github.com/twelsh-aw/go/src@v0.0.0-20230516233729-a56fe86a7c81/runtime/os_linux.go (about) 1 // Copyright 2009 The Go Authors. All rights reserved. 2 // Use of this source code is governed by a BSD-style 3 // license that can be found in the LICENSE file. 4 5 package runtime 6 7 import ( 8 "internal/abi" 9 "internal/goarch" 10 "runtime/internal/atomic" 11 "runtime/internal/syscall" 12 "unsafe" 13 ) 14 15 // sigPerThreadSyscall is the same signal (SIGSETXID) used by glibc for 16 // per-thread syscalls on Linux. We use it for the same purpose in non-cgo 17 // binaries. 18 const sigPerThreadSyscall = _SIGRTMIN + 1 19 20 type mOS struct { 21 // profileTimer holds the ID of the POSIX interval timer for profiling CPU 22 // usage on this thread. 23 // 24 // It is valid when the profileTimerValid field is true. A thread 25 // creates and manages its own timer, and these fields are read and written 26 // only by this thread. But because some of the reads on profileTimerValid 27 // are in signal handling code, this field should be atomic type. 28 profileTimer int32 29 profileTimerValid atomic.Bool 30 31 // needPerThreadSyscall indicates that a per-thread syscall is required 32 // for doAllThreadsSyscall. 33 needPerThreadSyscall atomic.Uint8 34 } 35 36 //go:noescape 37 func futex(addr unsafe.Pointer, op int32, val uint32, ts, addr2 unsafe.Pointer, val3 uint32) int32 38 39 // Linux futex. 40 // 41 // futexsleep(uint32 *addr, uint32 val) 42 // futexwakeup(uint32 *addr) 43 // 44 // Futexsleep atomically checks if *addr == val and if so, sleeps on addr. 45 // Futexwakeup wakes up threads sleeping on addr. 46 // Futexsleep is allowed to wake up spuriously. 47 48 const ( 49 _FUTEX_PRIVATE_FLAG = 128 50 _FUTEX_WAIT_PRIVATE = 0 | _FUTEX_PRIVATE_FLAG 51 _FUTEX_WAKE_PRIVATE = 1 | _FUTEX_PRIVATE_FLAG 52 ) 53 54 // Atomically, 55 // 56 // if(*addr == val) sleep 57 // 58 // Might be woken up spuriously; that's allowed. 59 // Don't sleep longer than ns; ns < 0 means forever. 60 // 61 //go:nosplit 62 func futexsleep(addr *uint32, val uint32, ns int64) { 63 // Some Linux kernels have a bug where futex of 64 // FUTEX_WAIT returns an internal error code 65 // as an errno. Libpthread ignores the return value 66 // here, and so can we: as it says a few lines up, 67 // spurious wakeups are allowed. 68 if ns < 0 { 69 futex(unsafe.Pointer(addr), _FUTEX_WAIT_PRIVATE, val, nil, nil, 0) 70 return 71 } 72 73 var ts timespec 74 ts.setNsec(ns) 75 futex(unsafe.Pointer(addr), _FUTEX_WAIT_PRIVATE, val, unsafe.Pointer(&ts), nil, 0) 76 } 77 78 // If any procs are sleeping on addr, wake up at most cnt. 79 // 80 //go:nosplit 81 func futexwakeup(addr *uint32, cnt uint32) { 82 ret := futex(unsafe.Pointer(addr), _FUTEX_WAKE_PRIVATE, cnt, nil, nil, 0) 83 if ret >= 0 { 84 return 85 } 86 87 // I don't know that futex wakeup can return 88 // EAGAIN or EINTR, but if it does, it would be 89 // safe to loop and call futex again. 90 systemstack(func() { 91 print("futexwakeup addr=", addr, " returned ", ret, "\n") 92 }) 93 94 *(*int32)(unsafe.Pointer(uintptr(0x1006))) = 0x1006 95 } 96 97 func getproccount() int32 { 98 // This buffer is huge (8 kB) but we are on the system stack 99 // and there should be plenty of space (64 kB). 100 // Also this is a leaf, so we're not holding up the memory for long. 101 // See golang.org/issue/11823. 102 // The suggested behavior here is to keep trying with ever-larger 103 // buffers, but we don't have a dynamic memory allocator at the 104 // moment, so that's a bit tricky and seems like overkill. 105 const maxCPUs = 64 * 1024 106 var buf [maxCPUs / 8]byte 107 r := sched_getaffinity(0, unsafe.Sizeof(buf), &buf[0]) 108 if r < 0 { 109 return 1 110 } 111 n := int32(0) 112 for _, v := range buf[:r] { 113 for v != 0 { 114 n += int32(v & 1) 115 v >>= 1 116 } 117 } 118 if n == 0 { 119 n = 1 120 } 121 return n 122 } 123 124 // Clone, the Linux rfork. 125 const ( 126 _CLONE_VM = 0x100 127 _CLONE_FS = 0x200 128 _CLONE_FILES = 0x400 129 _CLONE_SIGHAND = 0x800 130 _CLONE_PTRACE = 0x2000 131 _CLONE_VFORK = 0x4000 132 _CLONE_PARENT = 0x8000 133 _CLONE_THREAD = 0x10000 134 _CLONE_NEWNS = 0x20000 135 _CLONE_SYSVSEM = 0x40000 136 _CLONE_SETTLS = 0x80000 137 _CLONE_PARENT_SETTID = 0x100000 138 _CLONE_CHILD_CLEARTID = 0x200000 139 _CLONE_UNTRACED = 0x800000 140 _CLONE_CHILD_SETTID = 0x1000000 141 _CLONE_STOPPED = 0x2000000 142 _CLONE_NEWUTS = 0x4000000 143 _CLONE_NEWIPC = 0x8000000 144 145 // As of QEMU 2.8.0 (5ea2fc84d), user emulation requires all six of these 146 // flags to be set when creating a thread; attempts to share the other 147 // five but leave SYSVSEM unshared will fail with -EINVAL. 148 // 149 // In non-QEMU environments CLONE_SYSVSEM is inconsequential as we do not 150 // use System V semaphores. 151 152 cloneFlags = _CLONE_VM | /* share memory */ 153 _CLONE_FS | /* share cwd, etc */ 154 _CLONE_FILES | /* share fd table */ 155 _CLONE_SIGHAND | /* share sig handler table */ 156 _CLONE_SYSVSEM | /* share SysV semaphore undo lists (see issue #20763) */ 157 _CLONE_THREAD /* revisit - okay for now */ 158 ) 159 160 //go:noescape 161 func clone(flags int32, stk, mp, gp, fn unsafe.Pointer) int32 162 163 // May run with m.p==nil, so write barriers are not allowed. 164 // 165 //go:nowritebarrier 166 func newosproc(mp *m) { 167 stk := unsafe.Pointer(mp.g0.stack.hi) 168 /* 169 * note: strace gets confused if we use CLONE_PTRACE here. 170 */ 171 if false { 172 print("newosproc stk=", stk, " m=", mp, " g=", mp.g0, " clone=", abi.FuncPCABI0(clone), " id=", mp.id, " ostk=", &mp, "\n") 173 } 174 175 // Disable signals during clone, so that the new thread starts 176 // with signals disabled. It will enable them in minit. 177 var oset sigset 178 sigprocmask(_SIG_SETMASK, &sigset_all, &oset) 179 ret := retryOnEAGAIN(func() int32 { 180 r := clone(cloneFlags, stk, unsafe.Pointer(mp), unsafe.Pointer(mp.g0), unsafe.Pointer(abi.FuncPCABI0(mstart))) 181 // clone returns positive TID, negative errno. 182 // We don't care about the TID. 183 if r >= 0 { 184 return 0 185 } 186 return -r 187 }) 188 sigprocmask(_SIG_SETMASK, &oset, nil) 189 190 if ret != 0 { 191 print("runtime: failed to create new OS thread (have ", mcount(), " already; errno=", ret, ")\n") 192 if ret == _EAGAIN { 193 println("runtime: may need to increase max user processes (ulimit -u)") 194 } 195 throw("newosproc") 196 } 197 } 198 199 // Version of newosproc that doesn't require a valid G. 200 // 201 //go:nosplit 202 func newosproc0(stacksize uintptr, fn unsafe.Pointer) { 203 stack := sysAlloc(stacksize, &memstats.stacks_sys) 204 if stack == nil { 205 writeErrStr(failallocatestack) 206 exit(1) 207 } 208 ret := clone(cloneFlags, unsafe.Pointer(uintptr(stack)+stacksize), nil, nil, fn) 209 if ret < 0 { 210 writeErrStr(failthreadcreate) 211 exit(1) 212 } 213 } 214 215 const ( 216 _AT_NULL = 0 // End of vector 217 _AT_PAGESZ = 6 // System physical page size 218 _AT_HWCAP = 16 // hardware capability bit vector 219 _AT_RANDOM = 25 // introduced in 2.6.29 220 _AT_HWCAP2 = 26 // hardware capability bit vector 2 221 ) 222 223 var procAuxv = []byte("/proc/self/auxv\x00") 224 225 var addrspace_vec [1]byte 226 227 func mincore(addr unsafe.Pointer, n uintptr, dst *byte) int32 228 229 var auxvreadbuf [128]uintptr 230 231 func sysargs(argc int32, argv **byte) { 232 n := argc + 1 233 234 // skip over argv, envp to get to auxv 235 for argv_index(argv, n) != nil { 236 n++ 237 } 238 239 // skip NULL separator 240 n++ 241 242 // now argv+n is auxv 243 auxvp := (*[1 << 28]uintptr)(add(unsafe.Pointer(argv), uintptr(n)*goarch.PtrSize)) 244 245 if pairs := sysauxv(auxvp[:]); pairs != 0 { 246 auxv = auxvp[: pairs*2 : pairs*2] 247 return 248 } 249 // In some situations we don't get a loader-provided 250 // auxv, such as when loaded as a library on Android. 251 // Fall back to /proc/self/auxv. 252 fd := open(&procAuxv[0], 0 /* O_RDONLY */, 0) 253 if fd < 0 { 254 // On Android, /proc/self/auxv might be unreadable (issue 9229), so we fallback to 255 // try using mincore to detect the physical page size. 256 // mincore should return EINVAL when address is not a multiple of system page size. 257 const size = 256 << 10 // size of memory region to allocate 258 p, err := mmap(nil, size, _PROT_READ|_PROT_WRITE, _MAP_ANON|_MAP_PRIVATE, -1, 0) 259 if err != 0 { 260 return 261 } 262 var n uintptr 263 for n = 4 << 10; n < size; n <<= 1 { 264 err := mincore(unsafe.Pointer(uintptr(p)+n), 1, &addrspace_vec[0]) 265 if err == 0 { 266 physPageSize = n 267 break 268 } 269 } 270 if physPageSize == 0 { 271 physPageSize = size 272 } 273 munmap(p, size) 274 return 275 } 276 277 n = read(fd, noescape(unsafe.Pointer(&auxvreadbuf[0])), int32(unsafe.Sizeof(auxvreadbuf))) 278 closefd(fd) 279 if n < 0 { 280 return 281 } 282 // Make sure buf is terminated, even if we didn't read 283 // the whole file. 284 auxvreadbuf[len(auxvreadbuf)-2] = _AT_NULL 285 pairs := sysauxv(auxvreadbuf[:]) 286 auxv = auxvreadbuf[: pairs*2 : pairs*2] 287 } 288 289 // startupRandomData holds random bytes initialized at startup. These come from 290 // the ELF AT_RANDOM auxiliary vector. 291 var startupRandomData []byte 292 293 func sysauxv(auxv []uintptr) (pairs int) { 294 var i int 295 for ; auxv[i] != _AT_NULL; i += 2 { 296 tag, val := auxv[i], auxv[i+1] 297 switch tag { 298 case _AT_RANDOM: 299 // The kernel provides a pointer to 16-bytes 300 // worth of random data. 301 startupRandomData = (*[16]byte)(unsafe.Pointer(val))[:] 302 303 case _AT_PAGESZ: 304 physPageSize = val 305 } 306 307 archauxv(tag, val) 308 vdsoauxv(tag, val) 309 } 310 return i / 2 311 } 312 313 var sysTHPSizePath = []byte("/sys/kernel/mm/transparent_hugepage/hpage_pmd_size\x00") 314 315 func getHugePageSize() uintptr { 316 var numbuf [20]byte 317 fd := open(&sysTHPSizePath[0], 0 /* O_RDONLY */, 0) 318 if fd < 0 { 319 return 0 320 } 321 ptr := noescape(unsafe.Pointer(&numbuf[0])) 322 n := read(fd, ptr, int32(len(numbuf))) 323 closefd(fd) 324 if n <= 0 { 325 return 0 326 } 327 n-- // remove trailing newline 328 v, ok := atoi(slicebytetostringtmp((*byte)(ptr), int(n))) 329 if !ok || v < 0 { 330 v = 0 331 } 332 if v&(v-1) != 0 { 333 // v is not a power of 2 334 return 0 335 } 336 return uintptr(v) 337 } 338 339 func osinit() { 340 ncpu = getproccount() 341 physHugePageSize = getHugePageSize() 342 if iscgo { 343 // #42494 glibc and musl reserve some signals for 344 // internal use and require they not be blocked by 345 // the rest of a normal C runtime. When the go runtime 346 // blocks...unblocks signals, temporarily, the blocked 347 // interval of time is generally very short. As such, 348 // these expectations of *libc code are mostly met by 349 // the combined go+cgo system of threads. However, 350 // when go causes a thread to exit, via a return from 351 // mstart(), the combined runtime can deadlock if 352 // these signals are blocked. Thus, don't block these 353 // signals when exiting threads. 354 // - glibc: SIGCANCEL (32), SIGSETXID (33) 355 // - musl: SIGTIMER (32), SIGCANCEL (33), SIGSYNCCALL (34) 356 sigdelset(&sigsetAllExiting, 32) 357 sigdelset(&sigsetAllExiting, 33) 358 sigdelset(&sigsetAllExiting, 34) 359 } 360 osArchInit() 361 } 362 363 var urandom_dev = []byte("/dev/urandom\x00") 364 365 func getRandomData(r []byte) { 366 if startupRandomData != nil { 367 n := copy(r, startupRandomData) 368 extendRandom(r, n) 369 return 370 } 371 fd := open(&urandom_dev[0], 0 /* O_RDONLY */, 0) 372 n := read(fd, unsafe.Pointer(&r[0]), int32(len(r))) 373 closefd(fd) 374 extendRandom(r, int(n)) 375 } 376 377 func goenvs() { 378 goenvs_unix() 379 } 380 381 // Called to do synchronous initialization of Go code built with 382 // -buildmode=c-archive or -buildmode=c-shared. 383 // None of the Go runtime is initialized. 384 // 385 //go:nosplit 386 //go:nowritebarrierrec 387 func libpreinit() { 388 initsig(true) 389 } 390 391 // Called to initialize a new m (including the bootstrap m). 392 // Called on the parent thread (main thread in case of bootstrap), can allocate memory. 393 func mpreinit(mp *m) { 394 mp.gsignal = malg(32 * 1024) // Linux wants >= 2K 395 mp.gsignal.m = mp 396 } 397 398 func gettid() uint32 399 400 // Called to initialize a new m (including the bootstrap m). 401 // Called on the new thread, cannot allocate memory. 402 func minit() { 403 minitSignals() 404 405 // Cgo-created threads and the bootstrap m are missing a 406 // procid. We need this for asynchronous preemption and it's 407 // useful in debuggers. 408 getg().m.procid = uint64(gettid()) 409 } 410 411 // Called from dropm to undo the effect of an minit. 412 // 413 //go:nosplit 414 func unminit() { 415 unminitSignals() 416 } 417 418 // Called from exitm, but not from drop, to undo the effect of thread-owned 419 // resources in minit, semacreate, or elsewhere. Do not take locks after calling this. 420 func mdestroy(mp *m) { 421 } 422 423 //#ifdef GOARCH_386 424 //#define sa_handler k_sa_handler 425 //#endif 426 427 func sigreturn__sigaction() 428 func sigtramp() // Called via C ABI 429 func cgoSigtramp() 430 431 //go:noescape 432 func sigaltstack(new, old *stackt) 433 434 //go:noescape 435 func setitimer(mode int32, new, old *itimerval) 436 437 //go:noescape 438 func timer_create(clockid int32, sevp *sigevent, timerid *int32) int32 439 440 //go:noescape 441 func timer_settime(timerid int32, flags int32, new, old *itimerspec) int32 442 443 //go:noescape 444 func timer_delete(timerid int32) int32 445 446 //go:noescape 447 func rtsigprocmask(how int32, new, old *sigset, size int32) 448 449 //go:nosplit 450 //go:nowritebarrierrec 451 func sigprocmask(how int32, new, old *sigset) { 452 rtsigprocmask(how, new, old, int32(unsafe.Sizeof(*new))) 453 } 454 455 func raise(sig uint32) 456 func raiseproc(sig uint32) 457 458 //go:noescape 459 func sched_getaffinity(pid, len uintptr, buf *byte) int32 460 func osyield() 461 462 //go:nosplit 463 func osyield_no_g() { 464 osyield() 465 } 466 467 func pipe2(flags int32) (r, w int32, errno int32) 468 469 const ( 470 _si_max_size = 128 471 _sigev_max_size = 64 472 ) 473 474 //go:nosplit 475 //go:nowritebarrierrec 476 func setsig(i uint32, fn uintptr) { 477 var sa sigactiont 478 sa.sa_flags = _SA_SIGINFO | _SA_ONSTACK | _SA_RESTORER | _SA_RESTART 479 sigfillset(&sa.sa_mask) 480 // Although Linux manpage says "sa_restorer element is obsolete and 481 // should not be used". x86_64 kernel requires it. Only use it on 482 // x86. 483 if GOARCH == "386" || GOARCH == "amd64" { 484 sa.sa_restorer = abi.FuncPCABI0(sigreturn__sigaction) 485 } 486 if fn == abi.FuncPCABIInternal(sighandler) { // abi.FuncPCABIInternal(sighandler) matches the callers in signal_unix.go 487 if iscgo { 488 fn = abi.FuncPCABI0(cgoSigtramp) 489 } else { 490 fn = abi.FuncPCABI0(sigtramp) 491 } 492 } 493 sa.sa_handler = fn 494 sigaction(i, &sa, nil) 495 } 496 497 //go:nosplit 498 //go:nowritebarrierrec 499 func setsigstack(i uint32) { 500 var sa sigactiont 501 sigaction(i, nil, &sa) 502 if sa.sa_flags&_SA_ONSTACK != 0 { 503 return 504 } 505 sa.sa_flags |= _SA_ONSTACK 506 sigaction(i, &sa, nil) 507 } 508 509 //go:nosplit 510 //go:nowritebarrierrec 511 func getsig(i uint32) uintptr { 512 var sa sigactiont 513 sigaction(i, nil, &sa) 514 return sa.sa_handler 515 } 516 517 // setSignalstackSP sets the ss_sp field of a stackt. 518 // 519 //go:nosplit 520 func setSignalstackSP(s *stackt, sp uintptr) { 521 *(*uintptr)(unsafe.Pointer(&s.ss_sp)) = sp 522 } 523 524 //go:nosplit 525 func (c *sigctxt) fixsigcode(sig uint32) { 526 } 527 528 // sysSigaction calls the rt_sigaction system call. 529 // 530 //go:nosplit 531 func sysSigaction(sig uint32, new, old *sigactiont) { 532 if rt_sigaction(uintptr(sig), new, old, unsafe.Sizeof(sigactiont{}.sa_mask)) != 0 { 533 // Workaround for bugs in QEMU user mode emulation. 534 // 535 // QEMU turns calls to the sigaction system call into 536 // calls to the C library sigaction call; the C 537 // library call rejects attempts to call sigaction for 538 // SIGCANCEL (32) or SIGSETXID (33). 539 // 540 // QEMU rejects calling sigaction on SIGRTMAX (64). 541 // 542 // Just ignore the error in these case. There isn't 543 // anything we can do about it anyhow. 544 if sig != 32 && sig != 33 && sig != 64 { 545 // Use system stack to avoid split stack overflow on ppc64/ppc64le. 546 systemstack(func() { 547 throw("sigaction failed") 548 }) 549 } 550 } 551 } 552 553 // rt_sigaction is implemented in assembly. 554 // 555 //go:noescape 556 func rt_sigaction(sig uintptr, new, old *sigactiont, size uintptr) int32 557 558 func getpid() int 559 func tgkill(tgid, tid, sig int) 560 561 // signalM sends a signal to mp. 562 func signalM(mp *m, sig int) { 563 tgkill(getpid(), int(mp.procid), sig) 564 } 565 566 // validSIGPROF compares this signal delivery's code against the signal sources 567 // that the profiler uses, returning whether the delivery should be processed. 568 // To be processed, a signal delivery from a known profiling mechanism should 569 // correspond to the best profiling mechanism available to this thread. Signals 570 // from other sources are always considered valid. 571 // 572 //go:nosplit 573 func validSIGPROF(mp *m, c *sigctxt) bool { 574 code := int32(c.sigcode()) 575 setitimer := code == _SI_KERNEL 576 timer_create := code == _SI_TIMER 577 578 if !(setitimer || timer_create) { 579 // The signal doesn't correspond to a profiling mechanism that the 580 // runtime enables itself. There's no reason to process it, but there's 581 // no reason to ignore it either. 582 return true 583 } 584 585 if mp == nil { 586 // Since we don't have an M, we can't check if there's an active 587 // per-thread timer for this thread. We don't know how long this thread 588 // has been around, and if it happened to interact with the Go scheduler 589 // at a time when profiling was active (causing it to have a per-thread 590 // timer). But it may have never interacted with the Go scheduler, or 591 // never while profiling was active. To avoid double-counting, process 592 // only signals from setitimer. 593 // 594 // When a custom cgo traceback function has been registered (on 595 // platforms that support runtime.SetCgoTraceback), SIGPROF signals 596 // delivered to a thread that cannot find a matching M do this check in 597 // the assembly implementations of runtime.cgoSigtramp. 598 return setitimer 599 } 600 601 // Having an M means the thread interacts with the Go scheduler, and we can 602 // check whether there's an active per-thread timer for this thread. 603 if mp.profileTimerValid.Load() { 604 // If this M has its own per-thread CPU profiling interval timer, we 605 // should track the SIGPROF signals that come from that timer (for 606 // accurate reporting of its CPU usage; see issue 35057) and ignore any 607 // that it gets from the process-wide setitimer (to not over-count its 608 // CPU consumption). 609 return timer_create 610 } 611 612 // No active per-thread timer means the only valid profiler is setitimer. 613 return setitimer 614 } 615 616 func setProcessCPUProfiler(hz int32) { 617 setProcessCPUProfilerTimer(hz) 618 } 619 620 func setThreadCPUProfiler(hz int32) { 621 mp := getg().m 622 mp.profilehz = hz 623 624 // destroy any active timer 625 if mp.profileTimerValid.Load() { 626 timerid := mp.profileTimer 627 mp.profileTimerValid.Store(false) 628 mp.profileTimer = 0 629 630 ret := timer_delete(timerid) 631 if ret != 0 { 632 print("runtime: failed to disable profiling timer; timer_delete(", timerid, ") errno=", -ret, "\n") 633 throw("timer_delete") 634 } 635 } 636 637 if hz == 0 { 638 // If the goal was to disable profiling for this thread, then the job's done. 639 return 640 } 641 642 // The period of the timer should be 1/Hz. For every "1/Hz" of additional 643 // work, the user should expect one additional sample in the profile. 644 // 645 // But to scale down to very small amounts of application work, to observe 646 // even CPU usage of "one tenth" of the requested period, set the initial 647 // timing delay in a different way: So that "one tenth" of a period of CPU 648 // spend shows up as a 10% chance of one sample (for an expected value of 649 // 0.1 samples), and so that "two and six tenths" periods of CPU spend show 650 // up as a 60% chance of 3 samples and a 40% chance of 2 samples (for an 651 // expected value of 2.6). Set the initial delay to a value in the unifom 652 // random distribution between 0 and the desired period. And because "0" 653 // means "disable timer", add 1 so the half-open interval [0,period) turns 654 // into (0,period]. 655 // 656 // Otherwise, this would show up as a bias away from short-lived threads and 657 // from threads that are only occasionally active: for example, when the 658 // garbage collector runs on a mostly-idle system, the additional threads it 659 // activates may do a couple milliseconds of GC-related work and nothing 660 // else in the few seconds that the profiler observes. 661 spec := new(itimerspec) 662 spec.it_value.setNsec(1 + int64(fastrandn(uint32(1e9/hz)))) 663 spec.it_interval.setNsec(1e9 / int64(hz)) 664 665 var timerid int32 666 var sevp sigevent 667 sevp.notify = _SIGEV_THREAD_ID 668 sevp.signo = _SIGPROF 669 sevp.sigev_notify_thread_id = int32(mp.procid) 670 ret := timer_create(_CLOCK_THREAD_CPUTIME_ID, &sevp, &timerid) 671 if ret != 0 { 672 // If we cannot create a timer for this M, leave profileTimerValid false 673 // to fall back to the process-wide setitimer profiler. 674 return 675 } 676 677 ret = timer_settime(timerid, 0, spec, nil) 678 if ret != 0 { 679 print("runtime: failed to configure profiling timer; timer_settime(", timerid, 680 ", 0, {interval: {", 681 spec.it_interval.tv_sec, "s + ", spec.it_interval.tv_nsec, "ns} value: {", 682 spec.it_value.tv_sec, "s + ", spec.it_value.tv_nsec, "ns}}, nil) errno=", -ret, "\n") 683 throw("timer_settime") 684 } 685 686 mp.profileTimer = timerid 687 mp.profileTimerValid.Store(true) 688 } 689 690 // perThreadSyscallArgs contains the system call number, arguments, and 691 // expected return values for a system call to be executed on all threads. 692 type perThreadSyscallArgs struct { 693 trap uintptr 694 a1 uintptr 695 a2 uintptr 696 a3 uintptr 697 a4 uintptr 698 a5 uintptr 699 a6 uintptr 700 r1 uintptr 701 r2 uintptr 702 } 703 704 // perThreadSyscall is the system call to execute for the ongoing 705 // doAllThreadsSyscall. 706 // 707 // perThreadSyscall may only be written while mp.needPerThreadSyscall == 0 on 708 // all Ms. 709 var perThreadSyscall perThreadSyscallArgs 710 711 // syscall_runtime_doAllThreadsSyscall and executes a specified system call on 712 // all Ms. 713 // 714 // The system call is expected to succeed and return the same value on every 715 // thread. If any threads do not match, the runtime throws. 716 // 717 //go:linkname syscall_runtime_doAllThreadsSyscall syscall.runtime_doAllThreadsSyscall 718 //go:uintptrescapes 719 func syscall_runtime_doAllThreadsSyscall(trap, a1, a2, a3, a4, a5, a6 uintptr) (r1, r2, err uintptr) { 720 if iscgo { 721 // In cgo, we are not aware of threads created in C, so this approach will not work. 722 panic("doAllThreadsSyscall not supported with cgo enabled") 723 } 724 725 // STW to guarantee that user goroutines see an atomic change to thread 726 // state. Without STW, goroutines could migrate Ms while change is in 727 // progress and e.g., see state old -> new -> old -> new. 728 // 729 // N.B. Internally, this function does not depend on STW to 730 // successfully change every thread. It is only needed for user 731 // expectations, per above. 732 stopTheWorld("doAllThreadsSyscall") 733 734 // This function depends on several properties: 735 // 736 // 1. All OS threads that already exist are associated with an M in 737 // allm. i.e., we won't miss any pre-existing threads. 738 // 2. All Ms listed in allm will eventually have an OS thread exist. 739 // i.e., they will set procid and be able to receive signals. 740 // 3. OS threads created after we read allm will clone from a thread 741 // that has executed the system call. i.e., they inherit the 742 // modified state. 743 // 744 // We achieve these through different mechanisms: 745 // 746 // 1. Addition of new Ms to allm in allocm happens before clone of its 747 // OS thread later in newm. 748 // 2. newm does acquirem to avoid being preempted, ensuring that new Ms 749 // created in allocm will eventually reach OS thread clone later in 750 // newm. 751 // 3. We take allocmLock for write here to prevent allocation of new Ms 752 // while this function runs. Per (1), this prevents clone of OS 753 // threads that are not yet in allm. 754 allocmLock.lock() 755 756 // Disable preemption, preventing us from changing Ms, as we handle 757 // this M specially. 758 // 759 // N.B. STW and lock() above do this as well, this is added for extra 760 // clarity. 761 acquirem() 762 763 // N.B. allocmLock also prevents concurrent execution of this function, 764 // serializing use of perThreadSyscall, mp.needPerThreadSyscall, and 765 // ensuring all threads execute system calls from multiple calls in the 766 // same order. 767 768 r1, r2, errno := syscall.Syscall6(trap, a1, a2, a3, a4, a5, a6) 769 if GOARCH == "ppc64" || GOARCH == "ppc64le" { 770 // TODO(https://go.dev/issue/51192 ): ppc64 doesn't use r2. 771 r2 = 0 772 } 773 if errno != 0 { 774 releasem(getg().m) 775 allocmLock.unlock() 776 startTheWorld() 777 return r1, r2, errno 778 } 779 780 perThreadSyscall = perThreadSyscallArgs{ 781 trap: trap, 782 a1: a1, 783 a2: a2, 784 a3: a3, 785 a4: a4, 786 a5: a5, 787 a6: a6, 788 r1: r1, 789 r2: r2, 790 } 791 792 // Wait for all threads to start. 793 // 794 // As described above, some Ms have been added to allm prior to 795 // allocmLock, but not yet completed OS clone and set procid. 796 // 797 // At minimum we must wait for a thread to set procid before we can 798 // send it a signal. 799 // 800 // We take this one step further and wait for all threads to start 801 // before sending any signals. This prevents system calls from getting 802 // applied twice: once in the parent and once in the child, like so: 803 // 804 // A B C 805 // add C to allm 806 // doAllThreadsSyscall 807 // allocmLock.lock() 808 // signal B 809 // <receive signal> 810 // execute syscall 811 // <signal return> 812 // clone C 813 // <thread start> 814 // set procid 815 // signal C 816 // <receive signal> 817 // execute syscall 818 // <signal return> 819 // 820 // In this case, thread C inherited the syscall-modified state from 821 // thread B and did not need to execute the syscall, but did anyway 822 // because doAllThreadsSyscall could not be sure whether it was 823 // required. 824 // 825 // Some system calls may not be idempotent, so we ensure each thread 826 // executes the system call exactly once. 827 for mp := allm; mp != nil; mp = mp.alllink { 828 for atomic.Load64(&mp.procid) == 0 { 829 // Thread is starting. 830 osyield() 831 } 832 } 833 834 // Signal every other thread, where they will execute perThreadSyscall 835 // from the signal handler. 836 gp := getg() 837 tid := gp.m.procid 838 for mp := allm; mp != nil; mp = mp.alllink { 839 if atomic.Load64(&mp.procid) == tid { 840 // Our thread already performed the syscall. 841 continue 842 } 843 mp.needPerThreadSyscall.Store(1) 844 signalM(mp, sigPerThreadSyscall) 845 } 846 847 // Wait for all threads to complete. 848 for mp := allm; mp != nil; mp = mp.alllink { 849 if mp.procid == tid { 850 continue 851 } 852 for mp.needPerThreadSyscall.Load() != 0 { 853 osyield() 854 } 855 } 856 857 perThreadSyscall = perThreadSyscallArgs{} 858 859 releasem(getg().m) 860 allocmLock.unlock() 861 startTheWorld() 862 863 return r1, r2, errno 864 } 865 866 // runPerThreadSyscall runs perThreadSyscall for this M if required. 867 // 868 // This function throws if the system call returns with anything other than the 869 // expected values. 870 // 871 //go:nosplit 872 func runPerThreadSyscall() { 873 gp := getg() 874 if gp.m.needPerThreadSyscall.Load() == 0 { 875 return 876 } 877 878 args := perThreadSyscall 879 r1, r2, errno := syscall.Syscall6(args.trap, args.a1, args.a2, args.a3, args.a4, args.a5, args.a6) 880 if GOARCH == "ppc64" || GOARCH == "ppc64le" { 881 // TODO(https://go.dev/issue/51192 ): ppc64 doesn't use r2. 882 r2 = 0 883 } 884 if errno != 0 || r1 != args.r1 || r2 != args.r2 { 885 print("trap:", args.trap, ", a123456=[", args.a1, ",", args.a2, ",", args.a3, ",", args.a4, ",", args.a5, ",", args.a6, "]\n") 886 print("results: got {r1=", r1, ",r2=", r2, ",errno=", errno, "}, want {r1=", args.r1, ",r2=", args.r2, ",errno=0}\n") 887 fatal("AllThreadsSyscall6 results differ between threads; runtime corrupted") 888 } 889 890 gp.m.needPerThreadSyscall.Store(0) 891 } 892 893 const ( 894 _SI_USER = 0 895 _SI_TKILL = -6 896 ) 897 898 // sigFromUser reports whether the signal was sent because of a call 899 // to kill or tgkill. 900 // 901 //go:nosplit 902 func (c *sigctxt) sigFromUser() bool { 903 code := int32(c.sigcode()) 904 return code == _SI_USER || code == _SI_TKILL 905 }