// We don't have a p so just do the normal thing.
  1114  		return (*mspan)(h.spanalloc.alloc())
  1115  	}
  1116  	// Refill the cache if necessary.
  1117  	if pp.mspancache.len == 0 {
  1118  		const refillCount = len(pp.mspancache.buf) / 2
  1119  		for i := 0; i < refillCount; i++ {
  1120  			pp.mspancache.buf[i] = (*mspan)(h.spanalloc.alloc())
  1121  		}
  1122  		pp.mspancache.len = refillCount
  1123  	}
  1124  	// Pull off the last entry in the cache.
  1125  	s := pp.mspancache.buf[pp.mspancache.len-1]
  1126  	pp.mspancache.len--
  1127  	return s
  1128  }
  1129  
  1130  // freeMSpanLocked free an mspan object.
  1131  //
  1132  // h.lock must be held.
  1133  //
  1134  // freeMSpanLocked must be called on the system stack because
  1135  // its caller holds the heap lock. See mheap for details.
  1136  // Running on the system stack also ensures that we won't
  1137  // switch Ps during this function. See tryAllocMSpan for details.
  1138  //
  1139  //go:systemstack
  1140  func (h *mheap) freeMSpanLocked(s *mspan) {
  1141  	assertLockHeld(&h.lock)
  1142  
  1143  	pp := getg().m.p.ptr()
  1144  	// First try to free the mspan directly to the cache.
  1145  	if pp != nil && pp.mspancache.len < len(pp.mspancache.buf) {
  1146  		pp.mspancache.buf[pp.mspancache.len] = s
  1147  		pp.mspancache.len++
  1148  		return
  1149  	}
  1150  	// Failing that (or if we don't have a p), just free it to
  1151  	// the heap.
  1152  	h.spanalloc.free(unsafe.Pointer(s))
  1153  }
  1154  
  1155  // allocSpan allocates an mspan which owns npages worth of memory.
  1156  //
  1157  // If typ.manual() == false, allocSpan allocates a heap span of class spanclass
  1158  // and updates heap accounting. If manual == true, allocSpan allocates a
  1159  // manually-managed span (spanclass is ignored), and the caller is
  1160  // responsible for any accounting related to its use of the span. Either
  1161  // way, allocSpan will atomically add the bytes in the newly allocated
  1162  // span to *sysStat.
  1163  //
  1164  // The returned span is fully initialized.
  1165  //
  1166  // h.lock must not be held.
  1167  //
  1168  // allocSpan must be called on the system stack both because it acquires
  1169  // the heap lock and because it must block GC transitions.
  1170  //
  1171  //go:systemstack
  1172  func (h *mheap) allocSpan(npages uintptr, typ spanAllocType, spanclass spanClass) (s *mspan) {
  1173  	// Function-global state.
  1174  	gp := getg()
  1175  	base, scav := uintptr(0), uintptr(0)
  1176  	growth := uintptr(0)
  1177  
  1178  	// On some platforms we need to provide physical page aligned stack
  1179  	// allocations. Where the page size is less than the physical page
  1180  	// size, we already manage to do this by default.
  1181  	needPhysPageAlign := physPageAlignedStacks && typ == spanAllocStack && pageSize < physPageSize
  1182  
  1183  	// If the allocation is small enough, try the page cache!
  1184  	// The page cache does not support aligned allocations, so we cannot use
  1185  	// it if we need to provide a physical page aligned stack allocation.
  1186  	pp := gp.m.p.ptr()
  1187  	if !needPhysPageAlign && pp != nil && npages < pageCachePages/4 {
  1188  		c := &pp.pcache
  1189  
  1190  		// If the cache is empty, refill it.
  1191  		if c.empty() {
  1192  			lock(&h.lock)
  1193  			*c = h.pages.allocToCache()
  1194  			unlock(&h.lock)
  1195  		}
  1196  
  1197  		// Try to allocate from the cache.
  1198  		base, scav = c.alloc(npages)
  1199  		if base != 0 {
  1200  			s = h.tryAllocMSpan()
  1201  			if s != nil {
  1202  				goto HaveSpan
  1203  			}
  1204  			// We have a base but no mspan, so we need
  1205  			// to lock the heap.
  1206  		}
  1207  	}
  1208  
  1209  	// For one reason or another, we couldn't get the
  1210  	// whole job done without the heap lock.
  1211  	lock(&h.lock)
  1212  
  1213  	if needPhysPageAlign {
  1214  		// Overallocate by a physical page to allow for later alignment.
  1215  		extraPages := physPageSize / pageSize
  1216  
  1217  		// Find a big enough region first, but then only allocate the
  1218  		// aligned portion. We can't just allocate and then free the
  1219  		// edges because we need to account for scavenged memory, and
  1220  		// that's difficult with alloc.
  1221  		//
  1222  		// Note that we skip updates to searchAddr here. It's OK if
  1223  		// it's stale and higher than normal; it'll operate correctly,
  1224  		// just come with a performance cost.
  1225  		base, _ = h.pages.find(npages + extraPages)
  1226  		if base == 0 {
  1227  			var ok bool
  1228  			growth, ok = h.grow(npages + extraPages)
  1229  			if !ok {
  1230  				unlock(&h.lock)
  1231  				return nil
  1232  			}
  1233  			base, _ = h.pages.find(npages + extraPages)
  1234  			if base == 0 {
  1235  				throw("grew heap, but no adequate free space found")
  1236  			}
  1237  		}
  1238  		base = alignUp(base, physPageSize)
  1239  		scav = h.pages.allocRange(base, npages)
  1240  	}
  1241  
  1242  	if base == 0 {
  1243  		// Try to acquire a base address.
  1244  		base, scav = h.pages.alloc(npages)
  1245  		if base == 0 {
  1246  			var ok bool
  1247  			growth, ok = h.grow(npages)
  1248  			if !ok {
  1249  				unlock(&h.lock)
  1250  				return nil
  1251  			}
  1252  			base, scav = h.pages.alloc(npages)
  1253  			if base == 0 {
  1254  				throw("grew heap, but no adequate free space found")
  1255  			}
  1256  		}
  1257  	}
  1258  	if s == nil {
  1259  		// We failed to get an mspan earlier, so grab
  1260  		// one now that we have the heap lock.
  1261  		s = h.allocMSpanLocked()
  1262  	}
  1263  	unlock(&h.lock)
  1264  
  1265  HaveSpan:
  1266  	// Decide if we need to scavenge in response to what we just allocated.
  1267  	// Specifically, we track the maximum amount of memory to scavenge of all
  1268  	// the alternatives below, assuming that the maximum satisfies *all*
  1269  	// conditions we check (e.g. if we need to scavenge X to satisfy the
  1270  	// memory limit and Y to satisfy heap-growth scavenging, and Y > X, then
  1271  	// it's fine to pick Y, because the memory limit is still satisfied).
  1272  	//
  1273  	// It's fine to do this after allocating because we expect any scavenged
  1274  	// pages not to get touched until we return. Simultaneously, it's important
  1275  	// to do this before calling sysUsed because that may commit address space.
  1276  	bytesToScavenge := uintptr(0)
  1277  	forceScavenge := false
  1278  	if limit := gcController.memoryLimit.Load(); !gcCPULimiter.limiting() {
  1279  		// Assist with scavenging to maintain the memory limit by the amount
  1280  		// that we expect to page in.
  1281  		inuse := gcController.mappedReady.Load()
  1282  		// Be careful about overflow, especially with uintptrs. Even on 32-bit platforms
  1283  		// someone can set a really big memory limit that isn't maxInt64.
  1284  		if uint64(scav)+inuse > uint64(limit) {
  1285  			bytesToScavenge = uintptr(uint64(scav) + inuse - uint64(limit))
  1286  			forceScavenge = true
  1287  		}
  1288  	}
  1289  	if goal := scavenge.gcPercentGoal.Load(); goal != ^uint64(0) && growth > 0 {
  1290  		// We just caused a heap growth, so scavenge down what will soon be used.
  1291  		// By scavenging inline we deal with the failure to allocate out of
  1292  		// memory fragments by scavenging the memory fragments that are least
  1293  		// likely to be re-used.
  1294  		//
  1295  		// Only bother with this because we're not using a memory limit. We don't
  1296  		// care about heap growths as long as we're under the memory limit, and the
  1297  		// previous check for scaving already handles that.
  1298  		if retained := heapRetained(); retained+uint64(growth) > goal {
  1299  			// The scavenging algorithm requires the heap lock to be dropped so it
  1300  			// can acquire it only sparingly. This is a potentially expensive operation
  1301  			// so it frees up other goroutines to allocate in the meanwhile. In fact,
  1302  			// they can make use of the growth we just created.
  1303  			todo := growth
  1304  			if overage := uintptr(retained + uint64(growth) - goal); todo > overage {
  1305  				todo = overage
  1306  			}
  1307  			if todo > bytesToScavenge {
  1308  				bytesToScavenge = todo
  1309  			}
  1310  		}
  1311  	}
  1312  	// There are a few very limited circumstances where we won't have a P here.
  1313  	// It's OK to simply skip scavenging in these cases. Something else will notice
  1314  	// and pick up the tab.
  1315  	var now int64
  1316  	if pp != nil && bytesToScavenge > 0 {
  1317  		// Measure how long we spent scavenging and add that measurement to the assist
  1318  		// time so we can track it for the GC CPU limiter.
  1319  		//
  1320  		// Limiter event tracking might be disabled if we end up here
  1321  		// while on a mark worker.
  1322  		start := nanotime()
  1323  		track := pp.limiterEvent.start(limiterEventScavengeAssist, start)
  1324  
  1325  		// Scavenge, but back out if the limiter turns on.
  1326  		h.pages.scavenge(bytesToScavenge, func() bool {
  1327  			return gcCPULimiter.limiting()
  1328  		}, forceScavenge)
  1329  
  1330  		// Finish up accounting.
  1331  		now = nanotime()
  1332  		if track {
  1333  			pp.limiterEvent.stop(limiterEventScavengeAssist, now)
  1334  		}
  1335  		scavenge.assistTime.Add(now - start)
  1336  	}
  1337  
  1338  	// Initialize the span.
  1339  	h.initSpan(s, typ, spanclass, base, npages)
  1340  
  1341  	// Commit and account for any scavenged memory that the span now owns.
  1342  	nbytes := npages * pageSize
  1343  	if scav != 0 {
  1344  		// sysUsed all the pages that are actually available
  1345  		// in the span since some of them might be scavenged.
  1346  		sysUsed(unsafe.Pointer(base), nbytes, scav)
  1347  		gcController.heapReleased.add(-int64(scav))
  1348  	}
  1349  	// Update stats.
  1350  	gcController.heapFree.add(-int64(nbytes - scav))
  1351  	if typ == spanAllocHeap {
  1352  		gcController.heapInUse.add(int64(nbytes))
  1353  	}
  1354  	// Update consistent stats.
  1355  	stats := memstats.heapStats.acquire()
  1356  	atomic.Xaddint64(&stats.committed, int64(scav))
  1357  	atomic.Xaddint64(&stats.released, -int64(scav))
  1358  	switch typ {
  1359  	case spanAllocHeap:
  1360  		atomic.Xaddint64(&stats.inHeap, int64(nbytes))
  1361  	case spanAllocStack:
  1362  		atomic.Xaddint64(&stats.inStacks, int64(nbytes))
  1363  	case spanAllocPtrScalarBits:
  1364  		atomic.Xaddint64(&stats.inPtrScalarBits, int64(nbytes))
  1365  	case spanAllocWorkBuf:
  1366  		atomic.Xaddint64(&stats.inWorkBufs, int64(nbytes))
  1367  	}
  1368  	memstats.heapStats.release()
  1369  
  1370  	pageTraceAlloc(pp, now, base, npages)
  1371  	return s
  1372  }
  1373  
  1374  // initSpan initializes a blank span s which will represent the range
  1375  // [base, base+npages*pageSize). typ is the type of span being allocated.
  1376  func (h *mheap) initSpan(s *mspan, typ spanAllocType, spanclass spanClass, base, npages uintptr) {
  1377  	// At this point, both s != nil and base != 0, and the heap
  1378  	// lock is no longer held. Initialize the span.
  1379  	s.init(base, npages)
  1380  	if h.allocNeedsZero(base, npages) {
  1381  		s.needzero = 1
  1382  	}
  1383  	nbytes := npages * pageSize
  1384  	if typ.manual() {
  1385  		s.manualFreeList = 0
  1386  		s.nelems = 0
  1387  		s.limit = s.base() + s.npages*pageSize
  1388  		s.state.set(mSpanManual)
  1389  	} else {
  1390  		// We must set span properties before the span is published anywhere
  1391  		// since we're not holding the heap lock.
  1392  		s.spanclass = spanclass
  1393  		if sizeclass := spanclass.sizeclass(); sizeclass == 0 {
  1394  			s.elemsize = nbytes
  1395  			s.nelems = 1
  1396  			s.divMul = 0
  1397  		} else {
  1398  			s.elemsize = uintptr(class_to_size[sizeclass])
  1399  			s.nelems = nbytes / s.elemsize
  1400  			s.divMul = class_to_divmagic[sizeclass]
  1401  		}
  1402  
  1403  		// Initialize mark and allocation structures.
  1404  		s.freeindex = 0
  1405  		s.freeIndexForScan = 0
  1406  		s.allocCache = ^uint64(0) // all 1s indicating all free.
  1407  		s.gcmarkBits = newMarkBits(s.nelems)
  1408  		s.allocBits = newAllocBits(s.nelems)
  1409  
  1410  		// It's safe to access h.sweepgen without the heap lock because it's
  1411  		// only ever updated with the world stopped and we run on the
  1412  		// systemstack which blocks a STW transition.
  1413  		atomic.Store(&s.sweepgen, h.sweepgen)
  1414  
  1415  		// Now that the span is filled in, set its state. This
  1416  		// is a publication barrier for the other fields in
  1417  		// the span. While valid pointers into this span
  1418  		// should never be visible until the span is returned,
  1419  		// if the garbage collector finds an invalid pointer,
  1420  		// access to the span may race with initialization of
  1421  		// the span. We resolve this race by atomically
  1422  		// setting the state after the span is fully
  1423  		// initialized, and atomically checking the state in
  1424  		// any situation where a pointer is suspect.
  1425  		s.state.set(mSpanInUse)
  1426  	}
  1427  
  1428  	// Publish the span in various locations.
  1429  
  1430  	// This is safe to call without the lock held because the slots
  1431  	// related to this span will only ever be read or modified by
  1432  	// this thread until pointers into the span are published (and
  1433  	// we execute a publication barrier at the end of this function
  1434  	// before that happens) or pageInUse is updated.
  1435  	h.setSpans(s.base(), npages, s)
  1436  
  1437  	if !typ.manual() {
  1438  		// Mark in-use span in arena page bitmap.
  1439  		//
  1440  		// This publishes the span to the page sweeper, so
  1441  		// it's imperative that the span be completely initialized
  1442  		// prior to this line.
  1443  		arena, pageIdx, pageMask := pageIndexOf(s.base())
  1444  		atomic.Or8(&arena.pageInUse[pageIdx], pageMask)
  1445  
  1446  		// Update related page sweeper stats.
  1447  		h.pagesInUse.Add(npages)
  1448  	}
  1449  
  1450  	// Make sure the newly allocated span will be observed
  1451  	// by the GC before pointers into the span are published.
  1452  	publicationBarrier()
  1453  }
  1454  
  1455  // Try to add at least npage pages of memory to the heap,
  1456  // returning how much the heap grew by and whether it worked.
  1457  //
  1458  // h.lock must be held.
  1459  func (h *mheap) grow(npage uintptr) (uintptr, bool) {
  1460  	assertLockHeld(&h.lock)
  1461  
  1462  	// We must grow the heap in whole palloc chunks.
  1463  	// We call sysMap below but note that because we
  1464  	// round up to pallocChunkPages which is on the order
  1465  	// of MiB (generally >= to the huge page size) we
  1466  	// won't be calling it too much.
  1467  	ask := alignUp(npage, pallocChunkPages) * pageSize
  1468  
  1469  	totalGrowth := uintptr(0)
  1470  	// This may overflow because ask could be very large
  1471  	// and is otherwise unrelated to h.curArena.base.
  1472  	end := h.curArena.base + ask
  1473  	nBase := alignUp(end, physPageSize)
  1474  	if nBase > h.curArena.end || /* overflow */ end < h.curArena.base {
  1475  		// Not enough room in the current arena. Allocate more
  1476  		// arena space. This may not be contiguous with the
  1477  		// current arena, so we have to request the full ask.
  1478  		av, asize := h.sysAlloc(ask, &h.arenaHints, true)
  1479  		if av == nil {
  1480  			inUse := gcController.heapFree.load() + gcController.heapReleased.load() + gcController.heapInUse.load()
  1481  			print("runtime: out of memory: cannot allocate ", ask, "-byte block (", inUse, " in use)\n")
  1482  			return 0, false
  1483  		}
  1484  
  1485  		if uintptr(av) == h.curArena.end {
  1486  			// The new space is contiguous with the old
  1487  			// space, so just extend the current space.
  1488  			h.curArena.end = uintptr(av) + asize
  1489  		} else {
  1490  			// The new space is discontiguous. Track what
  1491  			// remains of the current space and switch to
  1492  			// the new space. This should be rare.
  1493  			if size := h.curArena.end - h.curArena.base; size != 0 {
  1494  				// Transition this space from Reserved to Prepared and mark it
  1495  				// as released since we'll be able to start using it after updating
  1496  				// the page allocator and releasing the lock at any time.
  1497  				sysMap(unsafe.Pointer(h.curArena.base), size, &gcController.heapReleased)
  1498  				// Update stats.
  1499  				stats := memstats.heapStats.acquire()
  1500  				atomic.Xaddint64(&stats.released, int64(size))
  1501  				memstats.heapStats.release()
  1502  				// Update the page allocator's structures to make this
  1503  				// space ready for allocation.
  1504  				h.pages.grow(h.curArena.base, size)
  1505  				totalGrowth += size
  1506  			}
  1507  			// Switch to the new space.
  1508  			h.curArena.base = uintptr(av)
  1509  			h.curArena.end = uintptr(av) + asize
  1510  		}
  1511  
  1512  		// Recalculate nBase.
  1513  		// We know this won't overflow, because sysAlloc returned
  1514  		// a valid region starting at h.curArena.base which is at
  1515  		// least ask bytes in size.
  1516  		nBase = alignUp(h.curArena.base+ask, physPageSize)
  1517  	}
  1518  
  1519  	// Grow into the current arena.
  1520  	v := h.curArena.base
  1521  	h.curArena.base = nBase
  1522  
  1523  	// Transition the space we're going to use from Reserved to Prepared.
  1524  	//
  1525  	// The allocation is always aligned to the heap arena
  1526  	// size which is always > physPageSize, so its safe to
  1527  	// just add directly to heapReleased.
  1528  	sysMap(unsafe.Pointer(v), nBase-v, &gcController.heapReleased)
  1529  
  1530  	// The memory just allocated counts as both released
  1531  	// and idle, even though it's not yet backed by spans.
  1532  	stats := memstats.heapStats.acquire()
  1533  	atomic.Xaddint64(&stats.released, int64(nBase-v))
  1534  	memstats.heapStats.release()
  1535  
  1536  	// Update the page allocator's structures to make this
  1537  	// space ready for allocation.
  1538  	h.pages.grow(v, nBase-v)
  1539  	totalGrowth += nBase - v
  1540  	return totalGrowth, true
  1541  }
  1542  
  1543  // Free the span back into the heap.
  1544  func (h *mheap) freeSpan(s *mspan) {
  1545  	systemstack(func() {
  1546  		pageTraceFree(getg().m.p.ptr(), 0, s.base(), s.npages)
  1547  
  1548  		lock(&h.lock)
  1549  		if msanenabled {
  1550  			// Tell msan that this entire span is no longer in use.
  1551  			base := unsafe.Pointer(s.base())
  1552  			bytes := s.npages << _PageShift
  1553  			msanfree(base, bytes)
  1554  		}
  1555  		if asanenabled {
  1556  			// Tell asan that this entire span is no longer in use.
  1557  			base := unsafe.Pointer(s.base())
  1558  			bytes := s.npages << _PageShift
  1559  			asanpoison(base, bytes)
  1560  		}
  1561  		h.freeSpanLocked(s, spanAllocHeap)
  1562  		unlock(&h.lock)
  1563  	})
  1564  }
  1565  
  1566  // freeManual frees a manually-managed span returned by allocManual.
  1567  // typ must be the same as the spanAllocType passed to the allocManual that
  1568  // allocated s.
  1569  //
  1570  // This must only be called when gcphase == _GCoff. See mSpanState for
  1571  // an explanation.
  1572  //
  1573  // freeManual must be called on the system stack because it acquires
  1574  // the heap lock. See mheap for details.
  1575  //
  1576  //go:systemstack
  1577  func (h *mheap) freeManual(s *mspan, typ spanAllocType) {
  1578  	pageTraceFree(getg().m.p.ptr(), 0, s.base(), s.npages)
  1579  
  1580  	s.needzero = 1
  1581  	lock(&h.lock)
  1582  	h.freeSpanLocked(s, typ)
  1583  	unlock(&h.lock)
  1584  }
  1585  
  1586  func (h *mheap) freeSpanLocked(s *mspan, typ spanAllocType) {
  1587  	assertLockHeld(&h.lock)
  1588  
  1589  	switch s.state.get() {
  1590  	case mSpanManual:
  1591  		if s.allocCount != 0 {
  1592  			throw("mheap.freeSpanLocked - invalid stack free")
  1593  		}
  1594  	case mSpanInUse:
  1595  		if s.isUserArenaChunk {
  1596  			throw("mheap.freeSpanLocked - invalid free of user arena chunk")
  1597  		}
  1598  		if s.allocCount != 0 || s.sweepgen != h.sweepgen {
  1599  			print("mheap.freeSpanLocked - span ", s, " ptr ", hex(s.base()), " allocCount ", s.allocCount, " sweepgen ", s.sweepgen, "/", h.sweepgen, "\n")
  1600  			throw("mheap.freeSpanLocked - invalid free")
  1601  		}
  1602  		h.pagesInUse.Add(-s.npages)
  1603  
  1604  		// Clear in-use bit in arena page bitmap.
  1605  		arena, pageIdx, pageMask := pageIndexOf(s.base())
  1606  		atomic.And8(&arena.pageInUse[pageIdx], ^pageMask)
  1607  	default:
  1608  		throw("mheap.freeSpanLocked - invalid span state")
  1609  	}
  1610  
  1611  	// Update stats.
  1612  	//
  1613  	// Mirrors the code in allocSpan.
  1614  	nbytes := s.npages * pageSize
  1615  	gcController.heapFree.add(int64(nbytes))
  1616  	if typ == spanAllocHeap {
  1617  		gcController.heapInUse.add(-int64(nbytes))
  1618  	}
  1619  	// Update consistent stats.
  1620  	stats := memstats.heapStats.acquire()
  1621  	switch typ {
  1622  	case spanAllocHeap:
  1623  		atomic.Xaddint64(&stats.inHeap, -int64(nbytes))
  1624  	case spanAllocStack:
  1625  		atomic.Xaddint64(&stats.inStacks, -int64(nbytes))
  1626  	case spanAllocPtrScalarBits:
  1627  		atomic.Xaddint64(&stats.inPtrScalarBits, -int64(nbytes))
  1628  	case spanAllocWorkBuf:
  1629  		atomic.Xaddint64(&stats.inWorkBufs, -int64(nbytes))
  1630  	}
  1631  	memstats.heapStats.release()
  1632  
  1633  	// Mark the space as free.
  1634  	h.pages.free(s.base(), s.npages)
  1635  
  1636  	// Free the span structure. We no longer have a use for it.
  1637  	s.state.set(mSpanDead)
  1638  	h.freeMSpanLocked(s)
  1639  }
  1640  
  1641  // scavengeAll acquires the heap lock (blocking any additional
  1642  // manipulation of the page allocator) and iterates over the whole
  1643  // heap, scavenging every free page available.
  1644  //
  1645  // Must run on the system stack because it acquires the heap lock.
  1646  //
  1647  //go:systemstack
  1648  func (h *mheap) scavengeAll() {
  1649  	// Disallow malloc or panic while holding the heap lock. We do
  1650  	// this here because this is a non-mallocgc entry-point to
  1651  	// the mheap API.
  1652  	gp := getg()
  1653  	gp.m.mallocing++
  1654  
  1655  	// Force scavenge everything.
  1656  	released := h.pages.scavenge(^uintptr(0), nil, true)
  1657  
  1658  	gp.m.mallocing--
  1659  
  1660  	if debug.scavtrace > 0 {
  1661  		printScavTrace(released, true)
  1662  	}
  1663  }
  1664  
  1665  //go:linkname runtime_debug_freeOSMemory runtime/debug.freeOSMemory
  1666  func runtime_debug_freeOSMemory() {
  1667  	GC()
  1668  	systemstack(func() { mheap_.scavengeAll() })
  1669  }
  1670  
  1671  // Initialize a new span with the given start and npages.
  1672  func (span *mspan) init(base uintptr, npages uintptr) {
  1673  	// span is *not* zeroed.
  1674  	span.next = nil
  1675  	span.prev = nil
  1676  	span.list = nil
  1677  	span.startAddr = base
  1678  	span.npages = npages
  1679  	span.allocCount = 0
  1680  	span.spanclass = 0
  1681  	span.elemsize = 0
  1682  	span.speciallock.key = 0
  1683  	span.specials = nil
  1684  	span.needzero = 0
  1685  	span.freeindex = 0
  1686  	span.freeIndexForScan = 0
  1687  	span.allocBits = nil
  1688  	span.gcmarkBits = nil
  1689  	span.state.set(mSpanDead)
  1690  	lockInit(&span.speciallock, lockRankMspanSpecial)
  1691  }
  1692  
  1693  func (span *mspan) inList() bool {
  1694  	return span.list != nil
  1695  }
  1696  
  1697  // Initialize an empty doubly-linked list.
  1698  func (list *mSpanList) init() {
  1699  	list.first = nil
  1700  	list.last = nil
  1701  }
  1702  
  1703  func (list *mSpanList) remove(span *mspan) {
  1704  	if span.list != list {
  1705  		print("runtime: failed mSpanList.remove span.npages=", span.npages,
  1706  			" span=", span, " prev=", span.prev, " span.list=", span.list, " list=", list, "\n")
  1707  		throw("mSpanList.remove")
  1708  	}
  1709  	if list.first == span {
  1710  		list.first = span.next
  1711  	} else {
  1712  		span.prev.next = span.next
  1713  	}
  1714  	if list.last == span {
  1715  		list.last = span.prev
  1716  	} else {
  1717  		span.next.prev = span.prev
  1718  	}
  1719  	span.next = nil
  1720  	span.prev = nil
  1721  	span.list = nil
  1722  }
  1723  
  1724  func (list *mSpanList) isEmpty() bool {
  1725  	return list.first == nil
  1726  }
  1727  
  1728  func (list *mSpanList) insert(span *mspan) {
  1729  	if span.next != nil || span.prev != nil || span.list != nil {
  1730  		println("runtime: failed mSpanList.insert", span, span.next, span.prev, span.list)
  1731  		throw("mSpanList.insert")
  1732  	}
  1733  	span.next = list.first
  1734  	if list.first != nil {
  1735  		// The list contains at least one span; link it in.
  1736  		// The last span in the list doesn't change.
  1737  		list.first.prev = span
  1738  	} else {
  1739  		// The list contains no spans, so this is also the last span.
  1740  		list.last = span
  1741  	}
  1742  	list.first = span
  1743  	span.list = list
  1744  }
  1745  
  1746  func (list *mSpanList) insertBack(span *mspan) {
  1747  	if span.next != nil || span.prev != nil || span.list != nil {
  1748  		println("runtime: failed mSpanList.insertBack", span, span.next, span.prev, span.list)
  1749  		throw("mSpanList.insertBack")
  1750  	}
  1751  	span.prev = list.last
  1752  	if list.last != nil {
  1753  		// The list contains at least one span.
  1754  		list.last.next = span
  1755  	} else {
  1756  		// The list contains no spans, so this is also the first span.
  1757  		list.first = span
  1758  	}
  1759  	list.last = span
  1760  	span.list = list
  1761  }
  1762  
  1763  // takeAll removes all spans from other and inserts them at the front
  1764  // of list.
  1765  func (list *mSpanList) takeAll(other *mSpanList) {
  1766  	if other.isEmpty() {
  1767  		return
  1768  	}
  1769  
  1770  	// Reparent everything in other to list.
  1771  	for s := other.first; s != nil; s = s.next {
  1772  		s.list = list
  1773  	}
  1774  
  1775  	// Concatenate the lists.
  1776  	if list.isEmpty() {
  1777  		*list = *other
  1778  	} else {
  1779  		// Neither list is empty. Put other before list.
  1780  		other.last.next = list.first
  1781  		list.first.prev = other.last
  1782  		list.first = other.first
  1783  	}
  1784  
  1785  	other.first, other.last = nil, nil
  1786  }
  1787  
  1788  const (
  1789  	_KindSpecialFinalizer = 1
  1790  	_KindSpecialProfile   = 2
  1791  	// _KindSpecialReachable is a special used for tracking
  1792  	// reachability during testing.
  1793  	_KindSpecialReachable = 3
  1794  	// Note: The finalizer special must be first because if we're freeing
  1795  	// an object, a finalizer special will cause the freeing operation
  1796  	// to abort, and we want to keep the other special records around
  1797  	// if that happens.
  1798  )
  1799  
  1800  type special struct {
  1801  	_      sys.NotInHeap
  1802  	next   *special // linked list in span
  1803  	offset uint16   // span offset of object
  1804  	kind   byte     // kind of special
  1805  }
  1806  
  1807  // spanHasSpecials marks a span as having specials in the arena bitmap.
  1808  func spanHasSpecials(s *mspan) {
  1809  	arenaPage := (s.base() / pageSize) % pagesPerArena
  1810  	ai := arenaIndex(s.base())
  1811  	ha := mheap_.arenas[ai.l1()][ai.l2()]
  1812  	atomic.Or8(&ha.pageSpecials[arenaPage/8], uint8(1)<<(arenaPage%8))
  1813  }
  1814  
  1815  // spanHasNoSpecials marks a span as having no specials in the arena bitmap.
  1816  func spanHasNoSpecials(s *mspan) {
  1817  	arenaPage := (s.base() / pageSize) % pagesPerArena
  1818  	ai := arenaIndex(s.base())
  1819  	ha := mheap_.arenas[ai.l1()][ai.l2()]
  1820  	atomic.And8(&ha.pageSpecials[arenaPage/8], ^(uint8(1) << (arenaPage % 8)))
  1821  }
  1822  
  1823  // Adds the special record s to the list of special records for
  1824  // the object p. All fields of s should be filled in except for
  1825  // offset & next, which this routine will fill in.
  1826  // Returns true if the special was successfully added, false otherwise.
  1827  // (The add will fail only if a record with the same p and s->kind
  1828  // already exists.)
  1829  func addspecial(p unsafe.Pointer, s *special) bool {
  1830  	span := spanOfHeap(uintptr(p))
  1831  	if span == nil {
  1832  		throw("addspecial on invalid pointer")
  1833  	}
  1834  
  1835  	// Ensure that the span is swept.
  1836  	// Sweeping accesses the specials list w/o locks, so we have
  1837  	// to synchronize with it. And it's just much safer.
  1838  	mp := acquirem()
  1839  	span.ensureSwept()
  1840  
  1841  	offset := uintptr(p) - span.base()
  1842  	kind := s.kind
  1843  
  1844  	lock(&span.speciallock)
  1845  
  1846  	// Find splice point, check for existing record.
  1847  	t := &span.specials
  1848  	for {
  1849  		x := *t
  1850  		if x == nil {
  1851  			break
  1852  		}
  1853  		if offset == uintptr(x.offset) && kind == x.kind {
  1854  			unlock(&span.speciallock)
  1855  			releasem(mp)
  1856  			return false // already exists
  1857  		}
  1858  		if offset < uintptr(x.offset) || (offset == uintptr(x.offset) && kind < x.kind) {
  1859  			break
  1860  		}
  1861  		t = &x.next
  1862  	}
  1863  
  1864  	// Splice in record, fill in offset.
  1865  	s.offset = uint16(offset)
  1866  	s.next = *t
  1867  	*t = s
  1868  	spanHasSpecials(span)
  1869  	unlock(&span.speciallock)
  1870  	releasem(mp)
  1871  
  1872  	return true
  1873  }
  1874  
  1875  // Removes the Special record of the given kind for the object p.
  1876  // Returns the record if the record existed, nil otherwise.
  1877  // The caller must FixAlloc_Free the result.
  1878  func removespecial(p unsafe.Pointer, kind uint8) *special {
  1879  	span := spanOfHeap(uintptr(p))
  1880  	if span == nil {
  1881  		throw("removespecial on invalid pointer")
  1882  	}
  1883  
  1884  	// Ensure that the span is swept.
  1885  	// Sweeping accesses the specials list w/o locks, so we have
  1886  	// to synchronize with it. And it's just much safer.
  1887  	mp := acquirem()
  1888  	span.ensureSwept()
  1889  
  1890  	offset := uintptr(p) - span.base()
  1891  
  1892  	var result *special
  1893  	lock(&span.speciallock)
  1894  	t := &span.specials
  1895  	for {
  1896  		s := *t
  1897  		if s == nil {
  1898  			break
  1899  		}
  1900  		// This function is used for finalizers only, so we don't check for
  1901  		// "interior" specials (p must be exactly equal to s->offset).
  1902  		if offset == uintptr(s.offset) && kind == s.kind {
  1903  			*t = s.next
  1904  			result = s
  1905  			break
  1906  		}
  1907  		t = &s.next
  1908  	}
  1909  	if span.specials == nil {
  1910  		spanHasNoSpecials(span)
  1911  	}
  1912  	unlock(&span.speciallock)
  1913  	releasem(mp)
  1914  	return result
  1915  }
  1916  
  1917  // The described object has a finalizer set for it.
  1918  //
  1919  // specialfinalizer is allocated from non-GC'd memory, so any heap
  1920  // pointers must be specially handled.
  1921  type specialfinalizer struct {
  1922  	_       sys.NotInHeap
  1923  	special special
  1924  	fn      *funcval // May be a heap pointer.
  1925  	nret    uintptr
  1926  	fint    *_type   // May be a heap pointer, but always live.
  1927  	ot      *ptrtype // May be a heap pointer, but always live.
  1928  }
  1929  
  1930  // Adds a finalizer to the object p. Returns true if it succeeded.
  1931  func addfinalizer(p unsafe.Pointer, f *funcval, nret uintptr, fint *_type, ot *ptrtype) bool {
  1932  	lock(&mheap_.speciallock)
  1933  	s := (*specialfinalizer)(mheap_.specialfinalizeralloc.alloc())
  1934  	unlock(&mheap_.speciallock)
  1935  	s.special.kind = _KindSpecialFinalizer
  1936  	s.fn = f
  1937  	s.nret = nret
  1938  	s.fint = fint
  1939  	s.ot = ot
  1940  	if addspecial(p, &s.special) {
  1941  		// This is responsible for maintaining the same
  1942  		// GC-related invariants as markrootSpans in any
  1943  		// situation where it's possible that markrootSpans
  1944  		// has already run but mark termination hasn't yet.
  1945  		if gcphase != _GCoff {
  1946  			base, span, _ := findObject(uintptr(p), 0, 0)
  1947  			mp := acquirem()
  1948  			gcw := &mp.p.ptr().gcw
  1949  			// Mark everything reachable from the object
  1950  			// so it's retained for the finalizer.
  1951  			if !span.spanclass.noscan() {
  1952  				scanobject(base, gcw)
  1953  			}
  1954  			// Mark the finalizer itself, since the
  1955  			// special isn't part of the GC'd heap.
  1956  			scanblock(uintptr(unsafe.Pointer(&s.fn)), goarch.PtrSize, &oneptrmask[0], gcw, nil)
  1957  			releasem(mp)
  1958  		}
  1959  		return true
  1960  	}
  1961  
  1962  	// There was an old finalizer
  1963  	lock(&mheap_.speciallock)
  1964  	mheap_.specialfinalizeralloc.free(unsafe.Pointer(s))
  1965  	unlock(&mheap_.speciallock)
  1966  	return false
  1967  }
  1968  
  1969  // Removes the finalizer (if any) from the object p.
  1970  func removefinalizer(p unsafe.Pointer) {
  1971  	s := (*specialfinalizer)(unsafe.Pointer(removespecial(p, _KindSpecialFinalizer)))
  1972  	if s == nil {
  1973  		return // there wasn't a finalizer to remove
  1974  	}
  1975  	lock(&mheap_.speciallock)
  1976  	mheap_.specialfinalizeralloc.free(unsafe.Pointer(s))
  1977  	unlock(&mheap_.speciallock)
  1978  }
  1979  
  1980  // The described object is being heap profiled.
  1981  type specialprofile struct {
  1982  	_       sys.NotInHeap
  1983  	special special
  1984  	b       *bucket
  1985  }
  1986  
  1987  // Set the heap profile bucket associated with addr to b.
  1988  func setprofilebucket(p unsafe.Pointer, b *bucket) {
  1989  	lock(&mheap_.speciallock)
  1990  	s := (*specialprofile)(mheap_.specialprofilealloc.alloc())
  1991  	unlock(&mheap_.speciallock)
  1992  	s.special.kind = _KindSpecialProfile
  1993  	s.b = b
  1994  	if !addspecial(p, &s.special) {
  1995  		throw("setprofilebucket: profile already set")
  1996  	}
  1997  }
  1998  
  1999  // specialReachable tracks whether an object is reachable on the next
  2000  // GC cycle. This is used by testing.
  2001  type specialReachable struct {
  2002  	special   special
  2003  	done      bool
  2004  	reachable bool
  2005  }
  2006  
  2007  // specialsIter helps iterate over specials lists.
  2008  type specialsIter struct {
  2009  	pprev **special
  2010  	s     *special
  2011  }
  2012  
  2013  func newSpecialsIter(span *mspan) specialsIter {
  2014  	return specialsIter{&span.specials, span.specials}
  2015  }
  2016  
  2017  func (i *specialsIter) valid() bool {
  2018  	return i.s != nil
  2019  }
  2020  
  2021  func (i *specialsIter) next() {
  2022  	i.pprev = &i.s.next
  2023  	i.s = *i.pprev
  2024  }
  2025  
  2026  // unlinkAndNext removes the current special from the list and moves
  2027  // the iterator to the next special. It returns the unlinked special.
  2028  func (i *specialsIter) unlinkAndNext() *special {
  2029  	cur := i.s
  2030  	i.s = cur.next
  2031  	*i.pprev = i.s
  2032  	return cur
  2033  }
  2034  
  2035  // freeSpecial performs any cleanup on special s and deallocates it.
  2036  // s must already be unlinked from the specials list.
  2037  func freeSpecial(s *special, p unsafe.Pointer, size uintptr) {
  2038  	switch s.kind {
  2039  	case _KindSpecialFinalizer:
  2040  		sf := (*specialfinalizer)(unsafe.Pointer(s))
  2041  		queuefinalizer(p, sf.fn, sf.nret, sf.fint, sf.ot)
  2042  		lock(&mheap_.speciallock)
  2043  		mheap_.specialfinalizeralloc.free(unsafe.Pointer(sf))
  2044  		unlock(&mheap_.speciallock)
  2045  	case _KindSpecialProfile:
  2046  		sp := (*specialprofile)(unsafe.Pointer(s))
  2047  		mProf_Free(sp.b, size)
  2048  		lock(&mheap_.speciallock)
  2049  		mheap_.specialprofilealloc.free(unsafe.Pointer(sp))
  2050  		unlock(&mheap_.speciallock)
  2051  	case _KindSpecialReachable:
  2052  		sp := (*specialReachable)(unsafe.Pointer(s))
  2053  		sp.done = true
  2054  		// The creator frees these.
  2055  	default:
  2056  		throw("bad special kind")
  2057  		panic("not reached")
  2058  	}
  2059  }
  2060  
  2061  // gcBits is an alloc/mark bitmap. This is always used as gcBits.x.
  2062  type gcBits struct {
  2063  	_ sys.NotInHeap
  2064  	x uint8
  2065  }
  2066  
  2067  // bytep returns a pointer to the n'th byte of b.
  2068  func (b *gcBits) bytep(n uintptr) *uint8 {
  2069  	return addb(&b.x, n)
  2070  }
  2071  
  2072  // bitp returns a pointer to the byte containing bit n and a mask for
  2073  // selecting that bit from *bytep.
  2074  func (b *gcBits) bitp(n uintptr) (bytep *uint8, mask uint8) {
  2075  	return b.bytep(n / 8), 1 << (n % 8)
  2076  }
  2077  
  2078  const gcBitsChunkBytes = uintptr(64 << 10)
  2079  const gcBitsHeaderBytes = unsafe.Sizeof(gcBitsHeader{})
  2080  
  2081  type gcBitsHeader struct {
  2082  	free uintptr // free is the index into bits of the next free byte.
  2083  	next uintptr // *gcBits triggers recursive type bug. (issue 14620)
  2084  }
  2085  
  2086  type gcBitsArena struct {
  2087  	_ sys.NotInHeap
  2088  	// gcBitsHeader // side step recursive type bug (issue 14620) by including fields by hand.
  2089  	free uintptr // free is the index into bits of the next free byte; read/write atomically
  2090  	next *gcBitsArena
  2091  	bits [gcBitsChunkBytes - gcBitsHeaderBytes]gcBits
  2092  }
  2093  
  2094  var gcBitsArenas struct {
  2095  	lock     mutex
  2096  	free     *gcBitsArena
  2097  	next     *gcBitsArena // Read atomically. Write atomically under lock.
  2098  	current  *gcBitsArena
  2099  	previous *gcBitsArena
  2100  }
  2101  
  2102  // tryAlloc allocates from b or returns nil if b does not have enough room.
  2103  // This is safe to call concurrently.
  2104  func (b *gcBitsArena) tryAlloc(bytes uintptr) *gcBits {
  2105  	if b == nil || atomic.Loaduintptr(&b.free)+bytes > uintptr(len(b.bits)) {
  2106  		return nil
  2107  	}
  2108  	// Try to allocate from this block.
  2109  	end := atomic.Xadduintptr(&b.free, bytes)
  2110  	if end > uintptr(len(b.bits)) {
  2111  		return nil
  2112  	}
  2113  	// There was enough room.
  2114  	start := end - bytes
  2115  	return &b.bits[start]
  2116  }
  2117  
  2118  // newMarkBits returns a pointer to 8 byte aligned bytes
  2119  // to be used for a span's mark bits.
  2120  func newMarkBits(nelems uintptr) *gcBits {
  2121  	blocksNeeded := uintptr((nelems + 63) / 64)
  2122  	bytesNeeded := blocksNeeded * 8
  2123  
  2124  	// Try directly allocating from the current head arena.
  2125  	head := (*gcBitsArena)(atomic.Loadp(unsafe.Pointer(&gcBitsArenas.next)))
  2126  	if p := head.tryAlloc(bytesNeeded); p != nil {
  2127  		return p
  2128  	}
  2129  
  2130  	// There's not enough room in the head arena. We may need to
  2131  	// allocate a new arena.
  2132  	lock(&gcBitsArenas.lock)
  2133  	// Try the head arena again, since it may have changed. Now
  2134  	// that we hold the lock, the list head can't change, but its
  2135  	// free position still can.
  2136  	if p := gcBitsArenas.next.tryAlloc(bytesNeeded); p != nil {
  2137  		unlock(&gcBitsArenas.lock)
  2138  		return p
  2139  	}
  2140  
  2141  	// Allocate a new arena. This may temporarily drop the lock.
  2142  	fresh := newArenaMayUnlock()
  2143  	// If newArenaMayUnlock dropped the lock, another thread may
  2144  	// have put a fresh arena on the "next" list. Try allocating
  2145  	// from next again.
  2146  	if p := gcBitsArenas.next.tryAlloc(bytesNeeded); p != nil {
  2147  		// Put fresh back on the free list.
  2148  		// TODO: Mark it "already zeroed"
  2149  		fresh.next = gcBitsArenas.free
  2150  		gcBitsArenas.free = fresh
  2151  		unlock(&gcBitsArenas.lock)
  2152  		return p
  2153  	}
  2154  
  2155  	// Allocate from the fresh arena. We haven't linked it in yet, so
  2156  	// this cannot race and is guaranteed to succeed.
  2157  	p := fresh.tryAlloc(bytesNeeded)
  2158  	if p == nil {
  2159  		throw("markBits overflow")
  2160  	}
  2161  
  2162  	// Add the fresh arena to the "next" list.
  2163  	fresh.next = gcBitsArenas.next
  2164  	atomic.StorepNoWB(unsafe.Pointer(&gcBitsArenas.next), unsafe.Pointer(fresh))
  2165  
  2166  	unlock(&gcBitsArenas.lock)
  2167  	return p
  2168  }
  2169  
  2170  // newAllocBits returns a pointer to 8 byte aligned bytes
  2171  // to be used for this span's alloc bits.
  2172  // newAllocBits is used to provide newly initialized spans
  2173  // allocation bits. For spans not being initialized the
  2174  // mark bits are repurposed as allocation bits when
  2175  // the span is swept.
  2176  func newAllocBits(nelems uintptr) *gcBits {
  2177  	return newMarkBits(nelems)
  2178  }
  2179  
  2180  // nextMarkBitArenaEpoch establishes a new epoch for the arenas
  2181  // holding the mark bits. The arenas are named relative to the
  2182  // current GC cycle which is demarcated by the call to finishweep_m.
  2183  //
  2184  // All current spans have been swept.
  2185  // During that sweep each span allocated room for its gcmarkBits in
  2186  // gcBitsArenas.next block. gcBitsArenas.next becomes the gcBitsArenas.current
  2187  // where the GC will mark objects and after each span is swept these bits
  2188  // will be used to allocate objects.
  2189  // gcBitsArenas.current becomes gcBitsArenas.previous where the span's
  2190  // gcAllocBits live until all the spans have been swept during this GC cycle.
  2191  // The span's sweep extinguishes all the references to gcBitsArenas.previous
  2192  // by pointing gcAllocBits into the gcBitsArenas.current.
  2193  // The gcBitsArenas.previous is released to the gcBitsArenas.free list.
  2194  func nextMarkBitArenaEpoch() {
  2195  	lock(&gcBitsArenas.lock)
  2196  	if gcBitsArenas.previous != nil {
  2197  		if gcBitsArenas.free == nil {
  2198  			gcBitsArenas.free = gcBitsArenas.previous
  2199  		} else {
  2200  			// Find end of previous arenas.
  2201  			last := gcBitsArenas.previous
  2202  			for last = gcBitsArenas.previous; last.next != nil; last = last.next {
  2203  			}
  2204  			last.next = gcBitsArenas.free
  2205  			gcBitsArenas.free = gcBitsArenas.previous
  2206  		}
  2207  	}
  2208  	gcBitsArenas.previous = gcBitsArenas.current
  2209  	gcBitsArenas.current = gcBitsArenas.next
  2210  	atomic.StorepNoWB(unsafe.Pointer(&gcBitsArenas.next), nil) // newMarkBits calls newArena when needed
  2211  	unlock(&gcBitsArenas.lock)
  2212  }
  2213  
  2214  // newArenaMayUnlock allocates and zeroes a gcBits arena.
  2215  // The caller must hold gcBitsArena.lock. This may temporarily release it.
  2216  func newArenaMayUnlock() *gcBitsArena {
  2217  	var result *gcBitsArena
  2218  	if gcBitsArenas.free == nil {
  2219  		unlock(&gcBitsArenas.lock)
  2220  		result = (*gcBitsArena)(sysAlloc(gcBitsChunkBytes, &memstats.gcMiscSys))
  2221  		if result == nil {
  2222  			throw("runtime: cannot allocate memory")
  2223  		}
  2224  		lock(&gcBitsArenas.lock)
  2225  	} else {
  2226  		result = gcBitsArenas.free
  2227  		gcBitsArenas.free = gcBitsArenas.free.next
  2228  		memclrNoHeapPointers(unsafe.Pointer(result), gcBitsChunkBytes)
  2229  	}
  2230  	result.next = nil
  2231  	// If result.bits is not 8 byte aligned adjust index so
  2232  	// that &result.bits[result.free] is 8 byte aligned.
  2233  	if uintptr(unsafe.Offsetof(gcBitsArena{}.bits))&7 == 0 {
  2234  		result.free = 0
  2235  	} else {
  2236  		result.free = 8 - (uintptr(unsafe.Pointer(&result.bits[0])) & 7)
  2237  	}
  2238  	return result
  2239  }