github.com/twelsh-aw/go/src@v0.0.0-20230516233729-a56fe86a7c81/strconv/ftoaryu.go (about) 1 // Copyright 2021 The Go Authors. All rights reserved. 2 // Use of this source code is governed by a BSD-style 3 // license that can be found in the LICENSE file. 4 5 package strconv 6 7 import ( 8 "math/bits" 9 ) 10 11 // binary to decimal conversion using the Ryū algorithm. 12 // 13 // See Ulf Adams, "Ryū: Fast Float-to-String Conversion" (doi:10.1145/3192366.3192369) 14 // 15 // Fixed precision formatting is a variant of the original paper's 16 // algorithm, where a single multiplication by 10^k is required, 17 // sharing the same rounding guarantees. 18 19 // ryuFtoaFixed32 formats mant*(2^exp) with prec decimal digits. 20 func ryuFtoaFixed32(d *decimalSlice, mant uint32, exp int, prec int) { 21 if prec < 0 { 22 panic("ryuFtoaFixed32 called with negative prec") 23 } 24 if prec > 9 { 25 panic("ryuFtoaFixed32 called with prec > 9") 26 } 27 // Zero input. 28 if mant == 0 { 29 d.nd, d.dp = 0, 0 30 return 31 } 32 // Renormalize to a 25-bit mantissa. 33 e2 := exp 34 if b := bits.Len32(mant); b < 25 { 35 mant <<= uint(25 - b) 36 e2 += b - 25 37 } 38 // Choose an exponent such that rounded mant*(2^e2)*(10^q) has 39 // at least prec decimal digits, i.e 40 // mant*(2^e2)*(10^q) >= 10^(prec-1) 41 // Because mant >= 2^24, it is enough to choose: 42 // 2^(e2+24) >= 10^(-q+prec-1) 43 // or q = -mulByLog2Log10(e2+24) + prec - 1 44 q := -mulByLog2Log10(e2+24) + prec - 1 45 46 // Now compute mant*(2^e2)*(10^q). 47 // Is it an exact computation? 48 // Only small positive powers of 10 are exact (5^28 has 66 bits). 49 exact := q <= 27 && q >= 0 50 51 di, dexp2, d0 := mult64bitPow10(mant, e2, q) 52 if dexp2 >= 0 { 53 panic("not enough significant bits after mult64bitPow10") 54 } 55 // As a special case, computation might still be exact, if exponent 56 // was negative and if it amounts to computing an exact division. 57 // In that case, we ignore all lower bits. 58 // Note that division by 10^11 cannot be exact as 5^11 has 26 bits. 59 if q < 0 && q >= -10 && divisibleByPower5(uint64(mant), -q) { 60 exact = true 61 d0 = true 62 } 63 // Remove extra lower bits and keep rounding info. 64 extra := uint(-dexp2) 65 extraMask := uint32(1<<extra - 1) 66 67 di, dfrac := di>>extra, di&extraMask 68 roundUp := false 69 if exact { 70 // If we computed an exact product, d + 1/2 71 // should round to d+1 if 'd' is odd. 72 roundUp = dfrac > 1<<(extra-1) || 73 (dfrac == 1<<(extra-1) && !d0) || 74 (dfrac == 1<<(extra-1) && d0 && di&1 == 1) 75 } else { 76 // otherwise, d+1/2 always rounds up because 77 // we truncated below. 78 roundUp = dfrac>>(extra-1) == 1 79 } 80 if dfrac != 0 { 81 d0 = false 82 } 83 // Proceed to the requested number of digits 84 formatDecimal(d, uint64(di), !d0, roundUp, prec) 85 // Adjust exponent 86 d.dp -= q 87 } 88 89 // ryuFtoaFixed64 formats mant*(2^exp) with prec decimal digits. 90 func ryuFtoaFixed64(d *decimalSlice, mant uint64, exp int, prec int) { 91 if prec > 18 { 92 panic("ryuFtoaFixed64 called with prec > 18") 93 } 94 // Zero input. 95 if mant == 0 { 96 d.nd, d.dp = 0, 0 97 return 98 } 99 // Renormalize to a 55-bit mantissa. 100 e2 := exp 101 if b := bits.Len64(mant); b < 55 { 102 mant = mant << uint(55-b) 103 e2 += b - 55 104 } 105 // Choose an exponent such that rounded mant*(2^e2)*(10^q) has 106 // at least prec decimal digits, i.e 107 // mant*(2^e2)*(10^q) >= 10^(prec-1) 108 // Because mant >= 2^54, it is enough to choose: 109 // 2^(e2+54) >= 10^(-q+prec-1) 110 // or q = -mulByLog2Log10(e2+54) + prec - 1 111 // 112 // The minimal required exponent is -mulByLog2Log10(1025)+18 = -291 113 // The maximal required exponent is mulByLog2Log10(1074)+18 = 342 114 q := -mulByLog2Log10(e2+54) + prec - 1 115 116 // Now compute mant*(2^e2)*(10^q). 117 // Is it an exact computation? 118 // Only small positive powers of 10 are exact (5^55 has 128 bits). 119 exact := q <= 55 && q >= 0 120 121 di, dexp2, d0 := mult128bitPow10(mant, e2, q) 122 if dexp2 >= 0 { 123 panic("not enough significant bits after mult128bitPow10") 124 } 125 // As a special case, computation might still be exact, if exponent 126 // was negative and if it amounts to computing an exact division. 127 // In that case, we ignore all lower bits. 128 // Note that division by 10^23 cannot be exact as 5^23 has 54 bits. 129 if q < 0 && q >= -22 && divisibleByPower5(mant, -q) { 130 exact = true 131 d0 = true 132 } 133 // Remove extra lower bits and keep rounding info. 134 extra := uint(-dexp2) 135 extraMask := uint64(1<<extra - 1) 136 137 di, dfrac := di>>extra, di&extraMask 138 roundUp := false 139 if exact { 140 // If we computed an exact product, d + 1/2 141 // should round to d+1 if 'd' is odd. 142 roundUp = dfrac > 1<<(extra-1) || 143 (dfrac == 1<<(extra-1) && !d0) || 144 (dfrac == 1<<(extra-1) && d0 && di&1 == 1) 145 } else { 146 // otherwise, d+1/2 always rounds up because 147 // we truncated below. 148 roundUp = dfrac>>(extra-1) == 1 149 } 150 if dfrac != 0 { 151 d0 = false 152 } 153 // Proceed to the requested number of digits 154 formatDecimal(d, di, !d0, roundUp, prec) 155 // Adjust exponent 156 d.dp -= q 157 } 158 159 var uint64pow10 = [...]uint64{ 160 1, 1e1, 1e2, 1e3, 1e4, 1e5, 1e6, 1e7, 1e8, 1e9, 161 1e10, 1e11, 1e12, 1e13, 1e14, 1e15, 1e16, 1e17, 1e18, 1e19, 162 } 163 164 // formatDecimal fills d with at most prec decimal digits 165 // of mantissa m. The boolean trunc indicates whether m 166 // is truncated compared to the original number being formatted. 167 func formatDecimal(d *decimalSlice, m uint64, trunc bool, roundUp bool, prec int) { 168 max := uint64pow10[prec] 169 trimmed := 0 170 for m >= max { 171 a, b := m/10, m%10 172 m = a 173 trimmed++ 174 if b > 5 { 175 roundUp = true 176 } else if b < 5 { 177 roundUp = false 178 } else { // b == 5 179 // round up if there are trailing digits, 180 // or if the new value of m is odd (round-to-even convention) 181 roundUp = trunc || m&1 == 1 182 } 183 if b != 0 { 184 trunc = true 185 } 186 } 187 if roundUp { 188 m++ 189 } 190 if m >= max { 191 // Happens if di was originally 99999....xx 192 m /= 10 193 trimmed++ 194 } 195 // render digits (similar to formatBits) 196 n := uint(prec) 197 d.nd = prec 198 v := m 199 for v >= 100 { 200 var v1, v2 uint64 201 if v>>32 == 0 { 202 v1, v2 = uint64(uint32(v)/100), uint64(uint32(v)%100) 203 } else { 204 v1, v2 = v/100, v%100 205 } 206 n -= 2 207 d.d[n+1] = smallsString[2*v2+1] 208 d.d[n+0] = smallsString[2*v2+0] 209 v = v1 210 } 211 if v > 0 { 212 n-- 213 d.d[n] = smallsString[2*v+1] 214 } 215 if v >= 10 { 216 n-- 217 d.d[n] = smallsString[2*v] 218 } 219 for d.d[d.nd-1] == '0' { 220 d.nd-- 221 trimmed++ 222 } 223 d.dp = d.nd + trimmed 224 } 225 226 // ryuFtoaShortest formats mant*2^exp with prec decimal digits. 227 func ryuFtoaShortest(d *decimalSlice, mant uint64, exp int, flt *floatInfo) { 228 if mant == 0 { 229 d.nd, d.dp = 0, 0 230 return 231 } 232 // If input is an exact integer with fewer bits than the mantissa, 233 // the previous and next integer are not admissible representations. 234 if exp <= 0 && bits.TrailingZeros64(mant) >= -exp { 235 mant >>= uint(-exp) 236 ryuDigits(d, mant, mant, mant, true, false) 237 return 238 } 239 ml, mc, mu, e2 := computeBounds(mant, exp, flt) 240 if e2 == 0 { 241 ryuDigits(d, ml, mc, mu, true, false) 242 return 243 } 244 // Find 10^q *larger* than 2^-e2 245 q := mulByLog2Log10(-e2) + 1 246 247 // We are going to multiply by 10^q using 128-bit arithmetic. 248 // The exponent is the same for all 3 numbers. 249 var dl, dc, du uint64 250 var dl0, dc0, du0 bool 251 if flt == &float32info { 252 var dl32, dc32, du32 uint32 253 dl32, _, dl0 = mult64bitPow10(uint32(ml), e2, q) 254 dc32, _, dc0 = mult64bitPow10(uint32(mc), e2, q) 255 du32, e2, du0 = mult64bitPow10(uint32(mu), e2, q) 256 dl, dc, du = uint64(dl32), uint64(dc32), uint64(du32) 257 } else { 258 dl, _, dl0 = mult128bitPow10(ml, e2, q) 259 dc, _, dc0 = mult128bitPow10(mc, e2, q) 260 du, e2, du0 = mult128bitPow10(mu, e2, q) 261 } 262 if e2 >= 0 { 263 panic("not enough significant bits after mult128bitPow10") 264 } 265 // Is it an exact computation? 266 if q > 55 { 267 // Large positive powers of ten are not exact 268 dl0, dc0, du0 = false, false, false 269 } 270 if q < 0 && q >= -24 { 271 // Division by a power of ten may be exact. 272 // (note that 5^25 is a 59-bit number so division by 5^25 is never exact). 273 if divisibleByPower5(ml, -q) { 274 dl0 = true 275 } 276 if divisibleByPower5(mc, -q) { 277 dc0 = true 278 } 279 if divisibleByPower5(mu, -q) { 280 du0 = true 281 } 282 } 283 // Express the results (dl, dc, du)*2^e2 as integers. 284 // Extra bits must be removed and rounding hints computed. 285 extra := uint(-e2) 286 extraMask := uint64(1<<extra - 1) 287 // Now compute the floored, integral base 10 mantissas. 288 dl, fracl := dl>>extra, dl&extraMask 289 dc, fracc := dc>>extra, dc&extraMask 290 du, fracu := du>>extra, du&extraMask 291 // Is it allowed to use 'du' as a result? 292 // It is always allowed when it is truncated, but also 293 // if it is exact and the original binary mantissa is even 294 // When disallowed, we can subtract 1. 295 uok := !du0 || fracu > 0 296 if du0 && fracu == 0 { 297 uok = mant&1 == 0 298 } 299 if !uok { 300 du-- 301 } 302 // Is 'dc' the correctly rounded base 10 mantissa? 303 // The correct rounding might be dc+1 304 cup := false // don't round up. 305 if dc0 { 306 // If we computed an exact product, the half integer 307 // should round to next (even) integer if 'dc' is odd. 308 cup = fracc > 1<<(extra-1) || 309 (fracc == 1<<(extra-1) && dc&1 == 1) 310 } else { 311 // otherwise, the result is a lower truncation of the ideal 312 // result. 313 cup = fracc>>(extra-1) == 1 314 } 315 // Is 'dl' an allowed representation? 316 // Only if it is an exact value, and if the original binary mantissa 317 // was even. 318 lok := dl0 && fracl == 0 && (mant&1 == 0) 319 if !lok { 320 dl++ 321 } 322 // We need to remember whether the trimmed digits of 'dc' are zero. 323 c0 := dc0 && fracc == 0 324 // render digits 325 ryuDigits(d, dl, dc, du, c0, cup) 326 d.dp -= q 327 } 328 329 // mulByLog2Log10 returns math.Floor(x * log(2)/log(10)) for an integer x in 330 // the range -1600 <= x && x <= +1600. 331 // 332 // The range restriction lets us work in faster integer arithmetic instead of 333 // slower floating point arithmetic. Correctness is verified by unit tests. 334 func mulByLog2Log10(x int) int { 335 // log(2)/log(10) ≈ 0.30102999566 ≈ 78913 / 2^18 336 return (x * 78913) >> 18 337 } 338 339 // mulByLog10Log2 returns math.Floor(x * log(10)/log(2)) for an integer x in 340 // the range -500 <= x && x <= +500. 341 // 342 // The range restriction lets us work in faster integer arithmetic instead of 343 // slower floating point arithmetic. Correctness is verified by unit tests. 344 func mulByLog10Log2(x int) int { 345 // log(10)/log(2) ≈ 3.32192809489 ≈ 108853 / 2^15 346 return (x * 108853) >> 15 347 } 348 349 // computeBounds returns a floating-point vector (l, c, u)×2^e2 350 // where the mantissas are 55-bit (or 26-bit) integers, describing the interval 351 // represented by the input float64 or float32. 352 func computeBounds(mant uint64, exp int, flt *floatInfo) (lower, central, upper uint64, e2 int) { 353 if mant != 1<<flt.mantbits || exp == flt.bias+1-int(flt.mantbits) { 354 // regular case (or denormals) 355 lower, central, upper = 2*mant-1, 2*mant, 2*mant+1 356 e2 = exp - 1 357 return 358 } else { 359 // border of an exponent 360 lower, central, upper = 4*mant-1, 4*mant, 4*mant+2 361 e2 = exp - 2 362 return 363 } 364 } 365 366 func ryuDigits(d *decimalSlice, lower, central, upper uint64, 367 c0, cup bool) { 368 lhi, llo := divmod1e9(lower) 369 chi, clo := divmod1e9(central) 370 uhi, ulo := divmod1e9(upper) 371 if uhi == 0 { 372 // only low digits (for denormals) 373 ryuDigits32(d, llo, clo, ulo, c0, cup, 8) 374 } else if lhi < uhi { 375 // truncate 9 digits at once. 376 if llo != 0 { 377 lhi++ 378 } 379 c0 = c0 && clo == 0 380 cup = (clo > 5e8) || (clo == 5e8 && cup) 381 ryuDigits32(d, lhi, chi, uhi, c0, cup, 8) 382 d.dp += 9 383 } else { 384 d.nd = 0 385 // emit high part 386 n := uint(9) 387 for v := chi; v > 0; { 388 v1, v2 := v/10, v%10 389 v = v1 390 n-- 391 d.d[n] = byte(v2 + '0') 392 } 393 d.d = d.d[n:] 394 d.nd = int(9 - n) 395 // emit low part 396 ryuDigits32(d, llo, clo, ulo, 397 c0, cup, d.nd+8) 398 } 399 // trim trailing zeros 400 for d.nd > 0 && d.d[d.nd-1] == '0' { 401 d.nd-- 402 } 403 // trim initial zeros 404 for d.nd > 0 && d.d[0] == '0' { 405 d.nd-- 406 d.dp-- 407 d.d = d.d[1:] 408 } 409 } 410 411 // ryuDigits32 emits decimal digits for a number less than 1e9. 412 func ryuDigits32(d *decimalSlice, lower, central, upper uint32, 413 c0, cup bool, endindex int) { 414 if upper == 0 { 415 d.dp = endindex + 1 416 return 417 } 418 trimmed := 0 419 // Remember last trimmed digit to check for round-up. 420 // c0 will be used to remember zeroness of following digits. 421 cNextDigit := 0 422 for upper > 0 { 423 // Repeatedly compute: 424 // l = Ceil(lower / 10^k) 425 // c = Round(central / 10^k) 426 // u = Floor(upper / 10^k) 427 // and stop when c goes out of the (l, u) interval. 428 l := (lower + 9) / 10 429 c, cdigit := central/10, central%10 430 u := upper / 10 431 if l > u { 432 // don't trim the last digit as it is forbidden to go below l 433 // other, trim and exit now. 434 break 435 } 436 // Check that we didn't cross the lower boundary. 437 // The case where l < u but c == l-1 is essentially impossible, 438 // but may happen if: 439 // lower = ..11 440 // central = ..19 441 // upper = ..31 442 // and means that 'central' is very close but less than 443 // an integer ending with many zeros, and usually 444 // the "round-up" logic hides the problem. 445 if l == c+1 && c < u { 446 c++ 447 cdigit = 0 448 cup = false 449 } 450 trimmed++ 451 // Remember trimmed digits of c 452 c0 = c0 && cNextDigit == 0 453 cNextDigit = int(cdigit) 454 lower, central, upper = l, c, u 455 } 456 // should we round up? 457 if trimmed > 0 { 458 cup = cNextDigit > 5 || 459 (cNextDigit == 5 && !c0) || 460 (cNextDigit == 5 && c0 && central&1 == 1) 461 } 462 if central < upper && cup { 463 central++ 464 } 465 // We know where the number ends, fill directly 466 endindex -= trimmed 467 v := central 468 n := endindex 469 for n > d.nd { 470 v1, v2 := v/100, v%100 471 d.d[n] = smallsString[2*v2+1] 472 d.d[n-1] = smallsString[2*v2+0] 473 n -= 2 474 v = v1 475 } 476 if n == d.nd { 477 d.d[n] = byte(v + '0') 478 } 479 d.nd = endindex + 1 480 d.dp = d.nd + trimmed 481 } 482 483 // mult64bitPow10 takes a floating-point input with a 25-bit 484 // mantissa and multiplies it with 10^q. The resulting mantissa 485 // is m*P >> 57 where P is a 64-bit element of the detailedPowersOfTen tables. 486 // It is typically 31 or 32-bit wide. 487 // The returned boolean is true if all trimmed bits were zero. 488 // 489 // That is: 490 // 491 // m*2^e2 * round(10^q) = resM * 2^resE + ε 492 // exact = ε == 0 493 func mult64bitPow10(m uint32, e2, q int) (resM uint32, resE int, exact bool) { 494 if q == 0 { 495 // P == 1<<63 496 return m << 6, e2 - 6, true 497 } 498 if q < detailedPowersOfTenMinExp10 || detailedPowersOfTenMaxExp10 < q { 499 // This never happens due to the range of float32/float64 exponent 500 panic("mult64bitPow10: power of 10 is out of range") 501 } 502 pow := detailedPowersOfTen[q-detailedPowersOfTenMinExp10][1] 503 if q < 0 { 504 // Inverse powers of ten must be rounded up. 505 pow += 1 506 } 507 hi, lo := bits.Mul64(uint64(m), pow) 508 e2 += mulByLog10Log2(q) - 63 + 57 509 return uint32(hi<<7 | lo>>57), e2, lo<<7 == 0 510 } 511 512 // mult128bitPow10 takes a floating-point input with a 55-bit 513 // mantissa and multiplies it with 10^q. The resulting mantissa 514 // is m*P >> 119 where P is a 128-bit element of the detailedPowersOfTen tables. 515 // It is typically 63 or 64-bit wide. 516 // The returned boolean is true is all trimmed bits were zero. 517 // 518 // That is: 519 // 520 // m*2^e2 * round(10^q) = resM * 2^resE + ε 521 // exact = ε == 0 522 func mult128bitPow10(m uint64, e2, q int) (resM uint64, resE int, exact bool) { 523 if q == 0 { 524 // P == 1<<127 525 return m << 8, e2 - 8, true 526 } 527 if q < detailedPowersOfTenMinExp10 || detailedPowersOfTenMaxExp10 < q { 528 // This never happens due to the range of float32/float64 exponent 529 panic("mult128bitPow10: power of 10 is out of range") 530 } 531 pow := detailedPowersOfTen[q-detailedPowersOfTenMinExp10] 532 if q < 0 { 533 // Inverse powers of ten must be rounded up. 534 pow[0] += 1 535 } 536 e2 += mulByLog10Log2(q) - 127 + 119 537 538 // long multiplication 539 l1, l0 := bits.Mul64(m, pow[0]) 540 h1, h0 := bits.Mul64(m, pow[1]) 541 mid, carry := bits.Add64(l1, h0, 0) 542 h1 += carry 543 return h1<<9 | mid>>55, e2, mid<<9 == 0 && l0 == 0 544 } 545 546 func divisibleByPower5(m uint64, k int) bool { 547 if m == 0 { 548 return true 549 } 550 for i := 0; i < k; i++ { 551 if m%5 != 0 { 552 return false 553 } 554 m /= 5 555 } 556 return true 557 } 558 559 // divmod1e9 computes quotient and remainder of division by 1e9, 560 // avoiding runtime uint64 division on 32-bit platforms. 561 func divmod1e9(x uint64) (uint32, uint32) { 562 if !host32bit { 563 return uint32(x / 1e9), uint32(x % 1e9) 564 } 565 // Use the same sequence of operations as the amd64 compiler. 566 hi, _ := bits.Mul64(x>>1, 0x89705f4136b4a598) // binary digits of 1e-9 567 q := hi >> 28 568 return uint32(q), uint32(x - q*1e9) 569 }