github.com/unicornultrafoundation/go-u2u@v1.0.0-rc1.0.20240205080301-e74a83d3fadc/core/vm/contracts.go (about)

     1  // Copyright 2014 The go-ethereum Authors
     2  // This file is part of the go-ethereum library.
     3  //
     4  // The go-ethereum library is free software: you can redistribute it and/or modify
     5  // it under the terms of the GNU Lesser General Public License as published by
     6  // the Free Software Foundation, either version 3 of the License, or
     7  // (at your option) any later version.
     8  //
     9  // The go-ethereum library is distributed in the hope that it will be useful,
    10  // but WITHOUT ANY WARRANTY; without even the implied warranty of
    11  // MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
    12  // GNU Lesser General Public License for more details.
    13  //
    14  // You should have received a copy of the GNU Lesser General Public License
    15  // along with the go-ethereum library. If not, see <http://www.gnu.org/licenses/>.
    16  
    17  package vm
    18  
    19  import (
    20  	"crypto/sha256"
    21  	"encoding/binary"
    22  	"errors"
    23  	"math/big"
    24  
    25  	"github.com/unicornultrafoundation/go-u2u/common"
    26  	"github.com/unicornultrafoundation/go-u2u/common/math"
    27  	"github.com/unicornultrafoundation/go-u2u/crypto"
    28  	"github.com/unicornultrafoundation/go-u2u/crypto/blake2b"
    29  	"github.com/unicornultrafoundation/go-u2u/crypto/bls12381"
    30  	"github.com/unicornultrafoundation/go-u2u/crypto/bn256"
    31  	"github.com/unicornultrafoundation/go-u2u/params"
    32  
    33  	//lint:ignore SA1019 Needed for precompile
    34  	"golang.org/x/crypto/ripemd160"
    35  )
    36  
    37  // PrecompiledContract is the basic interface for native Go contracts. The implementation
    38  // requires a deterministic gas count based on the input size of the Run method of the
    39  // contract.
    40  type PrecompiledContract interface {
    41  	RequiredGas(input []byte) uint64  // RequiredPrice calculates the contract gas use
    42  	Run(input []byte) ([]byte, error) // Run runs the precompiled contract
    43  }
    44  
    45  type PrecompiledStateContract interface {
    46  	Run(stateDB StateDB, blockCtx BlockContext, txCtx TxContext, caller common.Address, input []byte, suppliedGas uint64) ([]byte, uint64, error) // Run runs the precompiled contract
    47  }
    48  
    49  // PrecompiledContractsHomestead contains the default set of pre-compiled Ethereum
    50  // contracts used in the Frontier and Homestead releases.
    51  var PrecompiledContractsHomestead = map[common.Address]PrecompiledContract{
    52  	common.BytesToAddress([]byte{1}): &ecrecover{},
    53  	common.BytesToAddress([]byte{2}): &sha256hash{},
    54  	common.BytesToAddress([]byte{3}): &ripemd160hash{},
    55  	common.BytesToAddress([]byte{4}): &dataCopy{},
    56  }
    57  
    58  // PrecompiledContractsByzantium contains the default set of pre-compiled Ethereum
    59  // contracts used in the Byzantium release.
    60  var PrecompiledContractsByzantium = map[common.Address]PrecompiledContract{
    61  	common.BytesToAddress([]byte{1}): &ecrecover{},
    62  	common.BytesToAddress([]byte{2}): &sha256hash{},
    63  	common.BytesToAddress([]byte{3}): &ripemd160hash{},
    64  	common.BytesToAddress([]byte{4}): &dataCopy{},
    65  	common.BytesToAddress([]byte{5}): &bigModExp{eip2565: false},
    66  	common.BytesToAddress([]byte{6}): &bn256AddByzantium{},
    67  	common.BytesToAddress([]byte{7}): &bn256ScalarMulByzantium{},
    68  	common.BytesToAddress([]byte{8}): &bn256PairingByzantium{},
    69  }
    70  
    71  // PrecompiledContractsIstanbul contains the default set of pre-compiled Ethereum
    72  // contracts used in the Istanbul release.
    73  var PrecompiledContractsIstanbul = map[common.Address]PrecompiledContract{
    74  	common.BytesToAddress([]byte{1}): &ecrecover{},
    75  	common.BytesToAddress([]byte{2}): &sha256hash{},
    76  	common.BytesToAddress([]byte{3}): &ripemd160hash{},
    77  	common.BytesToAddress([]byte{4}): &dataCopy{},
    78  	common.BytesToAddress([]byte{5}): &bigModExp{eip2565: false},
    79  	common.BytesToAddress([]byte{6}): &bn256AddIstanbul{},
    80  	common.BytesToAddress([]byte{7}): &bn256ScalarMulIstanbul{},
    81  	common.BytesToAddress([]byte{8}): &bn256PairingIstanbul{},
    82  	common.BytesToAddress([]byte{9}): &blake2F{},
    83  }
    84  
    85  // PrecompiledContractsBerlin contains the default set of pre-compiled Ethereum
    86  // contracts used in the Berlin release.
    87  var PrecompiledContractsBerlin = map[common.Address]PrecompiledContract{
    88  	common.BytesToAddress([]byte{1}): &ecrecover{},
    89  	common.BytesToAddress([]byte{2}): &sha256hash{},
    90  	common.BytesToAddress([]byte{3}): &ripemd160hash{},
    91  	common.BytesToAddress([]byte{4}): &dataCopy{},
    92  	common.BytesToAddress([]byte{5}): &bigModExp{eip2565: true},
    93  	common.BytesToAddress([]byte{6}): &bn256AddIstanbul{},
    94  	common.BytesToAddress([]byte{7}): &bn256ScalarMulIstanbul{},
    95  	common.BytesToAddress([]byte{8}): &bn256PairingIstanbul{},
    96  	common.BytesToAddress([]byte{9}): &blake2F{},
    97  }
    98  
    99  // PrecompiledContractsBLS contains the set of pre-compiled Ethereum
   100  // contracts specified in EIP-2537. These are exported for testing purposes.
   101  var PrecompiledContractsBLS = map[common.Address]PrecompiledContract{
   102  	common.BytesToAddress([]byte{10}): &bls12381G1Add{},
   103  	common.BytesToAddress([]byte{11}): &bls12381G1Mul{},
   104  	common.BytesToAddress([]byte{12}): &bls12381G1MultiExp{},
   105  	common.BytesToAddress([]byte{13}): &bls12381G2Add{},
   106  	common.BytesToAddress([]byte{14}): &bls12381G2Mul{},
   107  	common.BytesToAddress([]byte{15}): &bls12381G2MultiExp{},
   108  	common.BytesToAddress([]byte{16}): &bls12381Pairing{},
   109  	common.BytesToAddress([]byte{17}): &bls12381MapG1{},
   110  	common.BytesToAddress([]byte{18}): &bls12381MapG2{},
   111  }
   112  
   113  var (
   114  	PrecompiledAddressesBerlin    []common.Address
   115  	PrecompiledAddressesIstanbul  []common.Address
   116  	PrecompiledAddressesByzantium []common.Address
   117  	PrecompiledAddressesHomestead []common.Address
   118  )
   119  
   120  func init() {
   121  	for k := range PrecompiledContractsHomestead {
   122  		PrecompiledAddressesHomestead = append(PrecompiledAddressesHomestead, k)
   123  	}
   124  	for k := range PrecompiledContractsByzantium {
   125  		PrecompiledAddressesByzantium = append(PrecompiledAddressesByzantium, k)
   126  	}
   127  	for k := range PrecompiledContractsIstanbul {
   128  		PrecompiledAddressesIstanbul = append(PrecompiledAddressesIstanbul, k)
   129  	}
   130  	for k := range PrecompiledContractsBerlin {
   131  		PrecompiledAddressesBerlin = append(PrecompiledAddressesBerlin, k)
   132  	}
   133  }
   134  
   135  // ActivePrecompiles returns the precompiles enabled with the current configuration.
   136  func ActivePrecompiles(rules params.Rules) []common.Address {
   137  	switch {
   138  	case rules.IsBerlin:
   139  		return PrecompiledAddressesBerlin
   140  	case rules.IsIstanbul:
   141  		return PrecompiledAddressesIstanbul
   142  	case rules.IsByzantium:
   143  		return PrecompiledAddressesByzantium
   144  	default:
   145  		return PrecompiledAddressesHomestead
   146  	}
   147  }
   148  
   149  // RunPrecompiledContract runs and evaluates the output of a precompiled contract.
   150  // It returns
   151  // - the returned bytes,
   152  // - the _remaining_ gas,
   153  // - any error that occurred
   154  func RunPrecompiledContract(p PrecompiledContract, input []byte, suppliedGas uint64) (ret []byte, remainingGas uint64, err error) {
   155  	gasCost := p.RequiredGas(input)
   156  	if suppliedGas < gasCost {
   157  		return nil, 0, ErrOutOfGas
   158  	}
   159  	suppliedGas -= gasCost
   160  	output, err := p.Run(input)
   161  	return output, suppliedGas, err
   162  }
   163  
   164  // ECRECOVER implemented as a native contract.
   165  type ecrecover struct{}
   166  
   167  func (c *ecrecover) RequiredGas(input []byte) uint64 {
   168  	return params.EcrecoverGas
   169  }
   170  
   171  func (c *ecrecover) Run(input []byte) ([]byte, error) {
   172  	const ecRecoverInputLength = 128
   173  
   174  	input = common.RightPadBytes(input, ecRecoverInputLength)
   175  	// "input" is (hash, v, r, s), each 32 bytes
   176  	// but for ecrecover we want (r, s, v)
   177  
   178  	r := new(big.Int).SetBytes(input[64:96])
   179  	s := new(big.Int).SetBytes(input[96:128])
   180  	v := input[63] - 27
   181  
   182  	// tighter sig s values input homestead only apply to tx sigs
   183  	if !allZero(input[32:63]) || !crypto.ValidateSignatureValues(v, r, s, false) {
   184  		return nil, nil
   185  	}
   186  	// We must make sure not to modify the 'input', so placing the 'v' along with
   187  	// the signature needs to be done on a new allocation
   188  	sig := make([]byte, 65)
   189  	copy(sig, input[64:128])
   190  	sig[64] = v
   191  	// v needs to be at the end for libsecp256k1
   192  	pubKey, err := crypto.Ecrecover(input[:32], sig)
   193  	// make sure the public key is a valid one
   194  	if err != nil {
   195  		return nil, nil
   196  	}
   197  
   198  	// the first byte of pubkey is bitcoin heritage
   199  	return common.LeftPadBytes(crypto.Keccak256(pubKey[1:])[12:], 32), nil
   200  }
   201  
   202  // SHA256 implemented as a native contract.
   203  type sha256hash struct{}
   204  
   205  // RequiredGas returns the gas required to execute the pre-compiled contract.
   206  //
   207  // This method does not require any overflow checking as the input size gas costs
   208  // required for anything significant is so high it's impossible to pay for.
   209  func (c *sha256hash) RequiredGas(input []byte) uint64 {
   210  	return uint64(len(input)+31)/32*params.Sha256PerWordGas + params.Sha256BaseGas
   211  }
   212  func (c *sha256hash) Run(input []byte) ([]byte, error) {
   213  	h := sha256.Sum256(input)
   214  	return h[:], nil
   215  }
   216  
   217  // RIPEMD160 implemented as a native contract.
   218  type ripemd160hash struct{}
   219  
   220  // RequiredGas returns the gas required to execute the pre-compiled contract.
   221  //
   222  // This method does not require any overflow checking as the input size gas costs
   223  // required for anything significant is so high it's impossible to pay for.
   224  func (c *ripemd160hash) RequiredGas(input []byte) uint64 {
   225  	return uint64(len(input)+31)/32*params.Ripemd160PerWordGas + params.Ripemd160BaseGas
   226  }
   227  func (c *ripemd160hash) Run(input []byte) ([]byte, error) {
   228  	ripemd := ripemd160.New()
   229  	ripemd.Write(input)
   230  	return common.LeftPadBytes(ripemd.Sum(nil), 32), nil
   231  }
   232  
   233  // data copy implemented as a native contract.
   234  type dataCopy struct{}
   235  
   236  // RequiredGas returns the gas required to execute the pre-compiled contract.
   237  //
   238  // This method does not require any overflow checking as the input size gas costs
   239  // required for anything significant is so high it's impossible to pay for.
   240  func (c *dataCopy) RequiredGas(input []byte) uint64 {
   241  	return uint64(len(input)+31)/32*params.IdentityPerWordGas + params.IdentityBaseGas
   242  }
   243  func (c *dataCopy) Run(in []byte) ([]byte, error) {
   244  	return in, nil
   245  }
   246  
   247  // bigModExp implements a native big integer exponential modular operation.
   248  type bigModExp struct {
   249  	eip2565 bool
   250  }
   251  
   252  var (
   253  	big0      = big.NewInt(0)
   254  	big1      = big.NewInt(1)
   255  	big3      = big.NewInt(3)
   256  	big4      = big.NewInt(4)
   257  	big7      = big.NewInt(7)
   258  	big8      = big.NewInt(8)
   259  	big16     = big.NewInt(16)
   260  	big20     = big.NewInt(20)
   261  	big32     = big.NewInt(32)
   262  	big64     = big.NewInt(64)
   263  	big96     = big.NewInt(96)
   264  	big480    = big.NewInt(480)
   265  	big1024   = big.NewInt(1024)
   266  	big3072   = big.NewInt(3072)
   267  	big199680 = big.NewInt(199680)
   268  )
   269  
   270  // modexpMultComplexity implements bigModexp multComplexity formula, as defined in EIP-198
   271  //
   272  // def mult_complexity(x):
   273  //
   274  //	if x <= 64: return x ** 2
   275  //	elif x <= 1024: return x ** 2 // 4 + 96 * x - 3072
   276  //	else: return x ** 2 // 16 + 480 * x - 199680
   277  //
   278  // where is x is max(length_of_MODULUS, length_of_BASE)
   279  func modexpMultComplexity(x *big.Int) *big.Int {
   280  	switch {
   281  	case x.Cmp(big64) <= 0:
   282  		x.Mul(x, x) // x ** 2
   283  	case x.Cmp(big1024) <= 0:
   284  		// (x ** 2 // 4 ) + ( 96 * x - 3072)
   285  		x = new(big.Int).Add(
   286  			new(big.Int).Div(new(big.Int).Mul(x, x), big4),
   287  			new(big.Int).Sub(new(big.Int).Mul(big96, x), big3072),
   288  		)
   289  	default:
   290  		// (x ** 2 // 16) + (480 * x - 199680)
   291  		x = new(big.Int).Add(
   292  			new(big.Int).Div(new(big.Int).Mul(x, x), big16),
   293  			new(big.Int).Sub(new(big.Int).Mul(big480, x), big199680),
   294  		)
   295  	}
   296  	return x
   297  }
   298  
   299  // RequiredGas returns the gas required to execute the pre-compiled contract.
   300  func (c *bigModExp) RequiredGas(input []byte) uint64 {
   301  	var (
   302  		baseLen = new(big.Int).SetBytes(getData(input, 0, 32))
   303  		expLen  = new(big.Int).SetBytes(getData(input, 32, 32))
   304  		modLen  = new(big.Int).SetBytes(getData(input, 64, 32))
   305  	)
   306  	if len(input) > 96 {
   307  		input = input[96:]
   308  	} else {
   309  		input = input[:0]
   310  	}
   311  	// Retrieve the head 32 bytes of exp for the adjusted exponent length
   312  	var expHead *big.Int
   313  	if big.NewInt(int64(len(input))).Cmp(baseLen) <= 0 {
   314  		expHead = new(big.Int)
   315  	} else {
   316  		if expLen.Cmp(big32) > 0 {
   317  			expHead = new(big.Int).SetBytes(getData(input, baseLen.Uint64(), 32))
   318  		} else {
   319  			expHead = new(big.Int).SetBytes(getData(input, baseLen.Uint64(), expLen.Uint64()))
   320  		}
   321  	}
   322  	// Calculate the adjusted exponent length
   323  	var msb int
   324  	if bitlen := expHead.BitLen(); bitlen > 0 {
   325  		msb = bitlen - 1
   326  	}
   327  	adjExpLen := new(big.Int)
   328  	if expLen.Cmp(big32) > 0 {
   329  		adjExpLen.Sub(expLen, big32)
   330  		adjExpLen.Mul(big8, adjExpLen)
   331  	}
   332  	adjExpLen.Add(adjExpLen, big.NewInt(int64(msb)))
   333  	// Calculate the gas cost of the operation
   334  	gas := new(big.Int).Set(math.BigMax(modLen, baseLen))
   335  	if c.eip2565 {
   336  		// EIP-2565 has three changes
   337  		// 1. Different multComplexity (inlined here)
   338  		// in EIP-2565 (https://eips.ethereum.org/EIPS/eip-2565):
   339  		//
   340  		// def mult_complexity(x):
   341  		//    ceiling(x/8)^2
   342  		//
   343  		//where is x is max(length_of_MODULUS, length_of_BASE)
   344  		gas = gas.Add(gas, big7)
   345  		gas = gas.Div(gas, big8)
   346  		gas.Mul(gas, gas)
   347  
   348  		gas.Mul(gas, math.BigMax(adjExpLen, big1))
   349  		// 2. Different divisor (`GQUADDIVISOR`) (3)
   350  		gas.Div(gas, big3)
   351  		if gas.BitLen() > 64 {
   352  			return math.MaxUint64
   353  		}
   354  		// 3. Minimum price of 200 gas
   355  		if gas.Uint64() < 200 {
   356  			return 200
   357  		}
   358  		return gas.Uint64()
   359  	}
   360  	gas = modexpMultComplexity(gas)
   361  	gas.Mul(gas, math.BigMax(adjExpLen, big1))
   362  	gas.Div(gas, big20)
   363  
   364  	if gas.BitLen() > 64 {
   365  		return math.MaxUint64
   366  	}
   367  	return gas.Uint64()
   368  }
   369  
   370  func (c *bigModExp) Run(input []byte) ([]byte, error) {
   371  	var (
   372  		baseLen = new(big.Int).SetBytes(getData(input, 0, 32)).Uint64()
   373  		expLen  = new(big.Int).SetBytes(getData(input, 32, 32)).Uint64()
   374  		modLen  = new(big.Int).SetBytes(getData(input, 64, 32)).Uint64()
   375  	)
   376  	if len(input) > 96 {
   377  		input = input[96:]
   378  	} else {
   379  		input = input[:0]
   380  	}
   381  	// Handle a special case when both the base and mod length is zero
   382  	if baseLen == 0 && modLen == 0 {
   383  		return []byte{}, nil
   384  	}
   385  	// Retrieve the operands and execute the exponentiation
   386  	var (
   387  		base = new(big.Int).SetBytes(getData(input, 0, baseLen))
   388  		exp  = new(big.Int).SetBytes(getData(input, baseLen, expLen))
   389  		mod  = new(big.Int).SetBytes(getData(input, baseLen+expLen, modLen))
   390  	)
   391  	if mod.BitLen() == 0 {
   392  		// Modulo 0 is undefined, return zero
   393  		return common.LeftPadBytes([]byte{}, int(modLen)), nil
   394  	}
   395  	return common.LeftPadBytes(base.Exp(base, exp, mod).Bytes(), int(modLen)), nil
   396  }
   397  
   398  // newCurvePoint unmarshals a binary blob into a bn256 elliptic curve point,
   399  // returning it, or an error if the point is invalid.
   400  func newCurvePoint(blob []byte) (*bn256.G1, error) {
   401  	p := new(bn256.G1)
   402  	if _, err := p.Unmarshal(blob); err != nil {
   403  		return nil, err
   404  	}
   405  	return p, nil
   406  }
   407  
   408  // newTwistPoint unmarshals a binary blob into a bn256 elliptic curve point,
   409  // returning it, or an error if the point is invalid.
   410  func newTwistPoint(blob []byte) (*bn256.G2, error) {
   411  	p := new(bn256.G2)
   412  	if _, err := p.Unmarshal(blob); err != nil {
   413  		return nil, err
   414  	}
   415  	return p, nil
   416  }
   417  
   418  // runBn256Add implements the Bn256Add precompile, referenced by both
   419  // Byzantium and Istanbul operations.
   420  func runBn256Add(input []byte) ([]byte, error) {
   421  	x, err := newCurvePoint(getData(input, 0, 64))
   422  	if err != nil {
   423  		return nil, err
   424  	}
   425  	y, err := newCurvePoint(getData(input, 64, 64))
   426  	if err != nil {
   427  		return nil, err
   428  	}
   429  	res := new(bn256.G1)
   430  	res.Add(x, y)
   431  	return res.Marshal(), nil
   432  }
   433  
   434  // bn256Add implements a native elliptic curve point addition conforming to
   435  // Istanbul consensus rules.
   436  type bn256AddIstanbul struct{}
   437  
   438  // RequiredGas returns the gas required to execute the pre-compiled contract.
   439  func (c *bn256AddIstanbul) RequiredGas(input []byte) uint64 {
   440  	return params.Bn256AddGasIstanbul
   441  }
   442  
   443  func (c *bn256AddIstanbul) Run(input []byte) ([]byte, error) {
   444  	return runBn256Add(input)
   445  }
   446  
   447  // bn256AddByzantium implements a native elliptic curve point addition
   448  // conforming to Byzantium consensus rules.
   449  type bn256AddByzantium struct{}
   450  
   451  // RequiredGas returns the gas required to execute the pre-compiled contract.
   452  func (c *bn256AddByzantium) RequiredGas(input []byte) uint64 {
   453  	return params.Bn256AddGasByzantium
   454  }
   455  
   456  func (c *bn256AddByzantium) Run(input []byte) ([]byte, error) {
   457  	return runBn256Add(input)
   458  }
   459  
   460  // runBn256ScalarMul implements the Bn256ScalarMul precompile, referenced by
   461  // both Byzantium and Istanbul operations.
   462  func runBn256ScalarMul(input []byte) ([]byte, error) {
   463  	p, err := newCurvePoint(getData(input, 0, 64))
   464  	if err != nil {
   465  		return nil, err
   466  	}
   467  	res := new(bn256.G1)
   468  	res.ScalarMult(p, new(big.Int).SetBytes(getData(input, 64, 32)))
   469  	return res.Marshal(), nil
   470  }
   471  
   472  // bn256ScalarMulIstanbul implements a native elliptic curve scalar
   473  // multiplication conforming to Istanbul consensus rules.
   474  type bn256ScalarMulIstanbul struct{}
   475  
   476  // RequiredGas returns the gas required to execute the pre-compiled contract.
   477  func (c *bn256ScalarMulIstanbul) RequiredGas(input []byte) uint64 {
   478  	return params.Bn256ScalarMulGasIstanbul
   479  }
   480  
   481  func (c *bn256ScalarMulIstanbul) Run(input []byte) ([]byte, error) {
   482  	return runBn256ScalarMul(input)
   483  }
   484  
   485  // bn256ScalarMulByzantium implements a native elliptic curve scalar
   486  // multiplication conforming to Byzantium consensus rules.
   487  type bn256ScalarMulByzantium struct{}
   488  
   489  // RequiredGas returns the gas required to execute the pre-compiled contract.
   490  func (c *bn256ScalarMulByzantium) RequiredGas(input []byte) uint64 {
   491  	return params.Bn256ScalarMulGasByzantium
   492  }
   493  
   494  func (c *bn256ScalarMulByzantium) Run(input []byte) ([]byte, error) {
   495  	return runBn256ScalarMul(input)
   496  }
   497  
   498  var (
   499  	// true32Byte is returned if the bn256 pairing check succeeds.
   500  	true32Byte = []byte{0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 1}
   501  
   502  	// false32Byte is returned if the bn256 pairing check fails.
   503  	false32Byte = make([]byte, 32)
   504  
   505  	// errBadPairingInput is returned if the bn256 pairing input is invalid.
   506  	errBadPairingInput = errors.New("bad elliptic curve pairing size")
   507  )
   508  
   509  // runBn256Pairing implements the Bn256Pairing precompile, referenced by both
   510  // Byzantium and Istanbul operations.
   511  func runBn256Pairing(input []byte) ([]byte, error) {
   512  	// Handle some corner cases cheaply
   513  	if len(input)%192 > 0 {
   514  		return nil, errBadPairingInput
   515  	}
   516  	// Convert the input into a set of coordinates
   517  	var (
   518  		cs []*bn256.G1
   519  		ts []*bn256.G2
   520  	)
   521  	for i := 0; i < len(input); i += 192 {
   522  		c, err := newCurvePoint(input[i : i+64])
   523  		if err != nil {
   524  			return nil, err
   525  		}
   526  		t, err := newTwistPoint(input[i+64 : i+192])
   527  		if err != nil {
   528  			return nil, err
   529  		}
   530  		cs = append(cs, c)
   531  		ts = append(ts, t)
   532  	}
   533  	// Execute the pairing checks and return the results
   534  	if bn256.PairingCheck(cs, ts) {
   535  		return true32Byte, nil
   536  	}
   537  	return false32Byte, nil
   538  }
   539  
   540  // bn256PairingIstanbul implements a pairing pre-compile for the bn256 curve
   541  // conforming to Istanbul consensus rules.
   542  type bn256PairingIstanbul struct{}
   543  
   544  // RequiredGas returns the gas required to execute the pre-compiled contract.
   545  func (c *bn256PairingIstanbul) RequiredGas(input []byte) uint64 {
   546  	return params.Bn256PairingBaseGasIstanbul + uint64(len(input)/192)*params.Bn256PairingPerPointGasIstanbul
   547  }
   548  
   549  func (c *bn256PairingIstanbul) Run(input []byte) ([]byte, error) {
   550  	return runBn256Pairing(input)
   551  }
   552  
   553  // bn256PairingByzantium implements a pairing pre-compile for the bn256 curve
   554  // conforming to Byzantium consensus rules.
   555  type bn256PairingByzantium struct{}
   556  
   557  // RequiredGas returns the gas required to execute the pre-compiled contract.
   558  func (c *bn256PairingByzantium) RequiredGas(input []byte) uint64 {
   559  	return params.Bn256PairingBaseGasByzantium + uint64(len(input)/192)*params.Bn256PairingPerPointGasByzantium
   560  }
   561  
   562  func (c *bn256PairingByzantium) Run(input []byte) ([]byte, error) {
   563  	return runBn256Pairing(input)
   564  }
   565  
   566  type blake2F struct{}
   567  
   568  func (c *blake2F) RequiredGas(input []byte) uint64 {
   569  	// If the input is malformed, we can't calculate the gas, return 0 and let the
   570  	// actual call choke and fault.
   571  	if len(input) != blake2FInputLength {
   572  		return 0
   573  	}
   574  	return uint64(binary.BigEndian.Uint32(input[0:4]))
   575  }
   576  
   577  const (
   578  	blake2FInputLength        = 213
   579  	blake2FFinalBlockBytes    = byte(1)
   580  	blake2FNonFinalBlockBytes = byte(0)
   581  )
   582  
   583  var (
   584  	errBlake2FInvalidInputLength = errors.New("invalid input length")
   585  	errBlake2FInvalidFinalFlag   = errors.New("invalid final flag")
   586  )
   587  
   588  func (c *blake2F) Run(input []byte) ([]byte, error) {
   589  	// Make sure the input is valid (correct length and final flag)
   590  	if len(input) != blake2FInputLength {
   591  		return nil, errBlake2FInvalidInputLength
   592  	}
   593  	if input[212] != blake2FNonFinalBlockBytes && input[212] != blake2FFinalBlockBytes {
   594  		return nil, errBlake2FInvalidFinalFlag
   595  	}
   596  	// Parse the input into the Blake2b call parameters
   597  	var (
   598  		rounds = binary.BigEndian.Uint32(input[0:4])
   599  		final  = (input[212] == blake2FFinalBlockBytes)
   600  
   601  		h [8]uint64
   602  		m [16]uint64
   603  		t [2]uint64
   604  	)
   605  	for i := 0; i < 8; i++ {
   606  		offset := 4 + i*8
   607  		h[i] = binary.LittleEndian.Uint64(input[offset : offset+8])
   608  	}
   609  	for i := 0; i < 16; i++ {
   610  		offset := 68 + i*8
   611  		m[i] = binary.LittleEndian.Uint64(input[offset : offset+8])
   612  	}
   613  	t[0] = binary.LittleEndian.Uint64(input[196:204])
   614  	t[1] = binary.LittleEndian.Uint64(input[204:212])
   615  
   616  	// Execute the compression function, extract and return the result
   617  	blake2b.F(&h, m, t, final, rounds)
   618  
   619  	output := make([]byte, 64)
   620  	for i := 0; i < 8; i++ {
   621  		offset := i * 8
   622  		binary.LittleEndian.PutUint64(output[offset:offset+8], h[i])
   623  	}
   624  	return output, nil
   625  }
   626  
   627  var (
   628  	errBLS12381InvalidInputLength          = errors.New("invalid input length")
   629  	errBLS12381InvalidFieldElementTopBytes = errors.New("invalid field element top bytes")
   630  	errBLS12381G1PointSubgroup             = errors.New("g1 point is not on correct subgroup")
   631  	errBLS12381G2PointSubgroup             = errors.New("g2 point is not on correct subgroup")
   632  )
   633  
   634  // bls12381G1Add implements EIP-2537 G1Add precompile.
   635  type bls12381G1Add struct{}
   636  
   637  // RequiredGas returns the gas required to execute the pre-compiled contract.
   638  func (c *bls12381G1Add) RequiredGas(input []byte) uint64 {
   639  	return params.Bls12381G1AddGas
   640  }
   641  
   642  func (c *bls12381G1Add) Run(input []byte) ([]byte, error) {
   643  	// Implements EIP-2537 G1Add precompile.
   644  	// > G1 addition call expects `256` bytes as an input that is interpreted as byte concatenation of two G1 points (`128` bytes each).
   645  	// > Output is an encoding of addition operation result - single G1 point (`128` bytes).
   646  	if len(input) != 256 {
   647  		return nil, errBLS12381InvalidInputLength
   648  	}
   649  	var err error
   650  	var p0, p1 *bls12381.PointG1
   651  
   652  	// Initialize G1
   653  	g := bls12381.NewG1()
   654  
   655  	// Decode G1 point p_0
   656  	if p0, err = g.DecodePoint(input[:128]); err != nil {
   657  		return nil, err
   658  	}
   659  	// Decode G1 point p_1
   660  	if p1, err = g.DecodePoint(input[128:]); err != nil {
   661  		return nil, err
   662  	}
   663  
   664  	// Compute r = p_0 + p_1
   665  	r := g.New()
   666  	g.Add(r, p0, p1)
   667  
   668  	// Encode the G1 point result into 128 bytes
   669  	return g.EncodePoint(r), nil
   670  }
   671  
   672  // bls12381G1Mul implements EIP-2537 G1Mul precompile.
   673  type bls12381G1Mul struct{}
   674  
   675  // RequiredGas returns the gas required to execute the pre-compiled contract.
   676  func (c *bls12381G1Mul) RequiredGas(input []byte) uint64 {
   677  	return params.Bls12381G1MulGas
   678  }
   679  
   680  func (c *bls12381G1Mul) Run(input []byte) ([]byte, error) {
   681  	// Implements EIP-2537 G1Mul precompile.
   682  	// > G1 multiplication call expects `160` bytes as an input that is interpreted as byte concatenation of encoding of G1 point (`128` bytes) and encoding of a scalar value (`32` bytes).
   683  	// > Output is an encoding of multiplication operation result - single G1 point (`128` bytes).
   684  	if len(input) != 160 {
   685  		return nil, errBLS12381InvalidInputLength
   686  	}
   687  	var err error
   688  	var p0 *bls12381.PointG1
   689  
   690  	// Initialize G1
   691  	g := bls12381.NewG1()
   692  
   693  	// Decode G1 point
   694  	if p0, err = g.DecodePoint(input[:128]); err != nil {
   695  		return nil, err
   696  	}
   697  	// Decode scalar value
   698  	e := new(big.Int).SetBytes(input[128:])
   699  
   700  	// Compute r = e * p_0
   701  	r := g.New()
   702  	g.MulScalar(r, p0, e)
   703  
   704  	// Encode the G1 point into 128 bytes
   705  	return g.EncodePoint(r), nil
   706  }
   707  
   708  // bls12381G1MultiExp implements EIP-2537 G1MultiExp precompile.
   709  type bls12381G1MultiExp struct{}
   710  
   711  // RequiredGas returns the gas required to execute the pre-compiled contract.
   712  func (c *bls12381G1MultiExp) RequiredGas(input []byte) uint64 {
   713  	// Calculate G1 point, scalar value pair length
   714  	k := len(input) / 160
   715  	if k == 0 {
   716  		// Return 0 gas for small input length
   717  		return 0
   718  	}
   719  	// Lookup discount value for G1 point, scalar value pair length
   720  	var discount uint64
   721  	if dLen := len(params.Bls12381MultiExpDiscountTable); k < dLen {
   722  		discount = params.Bls12381MultiExpDiscountTable[k-1]
   723  	} else {
   724  		discount = params.Bls12381MultiExpDiscountTable[dLen-1]
   725  	}
   726  	// Calculate gas and return the result
   727  	return (uint64(k) * params.Bls12381G1MulGas * discount) / 1000
   728  }
   729  
   730  func (c *bls12381G1MultiExp) Run(input []byte) ([]byte, error) {
   731  	// Implements EIP-2537 G1MultiExp precompile.
   732  	// G1 multiplication call expects `160*k` bytes as an input that is interpreted as byte concatenation of `k` slices each of them being a byte concatenation of encoding of G1 point (`128` bytes) and encoding of a scalar value (`32` bytes).
   733  	// Output is an encoding of multiexponentiation operation result - single G1 point (`128` bytes).
   734  	k := len(input) / 160
   735  	if len(input) == 0 || len(input)%160 != 0 {
   736  		return nil, errBLS12381InvalidInputLength
   737  	}
   738  	var err error
   739  	points := make([]*bls12381.PointG1, k)
   740  	scalars := make([]*big.Int, k)
   741  
   742  	// Initialize G1
   743  	g := bls12381.NewG1()
   744  
   745  	// Decode point scalar pairs
   746  	for i := 0; i < k; i++ {
   747  		off := 160 * i
   748  		t0, t1, t2 := off, off+128, off+160
   749  		// Decode G1 point
   750  		if points[i], err = g.DecodePoint(input[t0:t1]); err != nil {
   751  			return nil, err
   752  		}
   753  		// Decode scalar value
   754  		scalars[i] = new(big.Int).SetBytes(input[t1:t2])
   755  	}
   756  
   757  	// Compute r = e_0 * p_0 + e_1 * p_1 + ... + e_(k-1) * p_(k-1)
   758  	r := g.New()
   759  	g.MultiExp(r, points, scalars)
   760  
   761  	// Encode the G1 point to 128 bytes
   762  	return g.EncodePoint(r), nil
   763  }
   764  
   765  // bls12381G2Add implements EIP-2537 G2Add precompile.
   766  type bls12381G2Add struct{}
   767  
   768  // RequiredGas returns the gas required to execute the pre-compiled contract.
   769  func (c *bls12381G2Add) RequiredGas(input []byte) uint64 {
   770  	return params.Bls12381G2AddGas
   771  }
   772  
   773  func (c *bls12381G2Add) Run(input []byte) ([]byte, error) {
   774  	// Implements EIP-2537 G2Add precompile.
   775  	// > G2 addition call expects `512` bytes as an input that is interpreted as byte concatenation of two G2 points (`256` bytes each).
   776  	// > Output is an encoding of addition operation result - single G2 point (`256` bytes).
   777  	if len(input) != 512 {
   778  		return nil, errBLS12381InvalidInputLength
   779  	}
   780  	var err error
   781  	var p0, p1 *bls12381.PointG2
   782  
   783  	// Initialize G2
   784  	g := bls12381.NewG2()
   785  	r := g.New()
   786  
   787  	// Decode G2 point p_0
   788  	if p0, err = g.DecodePoint(input[:256]); err != nil {
   789  		return nil, err
   790  	}
   791  	// Decode G2 point p_1
   792  	if p1, err = g.DecodePoint(input[256:]); err != nil {
   793  		return nil, err
   794  	}
   795  
   796  	// Compute r = p_0 + p_1
   797  	g.Add(r, p0, p1)
   798  
   799  	// Encode the G2 point into 256 bytes
   800  	return g.EncodePoint(r), nil
   801  }
   802  
   803  // bls12381G2Mul implements EIP-2537 G2Mul precompile.
   804  type bls12381G2Mul struct{}
   805  
   806  // RequiredGas returns the gas required to execute the pre-compiled contract.
   807  func (c *bls12381G2Mul) RequiredGas(input []byte) uint64 {
   808  	return params.Bls12381G2MulGas
   809  }
   810  
   811  func (c *bls12381G2Mul) Run(input []byte) ([]byte, error) {
   812  	// Implements EIP-2537 G2MUL precompile logic.
   813  	// > G2 multiplication call expects `288` bytes as an input that is interpreted as byte concatenation of encoding of G2 point (`256` bytes) and encoding of a scalar value (`32` bytes).
   814  	// > Output is an encoding of multiplication operation result - single G2 point (`256` bytes).
   815  	if len(input) != 288 {
   816  		return nil, errBLS12381InvalidInputLength
   817  	}
   818  	var err error
   819  	var p0 *bls12381.PointG2
   820  
   821  	// Initialize G2
   822  	g := bls12381.NewG2()
   823  
   824  	// Decode G2 point
   825  	if p0, err = g.DecodePoint(input[:256]); err != nil {
   826  		return nil, err
   827  	}
   828  	// Decode scalar value
   829  	e := new(big.Int).SetBytes(input[256:])
   830  
   831  	// Compute r = e * p_0
   832  	r := g.New()
   833  	g.MulScalar(r, p0, e)
   834  
   835  	// Encode the G2 point into 256 bytes
   836  	return g.EncodePoint(r), nil
   837  }
   838  
   839  // bls12381G2MultiExp implements EIP-2537 G2MultiExp precompile.
   840  type bls12381G2MultiExp struct{}
   841  
   842  // RequiredGas returns the gas required to execute the pre-compiled contract.
   843  func (c *bls12381G2MultiExp) RequiredGas(input []byte) uint64 {
   844  	// Calculate G2 point, scalar value pair length
   845  	k := len(input) / 288
   846  	if k == 0 {
   847  		// Return 0 gas for small input length
   848  		return 0
   849  	}
   850  	// Lookup discount value for G2 point, scalar value pair length
   851  	var discount uint64
   852  	if dLen := len(params.Bls12381MultiExpDiscountTable); k < dLen {
   853  		discount = params.Bls12381MultiExpDiscountTable[k-1]
   854  	} else {
   855  		discount = params.Bls12381MultiExpDiscountTable[dLen-1]
   856  	}
   857  	// Calculate gas and return the result
   858  	return (uint64(k) * params.Bls12381G2MulGas * discount) / 1000
   859  }
   860  
   861  func (c *bls12381G2MultiExp) Run(input []byte) ([]byte, error) {
   862  	// Implements EIP-2537 G2MultiExp precompile logic
   863  	// > G2 multiplication call expects `288*k` bytes as an input that is interpreted as byte concatenation of `k` slices each of them being a byte concatenation of encoding of G2 point (`256` bytes) and encoding of a scalar value (`32` bytes).
   864  	// > Output is an encoding of multiexponentiation operation result - single G2 point (`256` bytes).
   865  	k := len(input) / 288
   866  	if len(input) == 0 || len(input)%288 != 0 {
   867  		return nil, errBLS12381InvalidInputLength
   868  	}
   869  	var err error
   870  	points := make([]*bls12381.PointG2, k)
   871  	scalars := make([]*big.Int, k)
   872  
   873  	// Initialize G2
   874  	g := bls12381.NewG2()
   875  
   876  	// Decode point scalar pairs
   877  	for i := 0; i < k; i++ {
   878  		off := 288 * i
   879  		t0, t1, t2 := off, off+256, off+288
   880  		// Decode G1 point
   881  		if points[i], err = g.DecodePoint(input[t0:t1]); err != nil {
   882  			return nil, err
   883  		}
   884  		// Decode scalar value
   885  		scalars[i] = new(big.Int).SetBytes(input[t1:t2])
   886  	}
   887  
   888  	// Compute r = e_0 * p_0 + e_1 * p_1 + ... + e_(k-1) * p_(k-1)
   889  	r := g.New()
   890  	g.MultiExp(r, points, scalars)
   891  
   892  	// Encode the G2 point to 256 bytes.
   893  	return g.EncodePoint(r), nil
   894  }
   895  
   896  // bls12381Pairing implements EIP-2537 Pairing precompile.
   897  type bls12381Pairing struct{}
   898  
   899  // RequiredGas returns the gas required to execute the pre-compiled contract.
   900  func (c *bls12381Pairing) RequiredGas(input []byte) uint64 {
   901  	return params.Bls12381PairingBaseGas + uint64(len(input)/384)*params.Bls12381PairingPerPairGas
   902  }
   903  
   904  func (c *bls12381Pairing) Run(input []byte) ([]byte, error) {
   905  	// Implements EIP-2537 Pairing precompile logic.
   906  	// > Pairing call expects `384*k` bytes as an inputs that is interpreted as byte concatenation of `k` slices. Each slice has the following structure:
   907  	// > - `128` bytes of G1 point encoding
   908  	// > - `256` bytes of G2 point encoding
   909  	// > Output is a `32` bytes where last single byte is `0x01` if pairing result is equal to multiplicative identity in a pairing target field and `0x00` otherwise
   910  	// > (which is equivalent of Big Endian encoding of Solidity values `uint256(1)` and `uin256(0)` respectively).
   911  	k := len(input) / 384
   912  	if len(input) == 0 || len(input)%384 != 0 {
   913  		return nil, errBLS12381InvalidInputLength
   914  	}
   915  
   916  	// Initialize BLS12-381 pairing engine
   917  	e := bls12381.NewPairingEngine()
   918  	g1, g2 := e.G1, e.G2
   919  
   920  	// Decode pairs
   921  	for i := 0; i < k; i++ {
   922  		off := 384 * i
   923  		t0, t1, t2 := off, off+128, off+384
   924  
   925  		// Decode G1 point
   926  		p1, err := g1.DecodePoint(input[t0:t1])
   927  		if err != nil {
   928  			return nil, err
   929  		}
   930  		// Decode G2 point
   931  		p2, err := g2.DecodePoint(input[t1:t2])
   932  		if err != nil {
   933  			return nil, err
   934  		}
   935  
   936  		// 'point is on curve' check already done,
   937  		// Here we need to apply subgroup checks.
   938  		if !g1.InCorrectSubgroup(p1) {
   939  			return nil, errBLS12381G1PointSubgroup
   940  		}
   941  		if !g2.InCorrectSubgroup(p2) {
   942  			return nil, errBLS12381G2PointSubgroup
   943  		}
   944  
   945  		// Update pairing engine with G1 and G2 ponits
   946  		e.AddPair(p1, p2)
   947  	}
   948  	// Prepare 32 byte output
   949  	out := make([]byte, 32)
   950  
   951  	// Compute pairing and set the result
   952  	if e.Check() {
   953  		out[31] = 1
   954  	}
   955  	return out, nil
   956  }
   957  
   958  // decodeBLS12381FieldElement decodes BLS12-381 elliptic curve field element.
   959  // Removes top 16 bytes of 64 byte input.
   960  func decodeBLS12381FieldElement(in []byte) ([]byte, error) {
   961  	if len(in) != 64 {
   962  		return nil, errors.New("invalid field element length")
   963  	}
   964  	// check top bytes
   965  	for i := 0; i < 16; i++ {
   966  		if in[i] != byte(0x00) {
   967  			return nil, errBLS12381InvalidFieldElementTopBytes
   968  		}
   969  	}
   970  	out := make([]byte, 48)
   971  	copy(out[:], in[16:])
   972  	return out, nil
   973  }
   974  
   975  // bls12381MapG1 implements EIP-2537 MapG1 precompile.
   976  type bls12381MapG1 struct{}
   977  
   978  // RequiredGas returns the gas required to execute the pre-compiled contract.
   979  func (c *bls12381MapG1) RequiredGas(input []byte) uint64 {
   980  	return params.Bls12381MapG1Gas
   981  }
   982  
   983  func (c *bls12381MapG1) Run(input []byte) ([]byte, error) {
   984  	// Implements EIP-2537 Map_To_G1 precompile.
   985  	// > Field-to-curve call expects `64` bytes an an input that is interpreted as a an element of the base field.
   986  	// > Output of this call is `128` bytes and is G1 point following respective encoding rules.
   987  	if len(input) != 64 {
   988  		return nil, errBLS12381InvalidInputLength
   989  	}
   990  
   991  	// Decode input field element
   992  	fe, err := decodeBLS12381FieldElement(input)
   993  	if err != nil {
   994  		return nil, err
   995  	}
   996  
   997  	// Initialize G1
   998  	g := bls12381.NewG1()
   999  
  1000  	// Compute mapping
  1001  	r, err := g.MapToCurve(fe)
  1002  	if err != nil {
  1003  		return nil, err
  1004  	}
  1005  
  1006  	// Encode the G1 point to 128 bytes
  1007  	return g.EncodePoint(r), nil
  1008  }
  1009  
  1010  // bls12381MapG2 implements EIP-2537 MapG2 precompile.
  1011  type bls12381MapG2 struct{}
  1012  
  1013  // RequiredGas returns the gas required to execute the pre-compiled contract.
  1014  func (c *bls12381MapG2) RequiredGas(input []byte) uint64 {
  1015  	return params.Bls12381MapG2Gas
  1016  }
  1017  
  1018  func (c *bls12381MapG2) Run(input []byte) ([]byte, error) {
  1019  	// Implements EIP-2537 Map_FP2_TO_G2 precompile logic.
  1020  	// > Field-to-curve call expects `128` bytes an an input that is interpreted as a an element of the quadratic extension field.
  1021  	// > Output of this call is `256` bytes and is G2 point following respective encoding rules.
  1022  	if len(input) != 128 {
  1023  		return nil, errBLS12381InvalidInputLength
  1024  	}
  1025  
  1026  	// Decode input field element
  1027  	fe := make([]byte, 96)
  1028  	c0, err := decodeBLS12381FieldElement(input[:64])
  1029  	if err != nil {
  1030  		return nil, err
  1031  	}
  1032  	copy(fe[48:], c0)
  1033  	c1, err := decodeBLS12381FieldElement(input[64:])
  1034  	if err != nil {
  1035  		return nil, err
  1036  	}
  1037  	copy(fe[:48], c1)
  1038  
  1039  	// Initialize G2
  1040  	g := bls12381.NewG2()
  1041  
  1042  	// Compute mapping
  1043  	r, err := g.MapToCurve(fe)
  1044  	if err != nil {
  1045  		return nil, err
  1046  	}
  1047  
  1048  	// Encode the G2 point to 256 bytes
  1049  	return g.EncodePoint(r), nil
  1050  }