github.com/twelsh-aw/go/src@v0.0.0-20230516233729-a56fe86a7c81/runtime/traceback.go (about)

     1  // Copyright 2009 The Go Authors. All rights reserved.
     2  // Use of this source code is governed by a BSD-style
     3  // license that can be found in the LICENSE file.
     4  
     5  package runtime
     6  
     7  import (
     8  	"internal/abi"
     9  	"internal/bytealg"
    10  	"internal/goarch"
    11  	"runtime/internal/sys"
    12  	"unsafe"
    13  )
    14  
    15  // The code in this file implements stack trace walking for all architectures.
    16  // The most important fact about a given architecture is whether it uses a link register.
    17  // On systems with link registers, the prologue for a non-leaf function stores the
    18  // incoming value of LR at the bottom of the newly allocated stack frame.
    19  // On systems without link registers (x86), the architecture pushes a return PC during
    20  // the call instruction, so the return PC ends up above the stack frame.
    21  // In this file, the return PC is always called LR, no matter how it was found.
    22  
    23  const usesLR = sys.MinFrameSize > 0
    24  
    25  const (
    26  	// tracebackInnerFrames is the number of innermost frames to print in a
    27  	// stack trace. The total maximum frames is tracebackInnerFrames +
    28  	// tracebackOuterFrames.
    29  	tracebackInnerFrames = 50
    30  
    31  	// tracebackOuterFrames is the number of outermost frames to print in a
    32  	// stack trace.
    33  	tracebackOuterFrames = 50
    34  )
    35  
    36  // unwindFlags control the behavior of various unwinders.
    37  type unwindFlags uint8
    38  
    39  const (
    40  	// unwindPrintErrors indicates that if unwinding encounters an error, it
    41  	// should print a message and stop without throwing. This is used for things
    42  	// like stack printing, where it's better to get incomplete information than
    43  	// to crash. This is also used in situations where everything may not be
    44  	// stopped nicely and the stack walk may not be able to complete, such as
    45  	// during profiling signals or during a crash.
    46  	//
    47  	// If neither unwindPrintErrors or unwindSilentErrors are set, unwinding
    48  	// performs extra consistency checks and throws on any error.
    49  	//
    50  	// Note that there are a small number of fatal situations that will throw
    51  	// regardless of unwindPrintErrors or unwindSilentErrors.
    52  	unwindPrintErrors unwindFlags = 1 << iota
    53  
    54  	// unwindSilentErrors silently ignores errors during unwinding.
    55  	unwindSilentErrors
    56  
    57  	// unwindTrap indicates that the initial PC and SP are from a trap, not a
    58  	// return PC from a call.
    59  	//
    60  	// The unwindTrap flag is updated during unwinding. If set, frame.pc is the
    61  	// address of a faulting instruction instead of the return address of a
    62  	// call. It also means the liveness at pc may not be known.
    63  	//
    64  	// TODO: Distinguish frame.continpc, which is really the stack map PC, from
    65  	// the actual continuation PC, which is computed differently depending on
    66  	// this flag and a few other things.
    67  	unwindTrap
    68  
    69  	// unwindJumpStack indicates that, if the traceback is on a system stack, it
    70  	// should resume tracing at the user stack when the system stack is
    71  	// exhausted.
    72  	unwindJumpStack
    73  )
    74  
    75  // An unwinder iterates the physical stack frames of a Go sack.
    76  //
    77  // Typical use of an unwinder looks like:
    78  //
    79  //	var u unwinder
    80  //	for u.init(gp, 0); u.valid(); u.next() {
    81  //		// ... use frame info in u ...
    82  //	}
    83  //
    84  // Implementation note: This is carefully structured to be pointer-free because
    85  // tracebacks happen in places that disallow write barriers (e.g., signals).
    86  // Even if this is stack-allocated, its pointer-receiver methods don't know that
    87  // their receiver is on the stack, so they still emit write barriers. Here we
    88  // address that by carefully avoiding any pointers in this type. Another
    89  // approach would be to split this into a mutable part that's passed by pointer
    90  // but contains no pointers itself and an immutable part that's passed and
    91  // returned by value and can contain pointers. We could potentially hide that
    92  // we're doing that in trivial methods that are inlined into the caller that has
    93  // the stack allocation, but that's fragile.
    94  type unwinder struct {
    95  	// frame is the current physical stack frame, or all 0s if
    96  	// there is no frame.
    97  	frame stkframe
    98  
    99  	// g is the G who's stack is being unwound. If the
   100  	// unwindJumpStack flag is set and the unwinder jumps stacks,
   101  	// this will be different from the initial G.
   102  	g guintptr
   103  
   104  	// cgoCtxt is the index into g.cgoCtxt of the next frame on the cgo stack.
   105  	// The cgo stack is unwound in tandem with the Go stack as we find marker frames.
   106  	cgoCtxt int
   107  
   108  	// calleeFuncID is the function ID of the caller of the current
   109  	// frame.
   110  	calleeFuncID abi.FuncID
   111  
   112  	// flags are the flags to this unwind. Some of these are updated as we
   113  	// unwind (see the flags documentation).
   114  	flags unwindFlags
   115  
   116  	// cache is used to cache pcvalue lookups.
   117  	cache pcvalueCache
   118  }
   119  
   120  // init initializes u to start unwinding gp's stack and positions the
   121  // iterator on gp's innermost frame. gp must not be the current G.
   122  //
   123  // A single unwinder can be reused for multiple unwinds.
   124  func (u *unwinder) init(gp *g, flags unwindFlags) {
   125  	// Implementation note: This starts the iterator on the first frame and we
   126  	// provide a "valid" method. Alternatively, this could start in a "before
   127  	// the first frame" state and "next" could return whether it was able to
   128  	// move to the next frame, but that's both more awkward to use in a "for"
   129  	// loop and is harder to implement because we have to do things differently
   130  	// for the first frame.
   131  	u.initAt(^uintptr(0), ^uintptr(0), ^uintptr(0), gp, flags)
   132  }
   133  
   134  func (u *unwinder) initAt(pc0, sp0, lr0 uintptr, gp *g, flags unwindFlags) {
   135  	// Don't call this "g"; it's too easy get "g" and "gp" confused.
   136  	if ourg := getg(); ourg == gp && ourg == ourg.m.curg {
   137  		// The starting sp has been passed in as a uintptr, and the caller may
   138  		// have other uintptr-typed stack references as well.
   139  		// If during one of the calls that got us here or during one of the
   140  		// callbacks below the stack must be grown, all these uintptr references
   141  		// to the stack will not be updated, and traceback will continue
   142  		// to inspect the old stack memory, which may no longer be valid.
   143  		// Even if all the variables were updated correctly, it is not clear that
   144  		// we want to expose a traceback that begins on one stack and ends
   145  		// on another stack. That could confuse callers quite a bit.
   146  		// Instead, we require that initAt and any other function that
   147  		// accepts an sp for the current goroutine (typically obtained by
   148  		// calling getcallersp) must not run on that goroutine's stack but
   149  		// instead on the g0 stack.
   150  		throw("cannot trace user goroutine on its own stack")
   151  	}
   152  
   153  	if pc0 == ^uintptr(0) && sp0 == ^uintptr(0) { // Signal to fetch saved values from gp.
   154  		if gp.syscallsp != 0 {
   155  			pc0 = gp.syscallpc
   156  			sp0 = gp.syscallsp
   157  			if usesLR {
   158  				lr0 = 0
   159  			}
   160  		} else {
   161  			pc0 = gp.sched.pc
   162  			sp0 = gp.sched.sp
   163  			if usesLR {
   164  				lr0 = gp.sched.lr
   165  			}
   166  		}
   167  	}
   168  
   169  	var frame stkframe
   170  	frame.pc = pc0
   171  	frame.sp = sp0
   172  	if usesLR {
   173  		frame.lr = lr0
   174  	}
   175  
   176  	// If the PC is zero, it's likely a nil function call.
   177  	// Start in the caller's frame.
   178  	if frame.pc == 0 {
   179  		if usesLR {
   180  			frame.pc = *(*uintptr)(unsafe.Pointer(frame.sp))
   181  			frame.lr = 0
   182  		} else {
   183  			frame.pc = uintptr(*(*uintptr)(unsafe.Pointer(frame.sp)))
   184  			frame.sp += goarch.PtrSize
   185  		}
   186  	}
   187  
   188  	// runtime/internal/atomic functions call into kernel helpers on
   189  	// arm < 7. See runtime/internal/atomic/sys_linux_arm.s.
   190  	//
   191  	// Start in the caller's frame.
   192  	if GOARCH == "arm" && goarm < 7 && GOOS == "linux" && frame.pc&0xffff0000 == 0xffff0000 {
   193  		// Note that the calls are simple BL without pushing the return
   194  		// address, so we use LR directly.
   195  		//
   196  		// The kernel helpers are frameless leaf functions, so SP and
   197  		// LR are not touched.
   198  		frame.pc = frame.lr
   199  		frame.lr = 0
   200  	}
   201  
   202  	f := findfunc(frame.pc)
   203  	if !f.valid() {
   204  		if flags&unwindSilentErrors == 0 {
   205  			print("runtime: g ", gp.goid, ": unknown pc ", hex(frame.pc), "\n")
   206  			tracebackHexdump(gp.stack, &frame, 0)
   207  		}
   208  		if flags&(unwindPrintErrors|unwindSilentErrors) == 0 {
   209  			throw("unknown pc")
   210  		}
   211  		*u = unwinder{}
   212  		return
   213  	}
   214  	frame.fn = f
   215  
   216  	// Populate the unwinder.
   217  	*u = unwinder{
   218  		frame:        frame,
   219  		g:            gp.guintptr(),
   220  		cgoCtxt:      len(gp.cgoCtxt) - 1,
   221  		calleeFuncID: abi.FuncIDNormal,
   222  		flags:        flags,
   223  	}
   224  
   225  	isSyscall := frame.pc == pc0 && frame.sp == sp0 && pc0 == gp.syscallpc && sp0 == gp.syscallsp
   226  	u.resolveInternal(true, isSyscall)
   227  }
   228  
   229  func (u *unwinder) valid() bool {
   230  	return u.frame.pc != 0
   231  }
   232  
   233  // resolveInternal fills in u.frame based on u.frame.fn, pc, and sp.
   234  //
   235  // innermost indicates that this is the first resolve on this stack. If
   236  // innermost is set, isSyscall indicates that the PC/SP was retrieved from
   237  // gp.syscall*; this is otherwise ignored.
   238  //
   239  // On entry, u.frame contains:
   240  //   - fn is the running function.
   241  //   - pc is the PC in the running function.
   242  //   - sp is the stack pointer at that program counter.
   243  //   - For the innermost frame on LR machines, lr is the program counter that called fn.
   244  //
   245  // On return, u.frame contains:
   246  //   - fp is the stack pointer of the caller.
   247  //   - lr is the program counter that called fn.
   248  //   - varp, argp, and continpc are populated for the current frame.
   249  //
   250  // If fn is a stack-jumping function, resolveInternal can change the entire
   251  // frame state to follow that stack jump.
   252  //
   253  // This is internal to unwinder.
   254  func (u *unwinder) resolveInternal(innermost, isSyscall bool) {
   255  	frame := &u.frame
   256  	gp := u.g.ptr()
   257  
   258  	f := frame.fn
   259  	if f.pcsp == 0 {
   260  		// No frame information, must be external function, like race support.
   261  		// See golang.org/issue/13568.
   262  		u.finishInternal()
   263  		return
   264  	}
   265  
   266  	// Compute function info flags.
   267  	flag := f.flag
   268  	if f.funcID == abi.FuncID_cgocallback {
   269  		// cgocallback does write SP to switch from the g0 to the curg stack,
   270  		// but it carefully arranges that during the transition BOTH stacks
   271  		// have cgocallback frame valid for unwinding through.
   272  		// So we don't need to exclude it with the other SP-writing functions.
   273  		flag &^= abi.FuncFlagSPWrite
   274  	}
   275  	if isSyscall {
   276  		// Some Syscall functions write to SP, but they do so only after
   277  		// saving the entry PC/SP using entersyscall.
   278  		// Since we are using the entry PC/SP, the later SP write doesn't matter.
   279  		flag &^= abi.FuncFlagSPWrite
   280  	}
   281  
   282  	// Found an actual function.
   283  	// Derive frame pointer.
   284  	if frame.fp == 0 {
   285  		// Jump over system stack transitions. If we're on g0 and there's a user
   286  		// goroutine, try to jump. Otherwise this is a regular call.
   287  		// We also defensively check that this won't switch M's on us,
   288  		// which could happen at critical points in the scheduler.
   289  		// This ensures gp.m doesn't change from a stack jump.
   290  		if u.flags&unwindJumpStack != 0 && gp == gp.m.g0 && gp.m.curg != nil && gp.m.curg.m == gp.m {
   291  			switch f.funcID {
   292  			case abi.FuncID_morestack:
   293  				// morestack does not return normally -- newstack()
   294  				// gogo's to curg.sched. Match that.
   295  				// This keeps morestack() from showing up in the backtrace,
   296  				// but that makes some sense since it'll never be returned
   297  				// to.
   298  				gp = gp.m.curg
   299  				u.g.set(gp)
   300  				frame.pc = gp.sched.pc
   301  				frame.fn = findfunc(frame.pc)
   302  				f = frame.fn
   303  				flag = f.flag
   304  				frame.lr = gp.sched.lr
   305  				frame.sp = gp.sched.sp
   306  				u.cgoCtxt = len(gp.cgoCtxt) - 1
   307  			case abi.FuncID_systemstack:
   308  				// systemstack returns normally, so just follow the
   309  				// stack transition.
   310  				if usesLR && funcspdelta(f, frame.pc, &u.cache) == 0 {
   311  					// We're at the function prologue and the stack
   312  					// switch hasn't happened, or epilogue where we're
   313  					// about to return. Just unwind normally.
   314  					// Do this only on LR machines because on x86
   315  					// systemstack doesn't have an SP delta (the CALL
   316  					// instruction opens the frame), therefore no way
   317  					// to check.
   318  					flag &^= abi.FuncFlagSPWrite
   319  					break
   320  				}
   321  				gp = gp.m.curg
   322  				u.g.set(gp)
   323  				frame.sp = gp.sched.sp
   324  				u.cgoCtxt = len(gp.cgoCtxt) - 1
   325  				flag &^= abi.FuncFlagSPWrite
   326  			}
   327  		}
   328  		frame.fp = frame.sp + uintptr(funcspdelta(f, frame.pc, &u.cache))
   329  		if !usesLR {
   330  			// On x86, call instruction pushes return PC before entering new function.
   331  			frame.fp += goarch.PtrSize
   332  		}
   333  	}
   334  
   335  	// Derive link register.
   336  	if flag&abi.FuncFlagTopFrame != 0 {
   337  		// This function marks the top of the stack. Stop the traceback.
   338  		frame.lr = 0
   339  	} else if flag&abi.FuncFlagSPWrite != 0 {
   340  		// The function we are in does a write to SP that we don't know
   341  		// how to encode in the spdelta table. Examples include context
   342  		// switch routines like runtime.gogo but also any code that switches
   343  		// to the g0 stack to run host C code.
   344  		if u.flags&(unwindPrintErrors|unwindSilentErrors) != 0 {
   345  			// We can't reliably unwind the SP (we might
   346  			// not even be on the stack we think we are),
   347  			// so stop the traceback here.
   348  			frame.lr = 0
   349  		} else {
   350  			// For a GC stack traversal, we should only see
   351  			// an SPWRITE function when it has voluntarily preempted itself on entry
   352  			// during the stack growth check. In that case, the function has
   353  			// not yet had a chance to do any writes to SP and is safe to unwind.
   354  			// isAsyncSafePoint does not allow assembly functions to be async preempted,
   355  			// and preemptPark double-checks that SPWRITE functions are not async preempted.
   356  			// So for GC stack traversal, we can safely ignore SPWRITE for the innermost frame,
   357  			// but farther up the stack we'd better not find any.
   358  			if !innermost {
   359  				println("traceback: unexpected SPWRITE function", funcname(f))
   360  				throw("traceback")
   361  			}
   362  		}
   363  	} else {
   364  		var lrPtr uintptr
   365  		if usesLR {
   366  			if innermost && frame.sp < frame.fp || frame.lr == 0 {
   367  				lrPtr = frame.sp
   368  				frame.lr = *(*uintptr)(unsafe.Pointer(lrPtr))
   369  			}
   370  		} else {
   371  			if frame.lr == 0 {
   372  				lrPtr = frame.fp - goarch.PtrSize
   373  				frame.lr = *(*uintptr)(unsafe.Pointer(lrPtr))
   374  			}
   375  		}
   376  	}
   377  
   378  	frame.varp = frame.fp
   379  	if !usesLR {
   380  		// On x86, call instruction pushes return PC before entering new function.
   381  		frame.varp -= goarch.PtrSize
   382  	}
   383  
   384  	// For architectures with frame pointers, if there's
   385  	// a frame, then there's a saved frame pointer here.
   386  	//
   387  	// NOTE: This code is not as general as it looks.
   388  	// On x86, the ABI is to save the frame pointer word at the
   389  	// top of the stack frame, so we have to back down over it.
   390  	// On arm64, the frame pointer should be at the bottom of
   391  	// the stack (with R29 (aka FP) = RSP), in which case we would
   392  	// not want to do the subtraction here. But we started out without
   393  	// any frame pointer, and when we wanted to add it, we didn't
   394  	// want to break all the assembly doing direct writes to 8(RSP)
   395  	// to set the first parameter to a called function.
   396  	// So we decided to write the FP link *below* the stack pointer
   397  	// (with R29 = RSP - 8 in Go functions).
   398  	// This is technically ABI-compatible but not standard.
   399  	// And it happens to end up mimicking the x86 layout.
   400  	// Other architectures may make different decisions.
   401  	if frame.varp > frame.sp && framepointer_enabled {
   402  		frame.varp -= goarch.PtrSize
   403  	}
   404  
   405  	frame.argp = frame.fp + sys.MinFrameSize
   406  
   407  	// Determine frame's 'continuation PC', where it can continue.
   408  	// Normally this is the return address on the stack, but if sigpanic
   409  	// is immediately below this function on the stack, then the frame
   410  	// stopped executing due to a trap, and frame.pc is probably not
   411  	// a safe point for looking up liveness information. In this panicking case,
   412  	// the function either doesn't return at all (if it has no defers or if the
   413  	// defers do not recover) or it returns from one of the calls to
   414  	// deferproc a second time (if the corresponding deferred func recovers).
   415  	// In the latter case, use a deferreturn call site as the continuation pc.
   416  	frame.continpc = frame.pc
   417  	if u.calleeFuncID == abi.FuncID_sigpanic {
   418  		if frame.fn.deferreturn != 0 {
   419  			frame.continpc = frame.fn.entry() + uintptr(frame.fn.deferreturn) + 1
   420  			// Note: this may perhaps keep return variables alive longer than
   421  			// strictly necessary, as we are using "function has a defer statement"
   422  			// as a proxy for "function actually deferred something". It seems
   423  			// to be a minor drawback. (We used to actually look through the
   424  			// gp._defer for a defer corresponding to this function, but that
   425  			// is hard to do with defer records on the stack during a stack copy.)
   426  			// Note: the +1 is to offset the -1 that
   427  			// stack.go:getStackMap does to back up a return
   428  			// address make sure the pc is in the CALL instruction.
   429  		} else {
   430  			frame.continpc = 0
   431  		}
   432  	}
   433  }
   434  
   435  func (u *unwinder) next() {
   436  	frame := &u.frame
   437  	f := frame.fn
   438  	gp := u.g.ptr()
   439  
   440  	// Do not unwind past the bottom of the stack.
   441  	if frame.lr == 0 {
   442  		u.finishInternal()
   443  		return
   444  	}
   445  	flr := findfunc(frame.lr)
   446  	if !flr.valid() {
   447  		// This happens if you get a profiling interrupt at just the wrong time.
   448  		// In that context it is okay to stop early.
   449  		// But if no error flags are set, we're doing a garbage collection and must
   450  		// get everything, so crash loudly.
   451  		fail := u.flags&(unwindPrintErrors|unwindSilentErrors) == 0
   452  		doPrint := u.flags&unwindSilentErrors == 0
   453  		if doPrint && gp.m.incgo && f.funcID == abi.FuncID_sigpanic {
   454  			// We can inject sigpanic
   455  			// calls directly into C code,
   456  			// in which case we'll see a C
   457  			// return PC. Don't complain.
   458  			doPrint = false
   459  		}
   460  		if fail || doPrint {
   461  			print("runtime: g ", gp.goid, ": unexpected return pc for ", funcname(f), " called from ", hex(frame.lr), "\n")
   462  			tracebackHexdump(gp.stack, frame, 0)
   463  		}
   464  		if fail {
   465  			throw("unknown caller pc")
   466  		}
   467  		frame.lr = 0
   468  		u.finishInternal()
   469  		return
   470  	}
   471  
   472  	if frame.pc == frame.lr && frame.sp == frame.fp {
   473  		// If the next frame is identical to the current frame, we cannot make progress.
   474  		print("runtime: traceback stuck. pc=", hex(frame.pc), " sp=", hex(frame.sp), "\n")
   475  		tracebackHexdump(gp.stack, frame, frame.sp)
   476  		throw("traceback stuck")
   477  	}
   478  
   479  	injectedCall := f.funcID == abi.FuncID_sigpanic || f.funcID == abi.FuncID_asyncPreempt || f.funcID == abi.FuncID_debugCallV2
   480  	if injectedCall {
   481  		u.flags |= unwindTrap
   482  	} else {
   483  		u.flags &^= unwindTrap
   484  	}
   485  
   486  	// Unwind to next frame.
   487  	u.calleeFuncID = f.funcID
   488  	frame.fn = flr
   489  	frame.pc = frame.lr
   490  	frame.lr = 0
   491  	frame.sp = frame.fp
   492  	frame.fp = 0
   493  
   494  	// On link register architectures, sighandler saves the LR on stack
   495  	// before faking a call.
   496  	if usesLR && injectedCall {
   497  		x := *(*uintptr)(unsafe.Pointer(frame.sp))
   498  		frame.sp += alignUp(sys.MinFrameSize, sys.StackAlign)
   499  		f = findfunc(frame.pc)
   500  		frame.fn = f
   501  		if !f.valid() {
   502  			frame.pc = x
   503  		} else if funcspdelta(f, frame.pc, &u.cache) == 0 {
   504  			frame.lr = x
   505  		}
   506  	}
   507  
   508  	u.resolveInternal(false, false)
   509  }
   510  
   511  // finishInternal is an unwinder-internal helper called after the stack has been
   512  // exhausted. It sets the unwinder to an invalid state and checks that it
   513  // successfully unwound the entire stack.
   514  func (u *unwinder) finishInternal() {
   515  	u.frame.pc = 0
   516  
   517  	// Note that panic != nil is okay here: there can be leftover panics,
   518  	// because the defers on the panic stack do not nest in frame order as
   519  	// they do on the defer stack. If you have:
   520  	//
   521  	//	frame 1 defers d1
   522  	//	frame 2 defers d2
   523  	//	frame 3 defers d3
   524  	//	frame 4 panics
   525  	//	frame 4's panic starts running defers
   526  	//	frame 5, running d3, defers d4
   527  	//	frame 5 panics
   528  	//	frame 5's panic starts running defers
   529  	//	frame 6, running d4, garbage collects
   530  	//	frame 6, running d2, garbage collects
   531  	//
   532  	// During the execution of d4, the panic stack is d4 -> d3, which
   533  	// is nested properly, and we'll treat frame 3 as resumable, because we
   534  	// can find d3. (And in fact frame 3 is resumable. If d4 recovers
   535  	// and frame 5 continues running, d3, d3 can recover and we'll
   536  	// resume execution in (returning from) frame 3.)
   537  	//
   538  	// During the execution of d2, however, the panic stack is d2 -> d3,
   539  	// which is inverted. The scan will match d2 to frame 2 but having
   540  	// d2 on the stack until then means it will not match d3 to frame 3.
   541  	// This is okay: if we're running d2, then all the defers after d2 have
   542  	// completed and their corresponding frames are dead. Not finding d3
   543  	// for frame 3 means we'll set frame 3's continpc == 0, which is correct
   544  	// (frame 3 is dead). At the end of the walk the panic stack can thus
   545  	// contain defers (d3 in this case) for dead frames. The inversion here
   546  	// always indicates a dead frame, and the effect of the inversion on the
   547  	// scan is to hide those dead frames, so the scan is still okay:
   548  	// what's left on the panic stack are exactly (and only) the dead frames.
   549  	//
   550  	// We require callback != nil here because only when callback != nil
   551  	// do we know that gentraceback is being called in a "must be correct"
   552  	// context as opposed to a "best effort" context. The tracebacks with
   553  	// callbacks only happen when everything is stopped nicely.
   554  	// At other times, such as when gathering a stack for a profiling signal
   555  	// or when printing a traceback during a crash, everything may not be
   556  	// stopped nicely, and the stack walk may not be able to complete.
   557  	gp := u.g.ptr()
   558  	if u.flags&(unwindPrintErrors|unwindSilentErrors) == 0 && u.frame.sp != gp.stktopsp {
   559  		print("runtime: g", gp.goid, ": frame.sp=", hex(u.frame.sp), " top=", hex(gp.stktopsp), "\n")
   560  		print("\tstack=[", hex(gp.stack.lo), "-", hex(gp.stack.hi), "\n")
   561  		throw("traceback did not unwind completely")
   562  	}
   563  }
   564  
   565  // symPC returns the PC that should be used for symbolizing the current frame.
   566  // Specifically, this is the PC of the last instruction executed in this frame.
   567  //
   568  // If this frame did a normal call, then frame.pc is a return PC, so this will
   569  // return frame.pc-1, which points into the CALL instruction. If the frame was
   570  // interrupted by a signal (e.g., profiler, segv, etc) then frame.pc is for the
   571  // trapped instruction, so this returns frame.pc. See issue #34123. Finally,
   572  // frame.pc can be at function entry when the frame is initialized without
   573  // actually running code, like in runtime.mstart, in which case this returns
   574  // frame.pc because that's the best we can do.
   575  func (u *unwinder) symPC() uintptr {
   576  	if u.flags&unwindTrap == 0 && u.frame.pc > u.frame.fn.entry() {
   577  		// Regular call.
   578  		return u.frame.pc - 1
   579  	}
   580  	// Trapping instruction or we're at the function entry point.
   581  	return u.frame.pc
   582  }
   583  
   584  // cgoCallers populates pcBuf with the cgo callers of the current frame using
   585  // the registered cgo unwinder. It returns the number of PCs written to pcBuf.
   586  // If the current frame is not a cgo frame or if there's no registered cgo
   587  // unwinder, it returns 0.
   588  func (u *unwinder) cgoCallers(pcBuf []uintptr) int {
   589  	if cgoTraceback == nil || u.frame.fn.funcID != abi.FuncID_cgocallback || u.cgoCtxt < 0 {
   590  		// We don't have a cgo unwinder (typical case), or we do but we're not
   591  		// in a cgo frame or we're out of cgo context.
   592  		return 0
   593  	}
   594  
   595  	ctxt := u.g.ptr().cgoCtxt[u.cgoCtxt]
   596  	u.cgoCtxt--
   597  	cgoContextPCs(ctxt, pcBuf)
   598  	for i, pc := range pcBuf {
   599  		if pc == 0 {
   600  			return i
   601  		}
   602  	}
   603  	return len(pcBuf)
   604  }
   605  
   606  // tracebackPCs populates pcBuf with the return addresses for each frame from u
   607  // and returns the number of PCs written to pcBuf. The returned PCs correspond
   608  // to "logical frames" rather than "physical frames"; that is if A is inlined
   609  // into B, this will still return a PCs for both A and B. This also includes PCs
   610  // generated by the cgo unwinder, if one is registered.
   611  //
   612  // If skip != 0, this skips this many logical frames.
   613  //
   614  // Callers should set the unwindSilentErrors flag on u.
   615  func tracebackPCs(u *unwinder, skip int, pcBuf []uintptr) int {
   616  	var cgoBuf [32]uintptr
   617  	n := 0
   618  	for ; n < len(pcBuf) && u.valid(); u.next() {
   619  		f := u.frame.fn
   620  		cgoN := u.cgoCallers(cgoBuf[:])
   621  
   622  		// TODO: Why does &u.cache cause u to escape? (Same in traceback2)
   623  		for iu, uf := newInlineUnwinder(f, u.symPC(), noEscapePtr(&u.cache)); n < len(pcBuf) && uf.valid(); uf = iu.next(uf) {
   624  			sf := iu.srcFunc(uf)
   625  			if sf.funcID == abi.FuncIDWrapper && elideWrapperCalling(u.calleeFuncID) {
   626  				// ignore wrappers
   627  			} else if skip > 0 {
   628  				skip--
   629  			} else {
   630  				// Callers expect the pc buffer to contain return addresses
   631  				// and do the -1 themselves, so we add 1 to the call PC to
   632  				// create a return PC.
   633  				pcBuf[n] = uf.pc + 1
   634  				n++
   635  			}
   636  			u.calleeFuncID = sf.funcID
   637  		}
   638  		// Add cgo frames (if we're done skipping over the requested number of
   639  		// Go frames).
   640  		if skip == 0 {
   641  			n += copy(pcBuf[n:], cgoBuf[:cgoN])
   642  		}
   643  	}
   644  	return n
   645  }
   646  
   647  // printArgs prints function arguments in traceback.
   648  func printArgs(f funcInfo, argp unsafe.Pointer, pc uintptr) {
   649  	// The "instruction" of argument printing is encoded in _FUNCDATA_ArgInfo.
   650  	// See cmd/compile/internal/ssagen.emitArgInfo for the description of the
   651  	// encoding.
   652  	// These constants need to be in sync with the compiler.
   653  	const (
   654  		_endSeq         = 0xff
   655  		_startAgg       = 0xfe
   656  		_endAgg         = 0xfd
   657  		_dotdotdot      = 0xfc
   658  		_offsetTooLarge = 0xfb
   659  	)
   660  
   661  	const (
   662  		limit    = 10                       // print no more than 10 args/components
   663  		maxDepth = 5                        // no more than 5 layers of nesting
   664  		maxLen   = (maxDepth*3+2)*limit + 1 // max length of _FUNCDATA_ArgInfo (see the compiler side for reasoning)
   665  	)
   666  
   667  	p := (*[maxLen]uint8)(funcdata(f, abi.FUNCDATA_ArgInfo))
   668  	if p == nil {
   669  		return
   670  	}
   671  
   672  	liveInfo := funcdata(f, abi.FUNCDATA_ArgLiveInfo)
   673  	liveIdx := pcdatavalue(f, abi.PCDATA_ArgLiveIndex, pc, nil)
   674  	startOffset := uint8(0xff) // smallest offset that needs liveness info (slots with a lower offset is always live)
   675  	if liveInfo != nil {
   676  		startOffset = *(*uint8)(liveInfo)
   677  	}
   678  
   679  	isLive := func(off, slotIdx uint8) bool {
   680  		if liveInfo == nil || liveIdx <= 0 {
   681  			return true // no liveness info, always live
   682  		}
   683  		if off < startOffset {
   684  			return true
   685  		}
   686  		bits := *(*uint8)(add(liveInfo, uintptr(liveIdx)+uintptr(slotIdx/8)))
   687  		return bits&(1<<(slotIdx%8)) != 0
   688  	}
   689  
   690  	print1 := func(off, sz, slotIdx uint8) {
   691  		x := readUnaligned64(add(argp, uintptr(off)))
   692  		// mask out irrelevant bits
   693  		if sz < 8 {
   694  			shift := 64 - sz*8
   695  			if goarch.BigEndian {
   696  				x = x >> shift
   697  			} else {
   698  				x = x << shift >> shift
   699  			}
   700  		}
   701  		print(hex(x))
   702  		if !isLive(off, slotIdx) {
   703  			print("?")
   704  		}
   705  	}
   706  
   707  	start := true
   708  	printcomma := func() {
   709  		if !start {
   710  			print(", ")
   711  		}
   712  	}
   713  	pi := 0
   714  	slotIdx := uint8(0) // register arg spill slot index
   715  printloop:
   716  	for {
   717  		o := p[pi]
   718  		pi++
   719  		switch o {
   720  		case _endSeq:
   721  			break printloop
   722  		case _startAgg:
   723  			printcomma()
   724  			print("{")
   725  			start = true
   726  			continue
   727  		case _endAgg:
   728  			print("}")
   729  		case _dotdotdot:
   730  			printcomma()
   731  			print("...")
   732  		case _offsetTooLarge:
   733  			printcomma()
   734  			print("_")
   735  		default:
   736  			printcomma()
   737  			sz := p[pi]
   738  			pi++
   739  			print1(o, sz, slotIdx)
   740  			if o >= startOffset {
   741  				slotIdx++
   742  			}
   743  		}
   744  		start = false
   745  	}
   746  }
   747  
   748  // funcNamePiecesForPrint returns the function name for printing to the user.
   749  // It returns three pieces so it doesn't need an allocation for string
   750  // concatenation.
   751  func funcNamePiecesForPrint(name string) (string, string, string) {
   752  	// Replace the shape name in generic function with "...".
   753  	i := bytealg.IndexByteString(name, '[')
   754  	if i < 0 {
   755  		return name, "", ""
   756  	}
   757  	j := len(name) - 1
   758  	for name[j] != ']' {
   759  		j--
   760  	}
   761  	if j <= i {
   762  		return name, "", ""
   763  	}
   764  	return name[:i], "[...]", name[j+1:]
   765  }
   766  
   767  // funcNameForPrint returns the function name for printing to the user.
   768  func funcNameForPrint(name string) string {
   769  	a, b, c := funcNamePiecesForPrint(name)
   770  	return a + b + c
   771  }
   772  
   773  // printFuncName prints a function name. name is the function name in
   774  // the binary's func data table.
   775  func printFuncName(name string) {
   776  	if name == "runtime.gopanic" {
   777  		print("panic")
   778  		return
   779  	}
   780  	a, b, c := funcNamePiecesForPrint(name)
   781  	print(a, b, c)
   782  }
   783  
   784  func printcreatedby(gp *g) {
   785  	// Show what created goroutine, except main goroutine (goid 1).
   786  	pc := gp.gopc
   787  	f := findfunc(pc)
   788  	if f.valid() && showframe(f.srcFunc(), gp, false, abi.FuncIDNormal) && gp.goid != 1 {
   789  		printcreatedby1(f, pc, gp.parentGoid)
   790  	}
   791  }
   792  
   793  func printcreatedby1(f funcInfo, pc uintptr, goid uint64) {
   794  	print("created by ")
   795  	printFuncName(funcname(f))
   796  	if goid != 0 {
   797  		print(" in goroutine ", goid)
   798  	}
   799  	print("\n")
   800  	tracepc := pc // back up to CALL instruction for funcline.
   801  	if pc > f.entry() {
   802  		tracepc -= sys.PCQuantum
   803  	}
   804  	file, line := funcline(f, tracepc)
   805  	print("\t", file, ":", line)
   806  	if pc > f.entry() {
   807  		print(" +", hex(pc-f.entry()))
   808  	}
   809  	print("\n")
   810  }
   811  
   812  func traceback(pc, sp, lr uintptr, gp *g) {
   813  	traceback1(pc, sp, lr, gp, 0)
   814  }
   815  
   816  // tracebacktrap is like traceback but expects that the PC and SP were obtained
   817  // from a trap, not from gp->sched or gp->syscallpc/gp->syscallsp or getcallerpc/getcallersp.
   818  // Because they are from a trap instead of from a saved pair,
   819  // the initial PC must not be rewound to the previous instruction.
   820  // (All the saved pairs record a PC that is a return address, so we
   821  // rewind it into the CALL instruction.)
   822  // If gp.m.libcall{g,pc,sp} information is available, it uses that information in preference to
   823  // the pc/sp/lr passed in.
   824  func tracebacktrap(pc, sp, lr uintptr, gp *g) {
   825  	if gp.m.libcallsp != 0 {
   826  		// We're in C code somewhere, traceback from the saved position.
   827  		traceback1(gp.m.libcallpc, gp.m.libcallsp, 0, gp.m.libcallg.ptr(), 0)
   828  		return
   829  	}
   830  	traceback1(pc, sp, lr, gp, unwindTrap)
   831  }
   832  
   833  func traceback1(pc, sp, lr uintptr, gp *g, flags unwindFlags) {
   834  	// If the goroutine is in cgo, and we have a cgo traceback, print that.
   835  	if iscgo && gp.m != nil && gp.m.ncgo > 0 && gp.syscallsp != 0 && gp.m.cgoCallers != nil && gp.m.cgoCallers[0] != 0 {
   836  		// Lock cgoCallers so that a signal handler won't
   837  		// change it, copy the array, reset it, unlock it.
   838  		// We are locked to the thread and are not running
   839  		// concurrently with a signal handler.
   840  		// We just have to stop a signal handler from interrupting
   841  		// in the middle of our copy.
   842  		gp.m.cgoCallersUse.Store(1)
   843  		cgoCallers := *gp.m.cgoCallers
   844  		gp.m.cgoCallers[0] = 0
   845  		gp.m.cgoCallersUse.Store(0)
   846  
   847  		printCgoTraceback(&cgoCallers)
   848  	}
   849  
   850  	if readgstatus(gp)&^_Gscan == _Gsyscall {
   851  		// Override registers if blocked in system call.
   852  		pc = gp.syscallpc
   853  		sp = gp.syscallsp
   854  		flags &^= unwindTrap
   855  	}
   856  	if gp.m != nil && gp.m.vdsoSP != 0 {
   857  		// Override registers if running in VDSO. This comes after the
   858  		// _Gsyscall check to cover VDSO calls after entersyscall.
   859  		pc = gp.m.vdsoPC
   860  		sp = gp.m.vdsoSP
   861  		flags &^= unwindTrap
   862  	}
   863  
   864  	// Print traceback.
   865  	//
   866  	// We print the first tracebackInnerFrames frames, and the last
   867  	// tracebackOuterFrames frames. There are many possible approaches to this.
   868  	// There are various complications to this:
   869  	//
   870  	// - We'd prefer to walk the stack once because in really bad situations
   871  	//   traceback may crash (and we want as much output as possible) or the stack
   872  	//   may be changing.
   873  	//
   874  	// - Each physical frame can represent several logical frames, so we might
   875  	//   have to pause in the middle of a physical frame and pick up in the middle
   876  	//   of a physical frame.
   877  	//
   878  	// - The cgo symbolizer can expand a cgo PC to more than one logical frame,
   879  	//   and involves juggling state on the C side that we don't manage. Since its
   880  	//   expansion state is managed on the C side, we can't capture the expansion
   881  	//   state part way through, and because the output strings are managed on the
   882  	//   C side, we can't capture the output. Thus, our only choice is to replay a
   883  	//   whole expansion, potentially discarding some of it.
   884  	//
   885  	// Rejected approaches:
   886  	//
   887  	// - Do two passes where the first pass just counts and the second pass does
   888  	//   all the printing. This is undesirable if the stack is corrupted or changing
   889  	//   because we won't see a partial stack if we panic.
   890  	//
   891  	// - Keep a ring buffer of the last N logical frames and use this to print
   892  	//   the bottom frames once we reach the end of the stack. This works, but
   893  	//   requires keeping a surprising amount of state on the stack, and we have
   894  	//   to run the cgo symbolizer twice—once to count frames, and a second to
   895  	//   print them—since we can't retain the strings it returns.
   896  	//
   897  	// Instead, we print the outer frames, and if we reach that limit, we clone
   898  	// the unwinder, count the remaining frames, and then skip forward and
   899  	// finish printing from the clone. This makes two passes over the outer part
   900  	// of the stack, but the single pass over the inner part ensures that's
   901  	// printed immediately and not revisited. It keeps minimal state on the
   902  	// stack. And through a combination of skip counts and limits, we can do all
   903  	// of the steps we need with a single traceback printer implementation.
   904  	//
   905  	// We could be more lax about exactly how many frames we print, for example
   906  	// always stopping and resuming on physical frame boundaries, or at least
   907  	// cgo expansion boundaries. It's not clear that's much simpler.
   908  	flags |= unwindPrintErrors
   909  	var u unwinder
   910  	tracebackWithRuntime := func(showRuntime bool) int {
   911  		const maxInt int = 0x7fffffff
   912  		u.initAt(pc, sp, lr, gp, flags)
   913  		n, lastN := traceback2(&u, showRuntime, 0, tracebackInnerFrames)
   914  		if n < tracebackInnerFrames {
   915  			// We printed the whole stack.
   916  			return n
   917  		}
   918  		// Clone the unwinder and figure out how many frames are left. This
   919  		// count will include any logical frames already printed for u's current
   920  		// physical frame.
   921  		u2 := u
   922  		remaining, _ := traceback2(&u, showRuntime, maxInt, 0)
   923  		elide := remaining - lastN - tracebackOuterFrames
   924  		if elide > 0 {
   925  			print("...", elide, " frames elided...\n")
   926  			traceback2(&u2, showRuntime, lastN+elide, tracebackOuterFrames)
   927  		} else if elide <= 0 {
   928  			// There are tracebackOuterFrames or fewer frames left to print.
   929  			// Just print the rest of the stack.
   930  			traceback2(&u2, showRuntime, lastN, tracebackOuterFrames)
   931  		}
   932  		return n
   933  	}
   934  	// By default, omits runtime frames. If that means we print nothing at all,
   935  	// repeat forcing all frames printed.
   936  	if tracebackWithRuntime(false) == 0 {
   937  		tracebackWithRuntime(true)
   938  	}
   939  	printcreatedby(gp)
   940  
   941  	if gp.ancestors == nil {
   942  		return
   943  	}
   944  	for _, ancestor := range *gp.ancestors {
   945  		printAncestorTraceback(ancestor)
   946  	}
   947  }
   948  
   949  // traceback2 prints a stack trace starting at u. It skips the first "skip"
   950  // logical frames, after which it prints at most "max" logical frames. It
   951  // returns n, which is the number of logical frames skipped and printed, and
   952  // lastN, which is the number of logical frames skipped or printed just in the
   953  // physical frame that u references.
   954  func traceback2(u *unwinder, showRuntime bool, skip, max int) (n, lastN int) {
   955  	// commitFrame commits to a logical frame and returns whether this frame
   956  	// should be printed and whether iteration should stop.
   957  	commitFrame := func() (pr, stop bool) {
   958  		if skip == 0 && max == 0 {
   959  			// Stop
   960  			return false, true
   961  		}
   962  		n++
   963  		lastN++
   964  		if skip > 0 {
   965  			// Skip
   966  			skip--
   967  			return false, false
   968  		}
   969  		// Print
   970  		max--
   971  		return true, false
   972  	}
   973  
   974  	gp := u.g.ptr()
   975  	level, _, _ := gotraceback()
   976  	var cgoBuf [32]uintptr
   977  	for ; u.valid(); u.next() {
   978  		lastN = 0
   979  		f := u.frame.fn
   980  		for iu, uf := newInlineUnwinder(f, u.symPC(), noEscapePtr(&u.cache)); uf.valid(); uf = iu.next(uf) {
   981  			sf := iu.srcFunc(uf)
   982  			callee := u.calleeFuncID
   983  			u.calleeFuncID = sf.funcID
   984  			if !(showRuntime || showframe(sf, gp, n == 0, callee)) {
   985  				continue
   986  			}
   987  
   988  			if pr, stop := commitFrame(); stop {
   989  				return
   990  			} else if !pr {
   991  				continue
   992  			}
   993  
   994  			name := sf.name()
   995  			file, line := iu.fileLine(uf)
   996  			// Print during crash.
   997  			//	main(0x1, 0x2, 0x3)
   998  			//		/home/rsc/go/src/runtime/x.go:23 +0xf
   999  			//
  1000  			printFuncName(name)
  1001  			print("(")
  1002  			if iu.isInlined(uf) {
  1003  				print("...")
  1004  			} else {
  1005  				argp := unsafe.Pointer(u.frame.argp)
  1006  				printArgs(f, argp, u.symPC())
  1007  			}
  1008  			print(")\n")
  1009  			print("\t", file, ":", line)
  1010  			if !iu.isInlined(uf) {
  1011  				if u.frame.pc > f.entry() {
  1012  					print(" +", hex(u.frame.pc-f.entry()))
  1013  				}
  1014  				if gp.m != nil && gp.m.throwing >= throwTypeRuntime && gp == gp.m.curg || level >= 2 {
  1015  					print(" fp=", hex(u.frame.fp), " sp=", hex(u.frame.sp), " pc=", hex(u.frame.pc))
  1016  				}
  1017  			}
  1018  			print("\n")
  1019  		}
  1020  
  1021  		// Print cgo frames.
  1022  		if cgoN := u.cgoCallers(cgoBuf[:]); cgoN > 0 {
  1023  			var arg cgoSymbolizerArg
  1024  			anySymbolized := false
  1025  			stop := false
  1026  			for _, pc := range cgoBuf[:cgoN] {
  1027  				if cgoSymbolizer == nil {
  1028  					if pr, stop := commitFrame(); stop {
  1029  						break
  1030  					} else if pr {
  1031  						print("non-Go function at pc=", hex(pc), "\n")
  1032  					}
  1033  				} else {
  1034  					stop = printOneCgoTraceback(pc, commitFrame, &arg)
  1035  					anySymbolized = true
  1036  					if stop {
  1037  						break
  1038  					}
  1039  				}
  1040  			}
  1041  			if anySymbolized {
  1042  				// Free symbolization state.
  1043  				arg.pc = 0
  1044  				callCgoSymbolizer(&arg)
  1045  			}
  1046  			if stop {
  1047  				return
  1048  			}
  1049  		}
  1050  	}
  1051  	return n, 0
  1052  }
  1053  
  1054  // printAncestorTraceback prints the traceback of the given ancestor.
  1055  // TODO: Unify this with gentraceback and CallersFrames.
  1056  func printAncestorTraceback(ancestor ancestorInfo) {
  1057  	print("[originating from goroutine ", ancestor.goid, "]:\n")
  1058  	for fidx, pc := range ancestor.pcs {
  1059  		f := findfunc(pc) // f previously validated
  1060  		if showfuncinfo(f.srcFunc(), fidx == 0, abi.FuncIDNormal) {
  1061  			printAncestorTracebackFuncInfo(f, pc)
  1062  		}
  1063  	}
  1064  	if len(ancestor.pcs) == tracebackInnerFrames {
  1065  		print("...additional frames elided...\n")
  1066  	}
  1067  	// Show what created goroutine, except main goroutine (goid 1).
  1068  	f := findfunc(ancestor.gopc)
  1069  	if f.valid() && showfuncinfo(f.srcFunc(), false, abi.FuncIDNormal) && ancestor.goid != 1 {
  1070  		// In ancestor mode, we'll already print the goroutine ancestor.
  1071  		// Pass 0 for the goid parameter so we don't print it again.
  1072  		printcreatedby1(f, ancestor.gopc, 0)
  1073  	}
  1074  }
  1075  
  1076  // printAncestorTracebackFuncInfo prints the given function info at a given pc
  1077  // within an ancestor traceback. The precision of this info is reduced
  1078  // due to only have access to the pcs at the time of the caller
  1079  // goroutine being created.
  1080  func printAncestorTracebackFuncInfo(f funcInfo, pc uintptr) {
  1081  	u, uf := newInlineUnwinder(f, pc, nil)
  1082  	file, line := u.fileLine(uf)
  1083  	printFuncName(u.srcFunc(uf).name())
  1084  	print("(...)\n")
  1085  	print("\t", file, ":", line)
  1086  	if pc > f.entry() {
  1087  		print(" +", hex(pc-f.entry()))
  1088  	}
  1089  	print("\n")
  1090  }
  1091  
  1092  func callers(skip int, pcbuf []uintptr) int {
  1093  	sp := getcallersp()
  1094  	pc := getcallerpc()
  1095  	gp := getg()
  1096  	var n int
  1097  	systemstack(func() {
  1098  		var u unwinder
  1099  		u.initAt(pc, sp, 0, gp, unwindSilentErrors)
  1100  		n = tracebackPCs(&u, skip, pcbuf)
  1101  	})
  1102  	return n
  1103  }
  1104  
  1105  func gcallers(gp *g, skip int, pcbuf []uintptr) int {
  1106  	var u unwinder
  1107  	u.init(gp, unwindSilentErrors)
  1108  	return tracebackPCs(&u, skip, pcbuf)
  1109  }
  1110  
  1111  // showframe reports whether the frame with the given characteristics should
  1112  // be printed during a traceback.
  1113  func showframe(sf srcFunc, gp *g, firstFrame bool, calleeID abi.FuncID) bool {
  1114  	mp := getg().m
  1115  	if mp.throwing >= throwTypeRuntime && gp != nil && (gp == mp.curg || gp == mp.caughtsig.ptr()) {
  1116  		return true
  1117  	}
  1118  	return showfuncinfo(sf, firstFrame, calleeID)
  1119  }
  1120  
  1121  // showfuncinfo reports whether a function with the given characteristics should
  1122  // be printed during a traceback.
  1123  func showfuncinfo(sf srcFunc, firstFrame bool, calleeID abi.FuncID) bool {
  1124  	level, _, _ := gotraceback()
  1125  	if level > 1 {
  1126  		// Show all frames.
  1127  		return true
  1128  	}
  1129  
  1130  	if sf.funcID == abi.FuncIDWrapper && elideWrapperCalling(calleeID) {
  1131  		return false
  1132  	}
  1133  
  1134  	name := sf.name()
  1135  
  1136  	// Special case: always show runtime.gopanic frame
  1137  	// in the middle of a stack trace, so that we can
  1138  	// see the boundary between ordinary code and
  1139  	// panic-induced deferred code.
  1140  	// See golang.org/issue/5832.
  1141  	if name == "runtime.gopanic" && !firstFrame {
  1142  		return true
  1143  	}
  1144  
  1145  	return bytealg.IndexByteString(name, '.') >= 0 && (!hasPrefix(name, "runtime.") || isExportedRuntime(name))
  1146  }
  1147  
  1148  // isExportedRuntime reports whether name is an exported runtime function.
  1149  // It is only for runtime functions, so ASCII A-Z is fine.
  1150  func isExportedRuntime(name string) bool {
  1151  	const n = len("runtime.")
  1152  	return len(name) > n && name[:n] == "runtime." && 'A' <= name[n] && name[n] <= 'Z'
  1153  }
  1154  
  1155  // elideWrapperCalling reports whether a wrapper function that called
  1156  // function id should be elided from stack traces.
  1157  func elideWrapperCalling(id abi.FuncID) bool {
  1158  	// If the wrapper called a panic function instead of the
  1159  	// wrapped function, we want to include it in stacks.
  1160  	return !(id == abi.FuncID_gopanic || id == abi.FuncID_sigpanic || id == abi.FuncID_panicwrap)
  1161  }
  1162  
  1163  var gStatusStrings = [...]string{
  1164  	_Gidle:      "idle",
  1165  	_Grunnable:  "runnable",
  1166  	_Grunning:   "running",
  1167  	_Gsyscall:   "syscall",
  1168  	_Gwaiting:   "waiting",
  1169  	_Gdead:      "dead",
  1170  	_Gcopystack: "copystack",
  1171  	_Gpreempted: "preempted",
  1172  }
  1173  
  1174  func goroutineheader(gp *g) {
  1175  	gpstatus := readgstatus(gp)
  1176  
  1177  	isScan := gpstatus&_Gscan != 0
  1178  	gpstatus &^= _Gscan // drop the scan bit
  1179  
  1180  	// Basic string status
  1181  	var status string
  1182  	if 0 <= gpstatus && gpstatus < uint32(len(gStatusStrings)) {
  1183  		status = gStatusStrings[gpstatus]
  1184  	} else {
  1185  		status = "???"
  1186  	}
  1187  
  1188  	// Override.
  1189  	if gpstatus == _Gwaiting && gp.waitreason != waitReasonZero {
  1190  		status = gp.waitreason.String()
  1191  	}
  1192  
  1193  	// approx time the G is blocked, in minutes
  1194  	var waitfor int64
  1195  	if (gpstatus == _Gwaiting || gpstatus == _Gsyscall) && gp.waitsince != 0 {
  1196  		waitfor = (nanotime() - gp.waitsince) / 60e9
  1197  	}
  1198  	print("goroutine ", gp.goid, " [", status)
  1199  	if isScan {
  1200  		print(" (scan)")
  1201  	}
  1202  	if waitfor >= 1 {
  1203  		print(", ", waitfor, " minutes")
  1204  	}
  1205  	if gp.lockedm != 0 {
  1206  		print(", locked to thread")
  1207  	}
  1208  	print("]:\n")
  1209  }
  1210  
  1211  func tracebackothers(me *g) {
  1212  	level, _, _ := gotraceback()
  1213  
  1214  	// Show the current goroutine first, if we haven't already.
  1215  	curgp := getg().m.curg
  1216  	if curgp != nil && curgp != me {
  1217  		print("\n")
  1218  		goroutineheader(curgp)
  1219  		traceback(^uintptr(0), ^uintptr(0), 0, curgp)
  1220  	}
  1221  
  1222  	// We can't call locking forEachG here because this may be during fatal
  1223  	// throw/panic, where locking could be out-of-order or a direct
  1224  	// deadlock.
  1225  	//
  1226  	// Instead, use forEachGRace, which requires no locking. We don't lock
  1227  	// against concurrent creation of new Gs, but even with allglock we may
  1228  	// miss Gs created after this loop.
  1229  	forEachGRace(func(gp *g) {
  1230  		if gp == me || gp == curgp || readgstatus(gp) == _Gdead || isSystemGoroutine(gp, false) && level < 2 {
  1231  			return
  1232  		}
  1233  		print("\n")
  1234  		goroutineheader(gp)
  1235  		// Note: gp.m == getg().m occurs when tracebackothers is called
  1236  		// from a signal handler initiated during a systemstack call.
  1237  		// The original G is still in the running state, and we want to
  1238  		// print its stack.
  1239  		if gp.m != getg().m && readgstatus(gp)&^_Gscan == _Grunning {
  1240  			print("\tgoroutine running on other thread; stack unavailable\n")
  1241  			printcreatedby(gp)
  1242  		} else {
  1243  			traceback(^uintptr(0), ^uintptr(0), 0, gp)
  1244  		}
  1245  	})
  1246  }
  1247  
  1248  // tracebackHexdump hexdumps part of stk around frame.sp and frame.fp
  1249  // for debugging purposes. If the address bad is included in the
  1250  // hexdumped range, it will mark it as well.
  1251  func tracebackHexdump(stk stack, frame *stkframe, bad uintptr) {
  1252  	const expand = 32 * goarch.PtrSize
  1253  	const maxExpand = 256 * goarch.PtrSize
  1254  	// Start around frame.sp.
  1255  	lo, hi := frame.sp, frame.sp
  1256  	// Expand to include frame.fp.
  1257  	if frame.fp != 0 && frame.fp < lo {
  1258  		lo = frame.fp
  1259  	}
  1260  	if frame.fp != 0 && frame.fp > hi {
  1261  		hi = frame.fp
  1262  	}
  1263  	// Expand a bit more.
  1264  	lo, hi = lo-expand, hi+expand
  1265  	// But don't go too far from frame.sp.
  1266  	if lo < frame.sp-maxExpand {
  1267  		lo = frame.sp - maxExpand
  1268  	}
  1269  	if hi > frame.sp+maxExpand {
  1270  		hi = frame.sp + maxExpand
  1271  	}
  1272  	// And don't go outside the stack bounds.
  1273  	if lo < stk.lo {
  1274  		lo = stk.lo
  1275  	}
  1276  	if hi > stk.hi {
  1277  		hi = stk.hi
  1278  	}
  1279  
  1280  	// Print the hex dump.
  1281  	print("stack: frame={sp:", hex(frame.sp), ", fp:", hex(frame.fp), "} stack=[", hex(stk.lo), ",", hex(stk.hi), ")\n")
  1282  	hexdumpWords(lo, hi, func(p uintptr) byte {
  1283  		switch p {
  1284  		case frame.fp:
  1285  			return '>'
  1286  		case frame.sp:
  1287  			return '<'
  1288  		case bad:
  1289  			return '!'
  1290  		}
  1291  		return 0
  1292  	})
  1293  }
  1294  
  1295  // isSystemGoroutine reports whether the goroutine g must be omitted
  1296  // in stack dumps and deadlock detector. This is any goroutine that
  1297  // starts at a runtime.* entry point, except for runtime.main,
  1298  // runtime.handleAsyncEvent (wasm only) and sometimes runtime.runfinq.
  1299  //
  1300  // If fixed is true, any goroutine that can vary between user and
  1301  // system (that is, the finalizer goroutine) is considered a user
  1302  // goroutine.
  1303  func isSystemGoroutine(gp *g, fixed bool) bool {
  1304  	// Keep this in sync with internal/trace.IsSystemGoroutine.
  1305  	f := findfunc(gp.startpc)
  1306  	if !f.valid() {
  1307  		return false
  1308  	}
  1309  	if f.funcID == abi.FuncID_runtime_main || f.funcID == abi.FuncID_handleAsyncEvent {
  1310  		return false
  1311  	}
  1312  	if f.funcID == abi.FuncID_runfinq {
  1313  		// We include the finalizer goroutine if it's calling
  1314  		// back into user code.
  1315  		if fixed {
  1316  			// This goroutine can vary. In fixed mode,
  1317  			// always consider it a user goroutine.
  1318  			return false
  1319  		}
  1320  		return fingStatus.Load()&fingRunningFinalizer == 0
  1321  	}
  1322  	return hasPrefix(funcname(f), "runtime.")
  1323  }
  1324  
  1325  // SetCgoTraceback records three C functions to use to gather
  1326  // traceback information from C code and to convert that traceback
  1327  // information into symbolic information. These are used when printing
  1328  // stack traces for a program that uses cgo.
  1329  //
  1330  // The traceback and context functions may be called from a signal
  1331  // handler, and must therefore use only async-signal safe functions.
  1332  // The symbolizer function may be called while the program is
  1333  // crashing, and so must be cautious about using memory.  None of the
  1334  // functions may call back into Go.
  1335  //
  1336  // The context function will be called with a single argument, a
  1337  // pointer to a struct:
  1338  //
  1339  //	struct {
  1340  //		Context uintptr
  1341  //	}
  1342  //
  1343  // In C syntax, this struct will be
  1344  //
  1345  //	struct {
  1346  //		uintptr_t Context;
  1347  //	};
  1348  //
  1349  // If the Context field is 0, the context function is being called to
  1350  // record the current traceback context. It should record in the
  1351  // Context field whatever information is needed about the current
  1352  // point of execution to later produce a stack trace, probably the
  1353  // stack pointer and PC. In this case the context function will be
  1354  // called from C code.
  1355  //
  1356  // If the Context field is not 0, then it is a value returned by a
  1357  // previous call to the context function. This case is called when the
  1358  // context is no longer needed; that is, when the Go code is returning
  1359  // to its C code caller. This permits the context function to release
  1360  // any associated resources.
  1361  //
  1362  // While it would be correct for the context function to record a
  1363  // complete a stack trace whenever it is called, and simply copy that
  1364  // out in the traceback function, in a typical program the context
  1365  // function will be called many times without ever recording a
  1366  // traceback for that context. Recording a complete stack trace in a
  1367  // call to the context function is likely to be inefficient.
  1368  //
  1369  // The traceback function will be called with a single argument, a
  1370  // pointer to a struct:
  1371  //
  1372  //	struct {
  1373  //		Context    uintptr
  1374  //		SigContext uintptr
  1375  //		Buf        *uintptr
  1376  //		Max        uintptr
  1377  //	}
  1378  //
  1379  // In C syntax, this struct will be
  1380  //
  1381  //	struct {
  1382  //		uintptr_t  Context;
  1383  //		uintptr_t  SigContext;
  1384  //		uintptr_t* Buf;
  1385  //		uintptr_t  Max;
  1386  //	};
  1387  //
  1388  // The Context field will be zero to gather a traceback from the
  1389  // current program execution point. In this case, the traceback
  1390  // function will be called from C code.
  1391  //
  1392  // Otherwise Context will be a value previously returned by a call to
  1393  // the context function. The traceback function should gather a stack
  1394  // trace from that saved point in the program execution. The traceback
  1395  // function may be called from an execution thread other than the one
  1396  // that recorded the context, but only when the context is known to be
  1397  // valid and unchanging. The traceback function may also be called
  1398  // deeper in the call stack on the same thread that recorded the
  1399  // context. The traceback function may be called multiple times with
  1400  // the same Context value; it will usually be appropriate to cache the
  1401  // result, if possible, the first time this is called for a specific
  1402  // context value.
  1403  //
  1404  // If the traceback function is called from a signal handler on a Unix
  1405  // system, SigContext will be the signal context argument passed to
  1406  // the signal handler (a C ucontext_t* cast to uintptr_t). This may be
  1407  // used to start tracing at the point where the signal occurred. If
  1408  // the traceback function is not called from a signal handler,
  1409  // SigContext will be zero.
  1410  //
  1411  // Buf is where the traceback information should be stored. It should
  1412  // be PC values, such that Buf[0] is the PC of the caller, Buf[1] is
  1413  // the PC of that function's caller, and so on.  Max is the maximum
  1414  // number of entries to store.  The function should store a zero to
  1415  // indicate the top of the stack, or that the caller is on a different
  1416  // stack, presumably a Go stack.
  1417  //
  1418  // Unlike runtime.Callers, the PC values returned should, when passed
  1419  // to the symbolizer function, return the file/line of the call
  1420  // instruction.  No additional subtraction is required or appropriate.
  1421  //
  1422  // On all platforms, the traceback function is invoked when a call from
  1423  // Go to C to Go requests a stack trace. On linux/amd64, linux/ppc64le,
  1424  // linux/arm64, and freebsd/amd64, the traceback function is also invoked
  1425  // when a signal is received by a thread that is executing a cgo call.
  1426  // The traceback function should not make assumptions about when it is
  1427  // called, as future versions of Go may make additional calls.
  1428  //
  1429  // The symbolizer function will be called with a single argument, a
  1430  // pointer to a struct:
  1431  //
  1432  //	struct {
  1433  //		PC      uintptr // program counter to fetch information for
  1434  //		File    *byte   // file name (NUL terminated)
  1435  //		Lineno  uintptr // line number
  1436  //		Func    *byte   // function name (NUL terminated)
  1437  //		Entry   uintptr // function entry point
  1438  //		More    uintptr // set non-zero if more info for this PC
  1439  //		Data    uintptr // unused by runtime, available for function
  1440  //	}
  1441  //
  1442  // In C syntax, this struct will be
  1443  //
  1444  //	struct {
  1445  //		uintptr_t PC;
  1446  //		char*     File;
  1447  //		uintptr_t Lineno;
  1448  //		char*     Func;
  1449  //		uintptr_t Entry;
  1450  //		uintptr_t More;
  1451  //		uintptr_t Data;
  1452  //	};
  1453  //
  1454  // The PC field will be a value returned by a call to the traceback
  1455  // function.
  1456  //
  1457  // The first time the function is called for a particular traceback,
  1458  // all the fields except PC will be 0. The function should fill in the
  1459  // other fields if possible, setting them to 0/nil if the information
  1460  // is not available. The Data field may be used to store any useful
  1461  // information across calls. The More field should be set to non-zero
  1462  // if there is more information for this PC, zero otherwise. If More
  1463  // is set non-zero, the function will be called again with the same
  1464  // PC, and may return different information (this is intended for use
  1465  // with inlined functions). If More is zero, the function will be
  1466  // called with the next PC value in the traceback. When the traceback
  1467  // is complete, the function will be called once more with PC set to
  1468  // zero; this may be used to free any information. Each call will
  1469  // leave the fields of the struct set to the same values they had upon
  1470  // return, except for the PC field when the More field is zero. The
  1471  // function must not keep a copy of the struct pointer between calls.
  1472  //
  1473  // When calling SetCgoTraceback, the version argument is the version
  1474  // number of the structs that the functions expect to receive.
  1475  // Currently this must be zero.
  1476  //
  1477  // The symbolizer function may be nil, in which case the results of
  1478  // the traceback function will be displayed as numbers. If the
  1479  // traceback function is nil, the symbolizer function will never be
  1480  // called. The context function may be nil, in which case the
  1481  // traceback function will only be called with the context field set
  1482  // to zero.  If the context function is nil, then calls from Go to C
  1483  // to Go will not show a traceback for the C portion of the call stack.
  1484  //
  1485  // SetCgoTraceback should be called only once, ideally from an init function.
  1486  func SetCgoTraceback(version int, traceback, context, symbolizer unsafe.Pointer) {
  1487  	if version != 0 {
  1488  		panic("unsupported version")
  1489  	}
  1490  
  1491  	if cgoTraceback != nil && cgoTraceback != traceback ||
  1492  		cgoContext != nil && cgoContext != context ||
  1493  		cgoSymbolizer != nil && cgoSymbolizer != symbolizer {
  1494  		panic("call SetCgoTraceback only once")
  1495  	}
  1496  
  1497  	cgoTraceback = traceback
  1498  	cgoContext = context
  1499  	cgoSymbolizer = symbolizer
  1500  
  1501  	// The context function is called when a C function calls a Go
  1502  	// function. As such it is only called by C code in runtime/cgo.
  1503  	if _cgo_set_context_function != nil {
  1504  		cgocall(_cgo_set_context_function, context)
  1505  	}
  1506  }
  1507  
  1508  var cgoTraceback unsafe.Pointer
  1509  var cgoContext unsafe.Pointer
  1510  var cgoSymbolizer unsafe.Pointer
  1511  
  1512  // cgoTracebackArg is the type passed to cgoTraceback.
  1513  type cgoTracebackArg struct {
  1514  	context    uintptr
  1515  	sigContext uintptr
  1516  	buf        *uintptr
  1517  	max        uintptr
  1518  }
  1519  
  1520  // cgoContextArg is the type passed to the context function.
  1521  type cgoContextArg struct {
  1522  	context uintptr
  1523  }
  1524  
  1525  // cgoSymbolizerArg is the type passed to cgoSymbolizer.
  1526  type cgoSymbolizerArg struct {
  1527  	pc       uintptr
  1528  	file     *byte
  1529  	lineno   uintptr
  1530  	funcName *byte
  1531  	entry    uintptr
  1532  	more     uintptr
  1533  	data     uintptr
  1534  }
  1535  
  1536  // printCgoTraceback prints a traceback of callers.
  1537  func printCgoTraceback(callers *cgoCallers) {
  1538  	if cgoSymbolizer == nil {
  1539  		for _, c := range callers {
  1540  			if c == 0 {
  1541  				break
  1542  			}
  1543  			print("non-Go function at pc=", hex(c), "\n")
  1544  		}
  1545  		return
  1546  	}
  1547  
  1548  	commitFrame := func() (pr, stop bool) { return true, false }
  1549  	var arg cgoSymbolizerArg
  1550  	for _, c := range callers {
  1551  		if c == 0 {
  1552  			break
  1553  		}
  1554  		printOneCgoTraceback(c, commitFrame, &arg)
  1555  	}
  1556  	arg.pc = 0
  1557  	callCgoSymbolizer(&arg)
  1558  }
  1559  
  1560  // printOneCgoTraceback prints the traceback of a single cgo caller.
  1561  // This can print more than one line because of inlining.
  1562  // It returns the "stop" result of commitFrame.
  1563  func printOneCgoTraceback(pc uintptr, commitFrame func() (pr, stop bool), arg *cgoSymbolizerArg) bool {
  1564  	arg.pc = pc
  1565  	for {
  1566  		if pr, stop := commitFrame(); stop {
  1567  			return true
  1568  		} else if !pr {
  1569  			continue
  1570  		}
  1571  
  1572  		callCgoSymbolizer(arg)
  1573  		if arg.funcName != nil {
  1574  			// Note that we don't print any argument
  1575  			// information here, not even parentheses.
  1576  			// The symbolizer must add that if appropriate.
  1577  			println(gostringnocopy(arg.funcName))
  1578  		} else {
  1579  			println("non-Go function")
  1580  		}
  1581  		print("\t")
  1582  		if arg.file != nil {
  1583  			print(gostringnocopy(arg.file), ":", arg.lineno, " ")
  1584  		}
  1585  		print("pc=", hex(pc), "\n")
  1586  		if arg.more == 0 {
  1587  			return false
  1588  		}
  1589  	}
  1590  }
  1591  
  1592  // callCgoSymbolizer calls the cgoSymbolizer function.
  1593  func callCgoSymbolizer(arg *cgoSymbolizerArg) {
  1594  	call := cgocall
  1595  	if panicking.Load() > 0 || getg().m.curg != getg() {
  1596  		// We do not want to call into the scheduler when panicking
  1597  		// or when on the system stack.
  1598  		call = asmcgocall
  1599  	}
  1600  	if msanenabled {
  1601  		msanwrite(unsafe.Pointer(arg), unsafe.Sizeof(cgoSymbolizerArg{}))
  1602  	}
  1603  	if asanenabled {
  1604  		asanwrite(unsafe.Pointer(arg), unsafe.Sizeof(cgoSymbolizerArg{}))
  1605  	}
  1606  	call(cgoSymbolizer, noescape(unsafe.Pointer(arg)))
  1607  }
  1608  
  1609  // cgoContextPCs gets the PC values from a cgo traceback.
  1610  func cgoContextPCs(ctxt uintptr, buf []uintptr) {
  1611  	if cgoTraceback == nil {
  1612  		return
  1613  	}
  1614  	call := cgocall
  1615  	if panicking.Load() > 0 || getg().m.curg != getg() {
  1616  		// We do not want to call into the scheduler when panicking
  1617  		// or when on the system stack.
  1618  		call = asmcgocall
  1619  	}
  1620  	arg := cgoTracebackArg{
  1621  		context: ctxt,
  1622  		buf:     (*uintptr)(noescape(unsafe.Pointer(&buf[0]))),
  1623  		max:     uintptr(len(buf)),
  1624  	}
  1625  	if msanenabled {
  1626  		msanwrite(unsafe.Pointer(&arg), unsafe.Sizeof(arg))
  1627  	}
  1628  	if asanenabled {
  1629  		asanwrite(unsafe.Pointer(&arg), unsafe.Sizeof(arg))
  1630  	}
  1631  	call(cgoTraceback, noescape(unsafe.Pointer(&arg)))
  1632  }