github.com/twelsh-aw/go/src@v0.0.0-20230516233729-a56fe86a7c81/text/template/exec.go (about) 1 // Copyright 2011 The Go Authors. All rights reserved. 2 // Use of this source code is governed by a BSD-style 3 // license that can be found in the LICENSE file. 4 5 package template 6 7 import ( 8 "errors" 9 "fmt" 10 "internal/fmtsort" 11 "io" 12 "reflect" 13 "runtime" 14 "strings" 15 "text/template/parse" 16 ) 17 18 // maxExecDepth specifies the maximum stack depth of templates within 19 // templates. This limit is only practically reached by accidentally 20 // recursive template invocations. This limit allows us to return 21 // an error instead of triggering a stack overflow. 22 var maxExecDepth = initMaxExecDepth() 23 24 func initMaxExecDepth() int { 25 if runtime.GOARCH == "wasm" { 26 return 1000 27 } 28 return 100000 29 } 30 31 // state represents the state of an execution. It's not part of the 32 // template so that multiple executions of the same template 33 // can execute in parallel. 34 type state struct { 35 tmpl *Template 36 wr io.Writer 37 node parse.Node // current node, for errors 38 vars []variable // push-down stack of variable values. 39 depth int // the height of the stack of executing templates. 40 } 41 42 // variable holds the dynamic value of a variable such as $, $x etc. 43 type variable struct { 44 name string 45 value reflect.Value 46 } 47 48 // push pushes a new variable on the stack. 49 func (s *state) push(name string, value reflect.Value) { 50 s.vars = append(s.vars, variable{name, value}) 51 } 52 53 // mark returns the length of the variable stack. 54 func (s *state) mark() int { 55 return len(s.vars) 56 } 57 58 // pop pops the variable stack up to the mark. 59 func (s *state) pop(mark int) { 60 s.vars = s.vars[0:mark] 61 } 62 63 // setVar overwrites the last declared variable with the given name. 64 // Used by variable assignments. 65 func (s *state) setVar(name string, value reflect.Value) { 66 for i := s.mark() - 1; i >= 0; i-- { 67 if s.vars[i].name == name { 68 s.vars[i].value = value 69 return 70 } 71 } 72 s.errorf("undefined variable: %s", name) 73 } 74 75 // setTopVar overwrites the top-nth variable on the stack. Used by range iterations. 76 func (s *state) setTopVar(n int, value reflect.Value) { 77 s.vars[len(s.vars)-n].value = value 78 } 79 80 // varValue returns the value of the named variable. 81 func (s *state) varValue(name string) reflect.Value { 82 for i := s.mark() - 1; i >= 0; i-- { 83 if s.vars[i].name == name { 84 return s.vars[i].value 85 } 86 } 87 s.errorf("undefined variable: %s", name) 88 return zero 89 } 90 91 var zero reflect.Value 92 93 type missingValType struct{} 94 95 var missingVal = reflect.ValueOf(missingValType{}) 96 97 var missingValReflectType = reflect.TypeOf(missingValType{}) 98 99 func isMissing(v reflect.Value) bool { 100 return v.IsValid() && v.Type() == missingValReflectType 101 } 102 103 // at marks the state to be on node n, for error reporting. 104 func (s *state) at(node parse.Node) { 105 s.node = node 106 } 107 108 // doublePercent returns the string with %'s replaced by %%, if necessary, 109 // so it can be used safely inside a Printf format string. 110 func doublePercent(str string) string { 111 return strings.ReplaceAll(str, "%", "%%") 112 } 113 114 // TODO: It would be nice if ExecError was more broken down, but 115 // the way ErrorContext embeds the template name makes the 116 // processing too clumsy. 117 118 // ExecError is the custom error type returned when Execute has an 119 // error evaluating its template. (If a write error occurs, the actual 120 // error is returned; it will not be of type ExecError.) 121 type ExecError struct { 122 Name string // Name of template. 123 Err error // Pre-formatted error. 124 } 125 126 func (e ExecError) Error() string { 127 return e.Err.Error() 128 } 129 130 func (e ExecError) Unwrap() error { 131 return e.Err 132 } 133 134 // errorf records an ExecError and terminates processing. 135 func (s *state) errorf(format string, args ...any) { 136 name := doublePercent(s.tmpl.Name()) 137 if s.node == nil { 138 format = fmt.Sprintf("template: %s: %s", name, format) 139 } else { 140 location, context := s.tmpl.ErrorContext(s.node) 141 format = fmt.Sprintf("template: %s: executing %q at <%s>: %s", location, name, doublePercent(context), format) 142 } 143 panic(ExecError{ 144 Name: s.tmpl.Name(), 145 Err: fmt.Errorf(format, args...), 146 }) 147 } 148 149 // writeError is the wrapper type used internally when Execute has an 150 // error writing to its output. We strip the wrapper in errRecover. 151 // Note that this is not an implementation of error, so it cannot escape 152 // from the package as an error value. 153 type writeError struct { 154 Err error // Original error. 155 } 156 157 func (s *state) writeError(err error) { 158 panic(writeError{ 159 Err: err, 160 }) 161 } 162 163 // errRecover is the handler that turns panics into returns from the top 164 // level of Parse. 165 func errRecover(errp *error) { 166 e := recover() 167 if e != nil { 168 switch err := e.(type) { 169 case runtime.Error: 170 panic(e) 171 case writeError: 172 *errp = err.Err // Strip the wrapper. 173 case ExecError: 174 *errp = err // Keep the wrapper. 175 default: 176 panic(e) 177 } 178 } 179 } 180 181 // ExecuteTemplate applies the template associated with t that has the given name 182 // to the specified data object and writes the output to wr. 183 // If an error occurs executing the template or writing its output, 184 // execution stops, but partial results may already have been written to 185 // the output writer. 186 // A template may be executed safely in parallel, although if parallel 187 // executions share a Writer the output may be interleaved. 188 func (t *Template) ExecuteTemplate(wr io.Writer, name string, data any) error { 189 tmpl := t.Lookup(name) 190 if tmpl == nil { 191 return fmt.Errorf("template: no template %q associated with template %q", name, t.name) 192 } 193 return tmpl.Execute(wr, data) 194 } 195 196 // Execute applies a parsed template to the specified data object, 197 // and writes the output to wr. 198 // If an error occurs executing the template or writing its output, 199 // execution stops, but partial results may already have been written to 200 // the output writer. 201 // A template may be executed safely in parallel, although if parallel 202 // executions share a Writer the output may be interleaved. 203 // 204 // If data is a reflect.Value, the template applies to the concrete 205 // value that the reflect.Value holds, as in fmt.Print. 206 func (t *Template) Execute(wr io.Writer, data any) error { 207 return t.execute(wr, data) 208 } 209 210 func (t *Template) execute(wr io.Writer, data any) (err error) { 211 defer errRecover(&err) 212 value, ok := data.(reflect.Value) 213 if !ok { 214 value = reflect.ValueOf(data) 215 } 216 state := &state{ 217 tmpl: t, 218 wr: wr, 219 vars: []variable{{"$", value}}, 220 } 221 if t.Tree == nil || t.Root == nil { 222 state.errorf("%q is an incomplete or empty template", t.Name()) 223 } 224 state.walk(value, t.Root) 225 return 226 } 227 228 // DefinedTemplates returns a string listing the defined templates, 229 // prefixed by the string "; defined templates are: ". If there are none, 230 // it returns the empty string. For generating an error message here 231 // and in html/template. 232 func (t *Template) DefinedTemplates() string { 233 if t.common == nil { 234 return "" 235 } 236 var b strings.Builder 237 t.muTmpl.RLock() 238 defer t.muTmpl.RUnlock() 239 for name, tmpl := range t.tmpl { 240 if tmpl.Tree == nil || tmpl.Root == nil { 241 continue 242 } 243 if b.Len() == 0 { 244 b.WriteString("; defined templates are: ") 245 } else { 246 b.WriteString(", ") 247 } 248 fmt.Fprintf(&b, "%q", name) 249 } 250 return b.String() 251 } 252 253 // Sentinel errors for use with panic to signal early exits from range loops. 254 var ( 255 walkBreak = errors.New("break") 256 walkContinue = errors.New("continue") 257 ) 258 259 // Walk functions step through the major pieces of the template structure, 260 // generating output as they go. 261 func (s *state) walk(dot reflect.Value, node parse.Node) { 262 s.at(node) 263 switch node := node.(type) { 264 case *parse.ActionNode: 265 // Do not pop variables so they persist until next end. 266 // Also, if the action declares variables, don't print the result. 267 val := s.evalPipeline(dot, node.Pipe) 268 if len(node.Pipe.Decl) == 0 { 269 s.printValue(node, val) 270 } 271 case *parse.BreakNode: 272 panic(walkBreak) 273 case *parse.CommentNode: 274 case *parse.ContinueNode: 275 panic(walkContinue) 276 case *parse.IfNode: 277 s.walkIfOrWith(parse.NodeIf, dot, node.Pipe, node.List, node.ElseList) 278 case *parse.ListNode: 279 for _, node := range node.Nodes { 280 s.walk(dot, node) 281 } 282 case *parse.RangeNode: 283 s.walkRange(dot, node) 284 case *parse.TemplateNode: 285 s.walkTemplate(dot, node) 286 case *parse.TextNode: 287 if _, err := s.wr.Write(node.Text); err != nil { 288 s.writeError(err) 289 } 290 case *parse.WithNode: 291 s.walkIfOrWith(parse.NodeWith, dot, node.Pipe, node.List, node.ElseList) 292 default: 293 s.errorf("unknown node: %s", node) 294 } 295 } 296 297 // walkIfOrWith walks an 'if' or 'with' node. The two control structures 298 // are identical in behavior except that 'with' sets dot. 299 func (s *state) walkIfOrWith(typ parse.NodeType, dot reflect.Value, pipe *parse.PipeNode, list, elseList *parse.ListNode) { 300 defer s.pop(s.mark()) 301 val := s.evalPipeline(dot, pipe) 302 truth, ok := isTrue(indirectInterface(val)) 303 if !ok { 304 s.errorf("if/with can't use %v", val) 305 } 306 if truth { 307 if typ == parse.NodeWith { 308 s.walk(val, list) 309 } else { 310 s.walk(dot, list) 311 } 312 } else if elseList != nil { 313 s.walk(dot, elseList) 314 } 315 } 316 317 // IsTrue reports whether the value is 'true', in the sense of not the zero of its type, 318 // and whether the value has a meaningful truth value. This is the definition of 319 // truth used by if and other such actions. 320 func IsTrue(val any) (truth, ok bool) { 321 return isTrue(reflect.ValueOf(val)) 322 } 323 324 func isTrue(val reflect.Value) (truth, ok bool) { 325 if !val.IsValid() { 326 // Something like var x interface{}, never set. It's a form of nil. 327 return false, true 328 } 329 switch val.Kind() { 330 case reflect.Array, reflect.Map, reflect.Slice, reflect.String: 331 truth = val.Len() > 0 332 case reflect.Bool: 333 truth = val.Bool() 334 case reflect.Complex64, reflect.Complex128: 335 truth = val.Complex() != 0 336 case reflect.Chan, reflect.Func, reflect.Pointer, reflect.Interface: 337 truth = !val.IsNil() 338 case reflect.Int, reflect.Int8, reflect.Int16, reflect.Int32, reflect.Int64: 339 truth = val.Int() != 0 340 case reflect.Float32, reflect.Float64: 341 truth = val.Float() != 0 342 case reflect.Uint, reflect.Uint8, reflect.Uint16, reflect.Uint32, reflect.Uint64, reflect.Uintptr: 343 truth = val.Uint() != 0 344 case reflect.Struct: 345 truth = true // Struct values are always true. 346 default: 347 return 348 } 349 return truth, true 350 } 351 352 func (s *state) walkRange(dot reflect.Value, r *parse.RangeNode) { 353 s.at(r) 354 defer func() { 355 if r := recover(); r != nil && r != walkBreak { 356 panic(r) 357 } 358 }() 359 defer s.pop(s.mark()) 360 val, _ := indirect(s.evalPipeline(dot, r.Pipe)) 361 // mark top of stack before any variables in the body are pushed. 362 mark := s.mark() 363 oneIteration := func(index, elem reflect.Value) { 364 // Set top var (lexically the second if there are two) to the element. 365 if len(r.Pipe.Decl) > 0 { 366 if r.Pipe.IsAssign { 367 s.setVar(r.Pipe.Decl[0].Ident[0], elem) 368 } else { 369 s.setTopVar(1, elem) 370 } 371 } 372 // Set next var (lexically the first if there are two) to the index. 373 if len(r.Pipe.Decl) > 1 { 374 if r.Pipe.IsAssign { 375 s.setVar(r.Pipe.Decl[1].Ident[0], index) 376 } else { 377 s.setTopVar(2, index) 378 } 379 } 380 defer s.pop(mark) 381 defer func() { 382 // Consume panic(walkContinue) 383 if r := recover(); r != nil && r != walkContinue { 384 panic(r) 385 } 386 }() 387 s.walk(elem, r.List) 388 } 389 switch val.Kind() { 390 case reflect.Array, reflect.Slice: 391 if val.Len() == 0 { 392 break 393 } 394 for i := 0; i < val.Len(); i++ { 395 oneIteration(reflect.ValueOf(i), val.Index(i)) 396 } 397 return 398 case reflect.Map: 399 if val.Len() == 0 { 400 break 401 } 402 om := fmtsort.Sort(val) 403 for i, key := range om.Key { 404 oneIteration(key, om.Value[i]) 405 } 406 return 407 case reflect.Chan: 408 if val.IsNil() { 409 break 410 } 411 if val.Type().ChanDir() == reflect.SendDir { 412 s.errorf("range over send-only channel %v", val) 413 break 414 } 415 i := 0 416 for ; ; i++ { 417 elem, ok := val.Recv() 418 if !ok { 419 break 420 } 421 oneIteration(reflect.ValueOf(i), elem) 422 } 423 if i == 0 { 424 break 425 } 426 return 427 case reflect.Invalid: 428 break // An invalid value is likely a nil map, etc. and acts like an empty map. 429 default: 430 s.errorf("range can't iterate over %v", val) 431 } 432 if r.ElseList != nil { 433 s.walk(dot, r.ElseList) 434 } 435 } 436 437 func (s *state) walkTemplate(dot reflect.Value, t *parse.TemplateNode) { 438 s.at(t) 439 tmpl := s.tmpl.Lookup(t.Name) 440 if tmpl == nil { 441 s.errorf("template %q not defined", t.Name) 442 } 443 if s.depth == maxExecDepth { 444 s.errorf("exceeded maximum template depth (%v)", maxExecDepth) 445 } 446 // Variables declared by the pipeline persist. 447 dot = s.evalPipeline(dot, t.Pipe) 448 newState := *s 449 newState.depth++ 450 newState.tmpl = tmpl 451 // No dynamic scoping: template invocations inherit no variables. 452 newState.vars = []variable{{"$", dot}} 453 newState.walk(dot, tmpl.Root) 454 } 455 456 // Eval functions evaluate pipelines, commands, and their elements and extract 457 // values from the data structure by examining fields, calling methods, and so on. 458 // The printing of those values happens only through walk functions. 459 460 // evalPipeline returns the value acquired by evaluating a pipeline. If the 461 // pipeline has a variable declaration, the variable will be pushed on the 462 // stack. Callers should therefore pop the stack after they are finished 463 // executing commands depending on the pipeline value. 464 func (s *state) evalPipeline(dot reflect.Value, pipe *parse.PipeNode) (value reflect.Value) { 465 if pipe == nil { 466 return 467 } 468 s.at(pipe) 469 value = missingVal 470 for _, cmd := range pipe.Cmds { 471 value = s.evalCommand(dot, cmd, value) // previous value is this one's final arg. 472 // If the object has type interface{}, dig down one level to the thing inside. 473 if value.Kind() == reflect.Interface && value.Type().NumMethod() == 0 { 474 value = reflect.ValueOf(value.Interface()) // lovely! 475 } 476 } 477 for _, variable := range pipe.Decl { 478 if pipe.IsAssign { 479 s.setVar(variable.Ident[0], value) 480 } else { 481 s.push(variable.Ident[0], value) 482 } 483 } 484 return value 485 } 486 487 func (s *state) notAFunction(args []parse.Node, final reflect.Value) { 488 if len(args) > 1 || !isMissing(final) { 489 s.errorf("can't give argument to non-function %s", args[0]) 490 } 491 } 492 493 func (s *state) evalCommand(dot reflect.Value, cmd *parse.CommandNode, final reflect.Value) reflect.Value { 494 firstWord := cmd.Args[0] 495 switch n := firstWord.(type) { 496 case *parse.FieldNode: 497 return s.evalFieldNode(dot, n, cmd.Args, final) 498 case *parse.ChainNode: 499 return s.evalChainNode(dot, n, cmd.Args, final) 500 case *parse.IdentifierNode: 501 // Must be a function. 502 return s.evalFunction(dot, n, cmd, cmd.Args, final) 503 case *parse.PipeNode: 504 // Parenthesized pipeline. The arguments are all inside the pipeline; final must be absent. 505 s.notAFunction(cmd.Args, final) 506 return s.evalPipeline(dot, n) 507 case *parse.VariableNode: 508 return s.evalVariableNode(dot, n, cmd.Args, final) 509 } 510 s.at(firstWord) 511 s.notAFunction(cmd.Args, final) 512 switch word := firstWord.(type) { 513 case *parse.BoolNode: 514 return reflect.ValueOf(word.True) 515 case *parse.DotNode: 516 return dot 517 case *parse.NilNode: 518 s.errorf("nil is not a command") 519 case *parse.NumberNode: 520 return s.idealConstant(word) 521 case *parse.StringNode: 522 return reflect.ValueOf(word.Text) 523 } 524 s.errorf("can't evaluate command %q", firstWord) 525 panic("not reached") 526 } 527 528 // idealConstant is called to return the value of a number in a context where 529 // we don't know the type. In that case, the syntax of the number tells us 530 // its type, and we use Go rules to resolve. Note there is no such thing as 531 // a uint ideal constant in this situation - the value must be of int type. 532 func (s *state) idealConstant(constant *parse.NumberNode) reflect.Value { 533 // These are ideal constants but we don't know the type 534 // and we have no context. (If it was a method argument, 535 // we'd know what we need.) The syntax guides us to some extent. 536 s.at(constant) 537 switch { 538 case constant.IsComplex: 539 return reflect.ValueOf(constant.Complex128) // incontrovertible. 540 541 case constant.IsFloat && 542 !isHexInt(constant.Text) && !isRuneInt(constant.Text) && 543 strings.ContainsAny(constant.Text, ".eEpP"): 544 return reflect.ValueOf(constant.Float64) 545 546 case constant.IsInt: 547 n := int(constant.Int64) 548 if int64(n) != constant.Int64 { 549 s.errorf("%s overflows int", constant.Text) 550 } 551 return reflect.ValueOf(n) 552 553 case constant.IsUint: 554 s.errorf("%s overflows int", constant.Text) 555 } 556 return zero 557 } 558 559 func isRuneInt(s string) bool { 560 return len(s) > 0 && s[0] == '\'' 561 } 562 563 func isHexInt(s string) bool { 564 return len(s) > 2 && s[0] == '0' && (s[1] == 'x' || s[1] == 'X') && !strings.ContainsAny(s, "pP") 565 } 566 567 func (s *state) evalFieldNode(dot reflect.Value, field *parse.FieldNode, args []parse.Node, final reflect.Value) reflect.Value { 568 s.at(field) 569 return s.evalFieldChain(dot, dot, field, field.Ident, args, final) 570 } 571 572 func (s *state) evalChainNode(dot reflect.Value, chain *parse.ChainNode, args []parse.Node, final reflect.Value) reflect.Value { 573 s.at(chain) 574 if len(chain.Field) == 0 { 575 s.errorf("internal error: no fields in evalChainNode") 576 } 577 if chain.Node.Type() == parse.NodeNil { 578 s.errorf("indirection through explicit nil in %s", chain) 579 } 580 // (pipe).Field1.Field2 has pipe as .Node, fields as .Field. Eval the pipeline, then the fields. 581 pipe := s.evalArg(dot, nil, chain.Node) 582 return s.evalFieldChain(dot, pipe, chain, chain.Field, args, final) 583 } 584 585 func (s *state) evalVariableNode(dot reflect.Value, variable *parse.VariableNode, args []parse.Node, final reflect.Value) reflect.Value { 586 // $x.Field has $x as the first ident, Field as the second. Eval the var, then the fields. 587 s.at(variable) 588 value := s.varValue(variable.Ident[0]) 589 if len(variable.Ident) == 1 { 590 s.notAFunction(args, final) 591 return value 592 } 593 return s.evalFieldChain(dot, value, variable, variable.Ident[1:], args, final) 594 } 595 596 // evalFieldChain evaluates .X.Y.Z possibly followed by arguments. 597 // dot is the environment in which to evaluate arguments, while 598 // receiver is the value being walked along the chain. 599 func (s *state) evalFieldChain(dot, receiver reflect.Value, node parse.Node, ident []string, args []parse.Node, final reflect.Value) reflect.Value { 600 n := len(ident) 601 for i := 0; i < n-1; i++ { 602 receiver = s.evalField(dot, ident[i], node, nil, missingVal, receiver) 603 } 604 // Now if it's a method, it gets the arguments. 605 return s.evalField(dot, ident[n-1], node, args, final, receiver) 606 } 607 608 func (s *state) evalFunction(dot reflect.Value, node *parse.IdentifierNode, cmd parse.Node, args []parse.Node, final reflect.Value) reflect.Value { 609 s.at(node) 610 name := node.Ident 611 function, isBuiltin, ok := findFunction(name, s.tmpl) 612 if !ok { 613 s.errorf("%q is not a defined function", name) 614 } 615 return s.evalCall(dot, function, isBuiltin, cmd, name, args, final) 616 } 617 618 // evalField evaluates an expression like (.Field) or (.Field arg1 arg2). 619 // The 'final' argument represents the return value from the preceding 620 // value of the pipeline, if any. 621 func (s *state) evalField(dot reflect.Value, fieldName string, node parse.Node, args []parse.Node, final, receiver reflect.Value) reflect.Value { 622 if !receiver.IsValid() { 623 if s.tmpl.option.missingKey == mapError { // Treat invalid value as missing map key. 624 s.errorf("nil data; no entry for key %q", fieldName) 625 } 626 return zero 627 } 628 typ := receiver.Type() 629 receiver, isNil := indirect(receiver) 630 if receiver.Kind() == reflect.Interface && isNil { 631 // Calling a method on a nil interface can't work. The 632 // MethodByName method call below would panic. 633 s.errorf("nil pointer evaluating %s.%s", typ, fieldName) 634 return zero 635 } 636 637 // Unless it's an interface, need to get to a value of type *T to guarantee 638 // we see all methods of T and *T. 639 ptr := receiver 640 if ptr.Kind() != reflect.Interface && ptr.Kind() != reflect.Pointer && ptr.CanAddr() { 641 ptr = ptr.Addr() 642 } 643 if method := ptr.MethodByName(fieldName); method.IsValid() { 644 return s.evalCall(dot, method, false, node, fieldName, args, final) 645 } 646 hasArgs := len(args) > 1 || !isMissing(final) 647 // It's not a method; must be a field of a struct or an element of a map. 648 switch receiver.Kind() { 649 case reflect.Struct: 650 tField, ok := receiver.Type().FieldByName(fieldName) 651 if ok { 652 field, err := receiver.FieldByIndexErr(tField.Index) 653 if !tField.IsExported() { 654 s.errorf("%s is an unexported field of struct type %s", fieldName, typ) 655 } 656 if err != nil { 657 s.errorf("%v", err) 658 } 659 // If it's a function, we must call it. 660 if hasArgs { 661 s.errorf("%s has arguments but cannot be invoked as function", fieldName) 662 } 663 return field 664 } 665 case reflect.Map: 666 // If it's a map, attempt to use the field name as a key. 667 nameVal := reflect.ValueOf(fieldName) 668 if nameVal.Type().AssignableTo(receiver.Type().Key()) { 669 if hasArgs { 670 s.errorf("%s is not a method but has arguments", fieldName) 671 } 672 result := receiver.MapIndex(nameVal) 673 if !result.IsValid() { 674 switch s.tmpl.option.missingKey { 675 case mapInvalid: 676 // Just use the invalid value. 677 case mapZeroValue: 678 result = reflect.Zero(receiver.Type().Elem()) 679 case mapError: 680 s.errorf("map has no entry for key %q", fieldName) 681 } 682 } 683 return result 684 } 685 case reflect.Pointer: 686 etyp := receiver.Type().Elem() 687 if etyp.Kind() == reflect.Struct { 688 if _, ok := etyp.FieldByName(fieldName); !ok { 689 // If there's no such field, say "can't evaluate" 690 // instead of "nil pointer evaluating". 691 break 692 } 693 } 694 if isNil { 695 s.errorf("nil pointer evaluating %s.%s", typ, fieldName) 696 } 697 } 698 s.errorf("can't evaluate field %s in type %s", fieldName, typ) 699 panic("not reached") 700 } 701 702 var ( 703 errorType = reflect.TypeOf((*error)(nil)).Elem() 704 fmtStringerType = reflect.TypeOf((*fmt.Stringer)(nil)).Elem() 705 reflectValueType = reflect.TypeOf((*reflect.Value)(nil)).Elem() 706 ) 707 708 // evalCall executes a function or method call. If it's a method, fun already has the receiver bound, so 709 // it looks just like a function call. The arg list, if non-nil, includes (in the manner of the shell), arg[0] 710 // as the function itself. 711 func (s *state) evalCall(dot, fun reflect.Value, isBuiltin bool, node parse.Node, name string, args []parse.Node, final reflect.Value) reflect.Value { 712 if args != nil { 713 args = args[1:] // Zeroth arg is function name/node; not passed to function. 714 } 715 typ := fun.Type() 716 numIn := len(args) 717 if !isMissing(final) { 718 numIn++ 719 } 720 numFixed := len(args) 721 if typ.IsVariadic() { 722 numFixed = typ.NumIn() - 1 // last arg is the variadic one. 723 if numIn < numFixed { 724 s.errorf("wrong number of args for %s: want at least %d got %d", name, typ.NumIn()-1, len(args)) 725 } 726 } else if numIn != typ.NumIn() { 727 s.errorf("wrong number of args for %s: want %d got %d", name, typ.NumIn(), numIn) 728 } 729 if !goodFunc(typ) { 730 // TODO: This could still be a confusing error; maybe goodFunc should provide info. 731 s.errorf("can't call method/function %q with %d results", name, typ.NumOut()) 732 } 733 734 unwrap := func(v reflect.Value) reflect.Value { 735 if v.Type() == reflectValueType { 736 v = v.Interface().(reflect.Value) 737 } 738 return v 739 } 740 741 // Special case for builtin and/or, which short-circuit. 742 if isBuiltin && (name == "and" || name == "or") { 743 argType := typ.In(0) 744 var v reflect.Value 745 for _, arg := range args { 746 v = s.evalArg(dot, argType, arg).Interface().(reflect.Value) 747 if truth(v) == (name == "or") { 748 // This value was already unwrapped 749 // by the .Interface().(reflect.Value). 750 return v 751 } 752 } 753 if final != missingVal { 754 // The last argument to and/or is coming from 755 // the pipeline. We didn't short circuit on an earlier 756 // argument, so we are going to return this one. 757 // We don't have to evaluate final, but we do 758 // have to check its type. Then, since we are 759 // going to return it, we have to unwrap it. 760 v = unwrap(s.validateType(final, argType)) 761 } 762 return v 763 } 764 765 // Build the arg list. 766 argv := make([]reflect.Value, numIn) 767 // Args must be evaluated. Fixed args first. 768 i := 0 769 for ; i < numFixed && i < len(args); i++ { 770 argv[i] = s.evalArg(dot, typ.In(i), args[i]) 771 } 772 // Now the ... args. 773 if typ.IsVariadic() { 774 argType := typ.In(typ.NumIn() - 1).Elem() // Argument is a slice. 775 for ; i < len(args); i++ { 776 argv[i] = s.evalArg(dot, argType, args[i]) 777 } 778 } 779 // Add final value if necessary. 780 if !isMissing(final) { 781 t := typ.In(typ.NumIn() - 1) 782 if typ.IsVariadic() { 783 if numIn-1 < numFixed { 784 // The added final argument corresponds to a fixed parameter of the function. 785 // Validate against the type of the actual parameter. 786 t = typ.In(numIn - 1) 787 } else { 788 // The added final argument corresponds to the variadic part. 789 // Validate against the type of the elements of the variadic slice. 790 t = t.Elem() 791 } 792 } 793 argv[i] = s.validateType(final, t) 794 } 795 v, err := safeCall(fun, argv) 796 // If we have an error that is not nil, stop execution and return that 797 // error to the caller. 798 if err != nil { 799 s.at(node) 800 s.errorf("error calling %s: %w", name, err) 801 } 802 return unwrap(v) 803 } 804 805 // canBeNil reports whether an untyped nil can be assigned to the type. See reflect.Zero. 806 func canBeNil(typ reflect.Type) bool { 807 switch typ.Kind() { 808 case reflect.Chan, reflect.Func, reflect.Interface, reflect.Map, reflect.Pointer, reflect.Slice: 809 return true 810 case reflect.Struct: 811 return typ == reflectValueType 812 } 813 return false 814 } 815 816 // validateType guarantees that the value is valid and assignable to the type. 817 func (s *state) validateType(value reflect.Value, typ reflect.Type) reflect.Value { 818 if !value.IsValid() { 819 if typ == nil { 820 // An untyped nil interface{}. Accept as a proper nil value. 821 return reflect.ValueOf(nil) 822 } 823 if canBeNil(typ) { 824 // Like above, but use the zero value of the non-nil type. 825 return reflect.Zero(typ) 826 } 827 s.errorf("invalid value; expected %s", typ) 828 } 829 if typ == reflectValueType && value.Type() != typ { 830 return reflect.ValueOf(value) 831 } 832 if typ != nil && !value.Type().AssignableTo(typ) { 833 if value.Kind() == reflect.Interface && !value.IsNil() { 834 value = value.Elem() 835 if value.Type().AssignableTo(typ) { 836 return value 837 } 838 // fallthrough 839 } 840 // Does one dereference or indirection work? We could do more, as we 841 // do with method receivers, but that gets messy and method receivers 842 // are much more constrained, so it makes more sense there than here. 843 // Besides, one is almost always all you need. 844 switch { 845 case value.Kind() == reflect.Pointer && value.Type().Elem().AssignableTo(typ): 846 value = value.Elem() 847 if !value.IsValid() { 848 s.errorf("dereference of nil pointer of type %s", typ) 849 } 850 case reflect.PointerTo(value.Type()).AssignableTo(typ) && value.CanAddr(): 851 value = value.Addr() 852 default: 853 s.errorf("wrong type for value; expected %s; got %s", typ, value.Type()) 854 } 855 } 856 return value 857 } 858 859 func (s *state) evalArg(dot reflect.Value, typ reflect.Type, n parse.Node) reflect.Value { 860 s.at(n) 861 switch arg := n.(type) { 862 case *parse.DotNode: 863 return s.validateType(dot, typ) 864 case *parse.NilNode: 865 if canBeNil(typ) { 866 return reflect.Zero(typ) 867 } 868 s.errorf("cannot assign nil to %s", typ) 869 case *parse.FieldNode: 870 return s.validateType(s.evalFieldNode(dot, arg, []parse.Node{n}, missingVal), typ) 871 case *parse.VariableNode: 872 return s.validateType(s.evalVariableNode(dot, arg, nil, missingVal), typ) 873 case *parse.PipeNode: 874 return s.validateType(s.evalPipeline(dot, arg), typ) 875 case *parse.IdentifierNode: 876 return s.validateType(s.evalFunction(dot, arg, arg, nil, missingVal), typ) 877 case *parse.ChainNode: 878 return s.validateType(s.evalChainNode(dot, arg, nil, missingVal), typ) 879 } 880 switch typ.Kind() { 881 case reflect.Bool: 882 return s.evalBool(typ, n) 883 case reflect.Complex64, reflect.Complex128: 884 return s.evalComplex(typ, n) 885 case reflect.Float32, reflect.Float64: 886 return s.evalFloat(typ, n) 887 case reflect.Int, reflect.Int8, reflect.Int16, reflect.Int32, reflect.Int64: 888 return s.evalInteger(typ, n) 889 case reflect.Interface: 890 if typ.NumMethod() == 0 { 891 return s.evalEmptyInterface(dot, n) 892 } 893 case reflect.Struct: 894 if typ == reflectValueType { 895 return reflect.ValueOf(s.evalEmptyInterface(dot, n)) 896 } 897 case reflect.String: 898 return s.evalString(typ, n) 899 case reflect.Uint, reflect.Uint8, reflect.Uint16, reflect.Uint32, reflect.Uint64, reflect.Uintptr: 900 return s.evalUnsignedInteger(typ, n) 901 } 902 s.errorf("can't handle %s for arg of type %s", n, typ) 903 panic("not reached") 904 } 905 906 func (s *state) evalBool(typ reflect.Type, n parse.Node) reflect.Value { 907 s.at(n) 908 if n, ok := n.(*parse.BoolNode); ok { 909 value := reflect.New(typ).Elem() 910 value.SetBool(n.True) 911 return value 912 } 913 s.errorf("expected bool; found %s", n) 914 panic("not reached") 915 } 916 917 func (s *state) evalString(typ reflect.Type, n parse.Node) reflect.Value { 918 s.at(n) 919 if n, ok := n.(*parse.StringNode); ok { 920 value := reflect.New(typ).Elem() 921 value.SetString(n.Text) 922 return value 923 } 924 s.errorf("expected string; found %s", n) 925 panic("not reached") 926 } 927 928 func (s *state) evalInteger(typ reflect.Type, n parse.Node) reflect.Value { 929 s.at(n) 930 if n, ok := n.(*parse.NumberNode); ok && n.IsInt { 931 value := reflect.New(typ).Elem() 932 value.SetInt(n.Int64) 933 return value 934 } 935 s.errorf("expected integer; found %s", n) 936 panic("not reached") 937 } 938 939 func (s *state) evalUnsignedInteger(typ reflect.Type, n parse.Node) reflect.Value { 940 s.at(n) 941 if n, ok := n.(*parse.NumberNode); ok && n.IsUint { 942 value := reflect.New(typ).Elem() 943 value.SetUint(n.Uint64) 944 return value 945 } 946 s.errorf("expected unsigned integer; found %s", n) 947 panic("not reached") 948 } 949 950 func (s *state) evalFloat(typ reflect.Type, n parse.Node) reflect.Value { 951 s.at(n) 952 if n, ok := n.(*parse.NumberNode); ok && n.IsFloat { 953 value := reflect.New(typ).Elem() 954 value.SetFloat(n.Float64) 955 return value 956 } 957 s.errorf("expected float; found %s", n) 958 panic("not reached") 959 } 960 961 func (s *state) evalComplex(typ reflect.Type, n parse.Node) reflect.Value { 962 if n, ok := n.(*parse.NumberNode); ok && n.IsComplex { 963 value := reflect.New(typ).Elem() 964 value.SetComplex(n.Complex128) 965 return value 966 } 967 s.errorf("expected complex; found %s", n) 968 panic("not reached") 969 } 970 971 func (s *state) evalEmptyInterface(dot reflect.Value, n parse.Node) reflect.Value { 972 s.at(n) 973 switch n := n.(type) { 974 case *parse.BoolNode: 975 return reflect.ValueOf(n.True) 976 case *parse.DotNode: 977 return dot 978 case *parse.FieldNode: 979 return s.evalFieldNode(dot, n, nil, missingVal) 980 case *parse.IdentifierNode: 981 return s.evalFunction(dot, n, n, nil, missingVal) 982 case *parse.NilNode: 983 // NilNode is handled in evalArg, the only place that calls here. 984 s.errorf("evalEmptyInterface: nil (can't happen)") 985 case *parse.NumberNode: 986 return s.idealConstant(n) 987 case *parse.StringNode: 988 return reflect.ValueOf(n.Text) 989 case *parse.VariableNode: 990 return s.evalVariableNode(dot, n, nil, missingVal) 991 case *parse.PipeNode: 992 return s.evalPipeline(dot, n) 993 } 994 s.errorf("can't handle assignment of %s to empty interface argument", n) 995 panic("not reached") 996 } 997 998 // indirect returns the item at the end of indirection, and a bool to indicate 999 // if it's nil. If the returned bool is true, the returned value's kind will be 1000 // either a pointer or interface. 1001 func indirect(v reflect.Value) (rv reflect.Value, isNil bool) { 1002 for ; v.Kind() == reflect.Pointer || v.Kind() == reflect.Interface; v = v.Elem() { 1003 if v.IsNil() { 1004 return v, true 1005 } 1006 } 1007 return v, false 1008 } 1009 1010 // indirectInterface returns the concrete value in an interface value, 1011 // or else the zero reflect.Value. 1012 // That is, if v represents the interface value x, the result is the same as reflect.ValueOf(x): 1013 // the fact that x was an interface value is forgotten. 1014 func indirectInterface(v reflect.Value) reflect.Value { 1015 if v.Kind() != reflect.Interface { 1016 return v 1017 } 1018 if v.IsNil() { 1019 return reflect.Value{} 1020 } 1021 return v.Elem() 1022 } 1023 1024 // printValue writes the textual representation of the value to the output of 1025 // the template. 1026 func (s *state) printValue(n parse.Node, v reflect.Value) { 1027 s.at(n) 1028 iface, ok := printableValue(v) 1029 if !ok { 1030 s.errorf("can't print %s of type %s", n, v.Type()) 1031 } 1032 _, err := fmt.Fprint(s.wr, iface) 1033 if err != nil { 1034 s.writeError(err) 1035 } 1036 } 1037 1038 // printableValue returns the, possibly indirected, interface value inside v that 1039 // is best for a call to formatted printer. 1040 func printableValue(v reflect.Value) (any, bool) { 1041 if v.Kind() == reflect.Pointer { 1042 v, _ = indirect(v) // fmt.Fprint handles nil. 1043 } 1044 if !v.IsValid() { 1045 return "<no value>", true 1046 } 1047 1048 if !v.Type().Implements(errorType) && !v.Type().Implements(fmtStringerType) { 1049 if v.CanAddr() && (reflect.PointerTo(v.Type()).Implements(errorType) || reflect.PointerTo(v.Type()).Implements(fmtStringerType)) { 1050 v = v.Addr() 1051 } else { 1052 switch v.Kind() { 1053 case reflect.Chan, reflect.Func: 1054 return nil, false 1055 } 1056 } 1057 } 1058 return v.Interface(), true 1059 }