github.com/useflyent/fhttp@v0.0.0-20211004035111-333f430cfbbf/transport.go (about)

     1  // Copyright 2011 The Go Authors. All rights reserved.
     2  // Use of this source code is governed by a BSD-style
     3  // license that can be found in the LICENSE file.
     4  
     5  // HTTP client implementation. See RFC 7230 through 7235.
     6  //
     7  // This is the low-level Transport implementation of RoundTripper.
     8  // The high-level interface is in client.go.
     9  
    10  package http
    11  
    12  import (
    13  	"bufio"
    14  	"bytes"
    15  	"compress/flate"
    16  	"compress/gzip"
    17  	"compress/zlib"
    18  	"container/list"
    19  	"context"
    20  	"crypto/tls"
    21  	"errors"
    22  	"fmt"
    23  	"github.com/andybalholm/brotli"
    24  	"io"
    25  	"log"
    26  	"net"
    27  	"net/textproto"
    28  	"net/url"
    29  	"os"
    30  	"reflect"
    31  	"strings"
    32  	"sync"
    33  	"sync/atomic"
    34  	"time"
    35  
    36  	"github.com/useflyent/fhttp/httptrace"
    37  
    38  	"golang.org/x/net/http/httpguts"
    39  	"golang.org/x/net/http/httpproxy"
    40  )
    41  
    42  // DefaultTransport is the default implementation of Transport and is
    43  // used by DefaultClient. It establishes network connections as needed
    44  // and caches them for reuse by subsequent calls. It uses HTTP proxies
    45  // as directed by the $HTTP_PROXY and $NO_PROXY (or $http_proxy and
    46  // $no_proxy) environment variables.
    47  var DefaultTransport RoundTripper = &Transport{
    48  	Proxy: ProxyFromEnvironment,
    49  	DialContext: (&net.Dialer{
    50  		Timeout:   30 * time.Second,
    51  		KeepAlive: 30 * time.Second,
    52  	}).DialContext,
    53  	ForceAttemptHTTP2:     true,
    54  	MaxIdleConns:          100,
    55  	IdleConnTimeout:       90 * time.Second,
    56  	TLSHandshakeTimeout:   10 * time.Second,
    57  	ExpectContinueTimeout: 1 * time.Second,
    58  }
    59  
    60  // DefaultMaxIdleConnsPerHost is the default value of Transport's
    61  // MaxIdleConnsPerHost.
    62  const DefaultMaxIdleConnsPerHost = 2
    63  
    64  // Transport is an implementation of RoundTripper that supports HTTP,
    65  // HTTPS, and HTTP proxies (for either HTTP or HTTPS with CONNECT).
    66  //
    67  // By default, Transport caches connections for future re-use.
    68  // This may leave many open connections when accessing many hosts.
    69  // This behavior can be managed using Transport's CloseIdleConnections method
    70  // and the MaxIdleConnsPerHost and DisableKeepAlives fields.
    71  //
    72  // Transports should be reused instead of created as needed.
    73  // Transports are safe for concurrent use by multiple goroutines.
    74  //
    75  // A Transport is a low-level primitive for making HTTP and HTTPS requests.
    76  // For high-level functionality, such as cookies and redirects, see Client.
    77  //
    78  // Transport uses HTTP/1.1 for HTTP URLs and either HTTP/1.1 or HTTP/2
    79  // for HTTPS URLs, depending on whether the server supports HTTP/2,
    80  // and how the Transport is configured. The DefaultTransport supports HTTP/2.
    81  // To explicitly enable HTTP/2 on a transport, use golang.org/x/net/http2
    82  // and call ConfigureTransport. See the package docs for more about HTTP/2.
    83  //
    84  // Responses with status codes in the 1xx range are either handled
    85  // automatically (100 expect-continue) or ignored. The one
    86  // exception is HTTP status code 101 (Switching Protocols), which is
    87  // considered a terminal status and returned by RoundTrip. To see the
    88  // ignored 1xx responses, use the httptrace trace package's
    89  // ClientTrace.Got1xxResponse.
    90  //
    91  // Transport only retries a request upon encountering a network error
    92  // if the request is idempotent and either has no body or has its
    93  // Request.GetBody defined. HTTP requests are considered idempotent if
    94  // they have HTTP methods GET, HEAD, OPTIONS, or TRACE; or if their
    95  // Header map contains an "Idempotency-Key" or "X-Idempotency-Key"
    96  // entry. If the idempotency Key value is a zero-length slice, the
    97  // request is treated as idempotent but the header is not sent on the
    98  // wire.
    99  type Transport struct {
   100  	idleMu       sync.Mutex
   101  	closeIdle    bool                                // user has requested to close all idle conns
   102  	idleConn     map[connectMethodKey][]*persistConn // most recently used at end
   103  	idleConnWait map[connectMethodKey]wantConnQueue  // waiting getConns
   104  	idleLRU      connLRU
   105  
   106  	reqMu       sync.Mutex
   107  	reqCanceler map[cancelKey]func(error)
   108  
   109  	altMu    sync.Mutex   // guards changing altProto only
   110  	altProto atomic.Value // of nil or map[string]RoundTripper, Key is URI scheme
   111  
   112  	connsPerHostMu   sync.Mutex
   113  	connsPerHost     map[connectMethodKey]int
   114  	connsPerHostWait map[connectMethodKey]wantConnQueue // waiting getConns
   115  
   116  	// Proxy specifies a function to return a proxy for a given
   117  	// Request. If the function returns a non-nil error, the
   118  	// request is aborted with the provided error.
   119  	//
   120  	// The proxy type is determined by the URL scheme. "http",
   121  	// "https", and "socks5" are supported. If the scheme is empty,
   122  	// "http" is assumed.
   123  	//
   124  	// If Proxy is nil or returns a nil *URL, no proxy is used.
   125  	Proxy func(*Request) (*url.URL, error)
   126  
   127  	// DialContext specifies the dial function for creating unencrypted TCP connections.
   128  	// If DialContext is nil (and the deprecated Dial below is also nil),
   129  	// then the transport dials using package net.
   130  	//
   131  	// DialContext runs concurrently with calls to RoundTrip.
   132  	// A RoundTrip call that initiates a dial may end up using
   133  	// a connection dialed previously when the earlier connection
   134  	// becomes idle before the later DialContext completes.
   135  	DialContext func(ctx context.Context, network, addr string) (net.Conn, error)
   136  
   137  	// Dial specifies the dial function for creating unencrypted TCP connections.
   138  	//
   139  	// Dial runs concurrently with calls to RoundTrip.
   140  	// A RoundTrip call that initiates a dial may end up using
   141  	// a connection dialed previously when the earlier connection
   142  	// becomes idle before the later Dial completes.
   143  	//
   144  	// Deprecated: Use DialContext instead, which allows the transport
   145  	// to cancel dials as soon as they are no longer needed.
   146  	// If both are set, DialContext takes priority.
   147  	Dial func(network, addr string) (net.Conn, error)
   148  
   149  	// DialTLSContext specifies an optional dial function for creating
   150  	// TLS connections for non-proxied HTTPS requests.
   151  	//
   152  	// If DialTLSContext is nil (and the deprecated DialTLS below is also nil),
   153  	// DialContext and TLSClientConfig are used.
   154  	//
   155  	// If DialTLSContext is set, the Dial and DialContext hooks are not used for HTTPS
   156  	// requests and the TLSClientConfig and TLSHandshakeTimeout
   157  	// are ignored. The returned net.Conn is assumed to already be
   158  	// past the TLS handshake.
   159  	DialTLSContext func(ctx context.Context, network, addr string) (net.Conn, error)
   160  
   161  	// DialTLS specifies an optional dial function for creating
   162  	// TLS connections for non-proxied HTTPS requests.
   163  	//
   164  	// Deprecated: Use DialTLSContext instead, which allows the transport
   165  	// to cancel dials as soon as they are no longer needed.
   166  	// If both are set, DialTLSContext takes priority.
   167  	DialTLS func(network, addr string) (net.Conn, error)
   168  
   169  	// TLSClientConfig specifies the TLS configuration to use with
   170  	// tls.Client.
   171  	// If nil, the default configuration is used.
   172  	// If non-nil, HTTP/2 support may not be enabled by default.
   173  	TLSClientConfig *tls.Config
   174  
   175  	// TLSHandshakeTimeout specifies the maximum amount of time waiting to
   176  	// wait for a TLS handshake. Zero means no timeout.
   177  	TLSHandshakeTimeout time.Duration
   178  
   179  	// DisableKeepAlives, if true, disables HTTP keep-alives and
   180  	// will only use the connection to the server for a single
   181  	// HTTP request.
   182  	//
   183  	// This is unrelated to the similarly named TCP keep-alives.
   184  	DisableKeepAlives bool
   185  
   186  	// DisableCompression, if true, prevents the Transport from
   187  	// requesting compression with an "Accept-Encoding: gzip"
   188  	// request header when the Request contains no existing
   189  	// Accept-Encoding value. If the Transport requests gzip on
   190  	// its own and gets a gzipped response, it's transparently
   191  	// decoded in the Response.Body. However, if the user
   192  	// explicitly requested gzip it is not automatically
   193  	// uncompressed.
   194  	DisableCompression bool
   195  
   196  	// MaxIdleConns controls the maximum number of idle (keep-alive)
   197  	// connections across all hosts. Zero means no limit.
   198  	MaxIdleConns int
   199  
   200  	// MaxIdleConnsPerHost, if non-zero, controls the maximum idle
   201  	// (keep-alive) connections to keep per-host. If zero,
   202  	// DefaultMaxIdleConnsPerHost is used.
   203  	MaxIdleConnsPerHost int
   204  
   205  	// MaxConnsPerHost optionally limits the total number of
   206  	// connections per host, including connections in the dialing,
   207  	// active, and idle states. On limit violation, dials will block.
   208  	//
   209  	// Zero means no limit.
   210  	MaxConnsPerHost int
   211  
   212  	// IdleConnTimeout is the maximum amount of time an idle
   213  	// (keep-alive) connection will remain idle before closing
   214  	// itself.
   215  	// Zero means no limit.
   216  	IdleConnTimeout time.Duration
   217  
   218  	// ResponseHeaderTimeout, if non-zero, specifies the amount of
   219  	// time to wait for a server's response headers after fully
   220  	// writing the request (including its body, if any). This
   221  	// time does not include the time to read the response body.
   222  	ResponseHeaderTimeout time.Duration
   223  
   224  	// ExpectContinueTimeout, if non-zero, specifies the amount of
   225  	// time to wait for a server's first response headers after fully
   226  	// writing the request headers if the request has an
   227  	// "Expect: 100-continue" header. Zero means no timeout and
   228  	// causes the body to be sent immediately, without
   229  	// waiting for the server to approve.
   230  	// This time does not include the time to send the request header.
   231  	ExpectContinueTimeout time.Duration
   232  
   233  	// TLSNextProto specifies how the Transport switches to an
   234  	// alternate protocol (such as HTTP/2) after a TLS ALPN
   235  	// protocol negotiation. If Transport dials an TLS connection
   236  	// with a non-empty protocol name and TLSNextProto contains a
   237  	// map entry for that Key (such as "h2"), then the func is
   238  	// called with the request's authority (such as "example.com"
   239  	// or "example.com:1234") and the TLS connection. The function
   240  	// must return a RoundTripper that then handles the request.
   241  	// If TLSNextProto is not nil, HTTP/2 support is not enabled
   242  	// automatically.
   243  	TLSNextProto map[string]func(authority string, c *tls.Conn) RoundTripper
   244  
   245  	// ProxyConnectHeader optionally specifies headers to send to
   246  	// proxies during CONNECT requests.
   247  	// To set the header dynamically, see GetProxyConnectHeader.
   248  	ProxyConnectHeader Header
   249  
   250  	// GetProxyConnectHeader optionally specifies a func to return
   251  	// headers to send to proxyURL during a CONNECT request to the
   252  	// ip:port target.
   253  	// If it returns an error, the Transport's RoundTrip fails with
   254  	// that error. It can return (nil, nil) to not add headers.
   255  	// If GetProxyConnectHeader is non-nil, ProxyConnectHeader is
   256  	// ignored.
   257  	GetProxyConnectHeader func(ctx context.Context, proxyURL *url.URL, target string) (Header, error)
   258  
   259  	// MaxResponseHeaderBytes specifies a limit on how many
   260  	// response bytes are allowed in the server's response
   261  	// header.
   262  	//
   263  	// Zero means to use a default limit.
   264  	MaxResponseHeaderBytes int64
   265  
   266  	// WriteBufferSize specifies the size of the write buffer used
   267  	// when writing to the transport.
   268  	// If zero, a default (currently 4KB) is used.
   269  	WriteBufferSize int
   270  
   271  	// ReadBufferSize specifies the size of the read buffer used
   272  	// when reading from the transport.
   273  	// If zero, a default (currently 4KB) is used.
   274  	ReadBufferSize int
   275  
   276  	// nextProtoOnce guards initialization of TLSNextProto and
   277  	// h2transport (via onceSetNextProtoDefaults)
   278  	nextProtoOnce      sync.Once
   279  	H2transport        h2Transport // non-nil if http2 wired up
   280  	tlsNextProtoWasNil bool        // whether TLSNextProto was nil when the Once fired
   281  
   282  	// ForceAttemptHTTP2 controls whether HTTP/2 is enabled when a non-zero
   283  	// Dial, DialTLS, or DialContext func or TLSClientConfig is provided.
   284  	// By default, use of any those fields conservatively disables HTTP/2.
   285  	// To use a custom dialer or TLS config and still attempt HTTP/2
   286  	// upgrades, set this to true.
   287  	ForceAttemptHTTP2 bool
   288  }
   289  
   290  // A cancelKey is the Key of the reqCanceler map.
   291  // We wrap the *Request in this type since we want to use the original request,
   292  // not any transient one created by roundTrip.
   293  type cancelKey struct {
   294  	req *Request
   295  }
   296  
   297  func (t *Transport) writeBufferSize() int {
   298  	if t.WriteBufferSize > 0 {
   299  		return t.WriteBufferSize
   300  	}
   301  	return 4 << 10
   302  }
   303  
   304  func (t *Transport) readBufferSize() int {
   305  	if t.ReadBufferSize > 0 {
   306  		return t.ReadBufferSize
   307  	}
   308  	return 4 << 10
   309  }
   310  
   311  // Clone returns a deep copy of t's exported fields.
   312  func (t *Transport) Clone() *Transport {
   313  	t.nextProtoOnce.Do(t.onceSetNextProtoDefaults)
   314  	t2 := &Transport{
   315  		Proxy:                  t.Proxy,
   316  		DialContext:            t.DialContext,
   317  		Dial:                   t.Dial,
   318  		DialTLS:                t.DialTLS,
   319  		DialTLSContext:         t.DialTLSContext,
   320  		TLSHandshakeTimeout:    t.TLSHandshakeTimeout,
   321  		DisableKeepAlives:      t.DisableKeepAlives,
   322  		DisableCompression:     t.DisableCompression,
   323  		MaxIdleConns:           t.MaxIdleConns,
   324  		MaxIdleConnsPerHost:    t.MaxIdleConnsPerHost,
   325  		MaxConnsPerHost:        t.MaxConnsPerHost,
   326  		IdleConnTimeout:        t.IdleConnTimeout,
   327  		ResponseHeaderTimeout:  t.ResponseHeaderTimeout,
   328  		ExpectContinueTimeout:  t.ExpectContinueTimeout,
   329  		ProxyConnectHeader:     t.ProxyConnectHeader.Clone(),
   330  		GetProxyConnectHeader:  t.GetProxyConnectHeader,
   331  		MaxResponseHeaderBytes: t.MaxResponseHeaderBytes,
   332  		ForceAttemptHTTP2:      t.ForceAttemptHTTP2,
   333  		WriteBufferSize:        t.WriteBufferSize,
   334  		ReadBufferSize:         t.ReadBufferSize,
   335  	}
   336  	if t.TLSClientConfig != nil {
   337  		t2.TLSClientConfig = t.TLSClientConfig.Clone()
   338  	}
   339  	if !t.tlsNextProtoWasNil {
   340  		npm := map[string]func(authority string, c *tls.Conn) RoundTripper{}
   341  		for k, v := range t.TLSNextProto {
   342  			npm[k] = v
   343  		}
   344  		t2.TLSNextProto = npm
   345  	}
   346  	return t2
   347  }
   348  
   349  // h2Transport is the interface we expect to be able to call from
   350  // net/http against an *http2.Transport that's either bundled into
   351  // h2_bundle.go or supplied by the user via x/net/http2.
   352  //
   353  // We name it with the "h2" prefix to stay out of the "http2" prefix
   354  // namespace used by x/tools/cmd/bundle for h2_bundle.go.
   355  type h2Transport interface {
   356  	CloseIdleConnections()
   357  }
   358  
   359  func (t *Transport) hasCustomTLSDialer() bool {
   360  	return t.DialTLS != nil || t.DialTLSContext != nil
   361  }
   362  
   363  // onceSetNextProtoDefaults initializes TLSNextProto.
   364  // It must be called via t.nextProtoOnce.Do.
   365  func (t *Transport) onceSetNextProtoDefaults() {
   366  	t.tlsNextProtoWasNil = (t.TLSNextProto == nil)
   367  	if strings.Contains(os.Getenv("GODEBUG"), "http2client=0") {
   368  		return
   369  	}
   370  
   371  	// If they've already configured http2 with
   372  	// golang.org/x/net/http2 instead of the bundled copy, try to
   373  	// get at its http2.Transport value (via the "https"
   374  	// altproto map) so we can call CloseIdleConnections on it if
   375  	// requested. (Issue 22891)
   376  	altProto, _ := t.altProto.Load().(map[string]RoundTripper)
   377  	if rv := reflect.ValueOf(altProto["https"]); rv.IsValid() && rv.Type().Kind() == reflect.Struct && rv.Type().NumField() == 1 {
   378  		if v := rv.Field(0); v.CanInterface() {
   379  			if h2i, ok := v.Interface().(h2Transport); ok {
   380  				t.H2transport = h2i
   381  				return
   382  			}
   383  		}
   384  	}
   385  
   386  	if t.TLSNextProto != nil {
   387  		// This is the documented way to disable http2 on a
   388  		// Transport.
   389  		return
   390  	}
   391  	if !t.ForceAttemptHTTP2 && (t.TLSClientConfig != nil || t.Dial != nil || t.DialContext != nil || t.hasCustomTLSDialer()) {
   392  		// Be conservative and don't automatically enable
   393  		// http2 if they've specified a custom TLS config or
   394  		// custom dialers. Let them opt-in themselves via
   395  		// http2.ConfigureTransport so we don't surprise them
   396  		// by modifying their tls.Config. Issue 14275.
   397  		// However, if ForceAttemptHTTP2 is true, it overrides the above checks.
   398  		return
   399  	}
   400  	if omitBundledHTTP2 {
   401  		return
   402  	}
   403  
   404  	if t.H2transport == nil {
   405  		t2, err := http2configureTransports(t)
   406  		if err != nil {
   407  			log.Printf("error enabling Transport HTTP/2 support: %v", err)
   408  			return
   409  		}
   410  		t.H2transport = t2
   411  	}
   412  }
   413  
   414  // ProxyFromEnvironment returns the URL of the proxy to use for a
   415  // given request, as indicated by the environment variables
   416  // HTTP_PROXY, HTTPS_PROXY and NO_PROXY (or the lowercase versions
   417  // thereof). HTTPS_PROXY takes precedence over HTTP_PROXY for https
   418  // requests.
   419  //
   420  // The environment Values may be either a complete URL or a
   421  // "host[:port]", in which case the "http" scheme is assumed.
   422  // An error is returned if the value is a different form.
   423  //
   424  // A nil URL and nil error are returned if no proxy is defined in the
   425  // environment, or a proxy should not be used for the given request,
   426  // as defined by NO_PROXY.
   427  //
   428  // As a special case, if req.URL.Host is "localhost" (with or without
   429  // a port number), then a nil URL and nil error will be returned.
   430  func ProxyFromEnvironment(req *Request) (*url.URL, error) {
   431  	return envProxyFunc()(req.URL)
   432  }
   433  
   434  // ProxyURL returns a proxy function (for use in a Transport)
   435  // that always returns the same URL.
   436  func ProxyURL(fixedURL *url.URL) func(*Request) (*url.URL, error) {
   437  	return func(*Request) (*url.URL, error) {
   438  		return fixedURL, nil
   439  	}
   440  }
   441  
   442  // transportRequest is a wrapper around a *Request that adds
   443  // optional extra headers to write and stores any error to return
   444  // from roundTrip.
   445  type transportRequest struct {
   446  	*Request                         // original request, not to be mutated
   447  	extra     Header                 // extra headers to write, or nil
   448  	trace     *httptrace.ClientTrace // optional
   449  	cancelKey cancelKey
   450  
   451  	mu  sync.Mutex // guards err
   452  	err error      // first setError value for mapRoundTripError to consider
   453  }
   454  
   455  func (tr *transportRequest) extraHeaders() Header {
   456  	if tr.extra == nil {
   457  		tr.extra = make(Header)
   458  	}
   459  	return tr.extra
   460  }
   461  
   462  func (tr *transportRequest) setError(err error) {
   463  	tr.mu.Lock()
   464  	if tr.err == nil {
   465  		tr.err = err
   466  	}
   467  	tr.mu.Unlock()
   468  }
   469  
   470  // useRegisteredProtocol reports whether an alternate protocol (as registered
   471  // with Transport.RegisterProtocol) should be respected for this request.
   472  func (t *Transport) useRegisteredProtocol(req *Request) bool {
   473  	if req.URL.Scheme == "https" && req.requiresHTTP1() {
   474  		// If this request requires HTTP/1, don't use the
   475  		// "https" alternate protocol, which is used by the
   476  		// HTTP/2 code to take over requests if there's an
   477  		// existing cached HTTP/2 connection.
   478  		return false
   479  	}
   480  	return true
   481  }
   482  
   483  // alternateRoundTripper returns the alternate RoundTripper to use
   484  // for this request if the Request's URL scheme requires one,
   485  // or nil for the normal case of using the Transport.
   486  func (t *Transport) alternateRoundTripper(req *Request) RoundTripper {
   487  	if !t.useRegisteredProtocol(req) {
   488  		return nil
   489  	}
   490  	altProto, _ := t.altProto.Load().(map[string]RoundTripper)
   491  	return altProto[req.URL.Scheme]
   492  }
   493  
   494  // roundTrip implements a RoundTripper over HTTP.
   495  func (t *Transport) roundTrip(req *Request) (*Response, error) {
   496  	t.nextProtoOnce.Do(t.onceSetNextProtoDefaults)
   497  	ctx := req.Context()
   498  	trace := httptrace.ContextClientTrace(ctx)
   499  
   500  	if req.URL == nil {
   501  		req.closeBody()
   502  		return nil, errors.New("http: nil Request.URL")
   503  	}
   504  	if req.Header == nil {
   505  		req.closeBody()
   506  		return nil, errors.New("http: nil Request.Header")
   507  	}
   508  	scheme := req.URL.Scheme
   509  	isHTTP := scheme == "http" || scheme == "https"
   510  	if isHTTP {
   511  		for k, vv := range req.Header {
   512  			if !httpguts.ValidHeaderFieldName(k) {
   513  				// Allow the HeaderOrderKey and PHeaderOrderKey magic string, this will be handled further.
   514  				if k == HeaderOrderKey || k == PHeaderOrderKey {
   515  					continue
   516  				}
   517  				req.closeBody()
   518  				return nil, fmt.Errorf("net/http: invalid header field name %q", k)
   519  			}
   520  			for _, v := range vv {
   521  				if !httpguts.ValidHeaderFieldValue(v) {
   522  					req.closeBody()
   523  					return nil, fmt.Errorf("net/http: invalid header field value %q for Key %v", v, k)
   524  				}
   525  			}
   526  		}
   527  	}
   528  
   529  	origReq := req
   530  	cancelKey := cancelKey{origReq}
   531  	req = setupRewindBody(req)
   532  
   533  	if altRT := t.alternateRoundTripper(req); altRT != nil {
   534  		if resp, err := altRT.RoundTrip(req); err != ErrSkipAltProtocol {
   535  			return resp, err
   536  		}
   537  		var err error
   538  		req, err = rewindBody(req)
   539  		if err != nil {
   540  			return nil, err
   541  		}
   542  	}
   543  	if !isHTTP {
   544  		req.closeBody()
   545  		return nil, badStringError("unsupported protocol scheme", scheme)
   546  	}
   547  	if req.Method != "" && !validMethod(req.Method) {
   548  		req.closeBody()
   549  		return nil, fmt.Errorf("net/http: invalid method %q", req.Method)
   550  	}
   551  	if req.URL.Host == "" {
   552  		req.closeBody()
   553  		return nil, errors.New("http: no Host in request URL")
   554  	}
   555  
   556  	for {
   557  		select {
   558  		case <-ctx.Done():
   559  			req.closeBody()
   560  			return nil, ctx.Err()
   561  		default:
   562  		}
   563  
   564  		// treq gets modified by roundTrip, so we need to recreate for each retry.
   565  		treq := &transportRequest{Request: req, trace: trace, cancelKey: cancelKey}
   566  
   567  		// Creates CONNECT method, is method to add proxy connection to req
   568  		cm, err := t.connectMethodForRequest(treq)
   569  		if err != nil {
   570  			req.closeBody()
   571  			return nil, err
   572  		}
   573  
   574  		// Get the cached or newly-created connection to either the
   575  		// host (for http or https), the http proxy, or the http proxy
   576  		// pre-CONNECTed to https server. In any case, we'll be ready
   577  		// to send it requests.
   578  		pconn, err := t.getConn(treq, cm)
   579  		if err != nil {
   580  			t.setReqCanceler(cancelKey, nil)
   581  			req.closeBody()
   582  			return nil, err
   583  		}
   584  
   585  		var resp *Response
   586  		if pconn.alt != nil {
   587  			// HTTP/2 path.
   588  			t.setReqCanceler(cancelKey, nil) // not cancelable with CancelRequest
   589  			resp, err = pconn.alt.RoundTrip(req)
   590  		} else {
   591  			resp, err = pconn.roundTrip(treq)
   592  		}
   593  		if err == nil {
   594  			resp.Request = origReq
   595  			return resp, nil
   596  		}
   597  
   598  		// Failed. Clean up and determine whether to retry.
   599  		if http2isNoCachedConnError(err) {
   600  			if t.removeIdleConn(pconn) {
   601  				t.decConnsPerHost(pconn.cacheKey)
   602  			}
   603  		} else if !pconn.shouldRetryRequest(req, err) {
   604  			// Issue 16465: return underlying net.Conn.Read error from peek,
   605  			// as we've historically done.
   606  			if e, ok := err.(transportReadFromServerError); ok {
   607  				err = e.err
   608  			}
   609  			return nil, err
   610  		}
   611  		testHookRoundTripRetried()
   612  
   613  		// Rewind the body if we're able to.
   614  		req, err = rewindBody(req)
   615  		if err != nil {
   616  			return nil, err
   617  		}
   618  	}
   619  }
   620  
   621  var errCannotRewind = errors.New("net/http: cannot rewind body after connection loss")
   622  
   623  type readTrackingBody struct {
   624  	io.ReadCloser
   625  	didRead  bool
   626  	didClose bool
   627  }
   628  
   629  func (r *readTrackingBody) Read(data []byte) (int, error) {
   630  	r.didRead = true
   631  	return r.ReadCloser.Read(data)
   632  }
   633  
   634  func (r *readTrackingBody) Close() error {
   635  	r.didClose = true
   636  	return r.ReadCloser.Close()
   637  }
   638  
   639  // setupRewindBody returns a new request with a custom body wrapper
   640  // that can report whether the body needs rewinding.
   641  // This lets rewindBody avoid an error result when the request
   642  // does not have GetBody but the body hasn't been read at all yet.
   643  func setupRewindBody(req *Request) *Request {
   644  	if req.Body == nil || req.Body == NoBody {
   645  		return req
   646  	}
   647  	newReq := *req
   648  	newReq.Body = &readTrackingBody{ReadCloser: req.Body}
   649  	return &newReq
   650  }
   651  
   652  // rewindBody returns a new request with the body rewound.
   653  // It returns req unmodified if the body does not need rewinding.
   654  // rewindBody takes care of closing req.Body when appropriate
   655  // (in all cases except when rewindBody returns req unmodified).
   656  func rewindBody(req *Request) (rewound *Request, err error) {
   657  	if req.Body == nil || req.Body == NoBody || (!req.Body.(*readTrackingBody).didRead && !req.Body.(*readTrackingBody).didClose) {
   658  		return req, nil // nothing to rewind
   659  	}
   660  	if !req.Body.(*readTrackingBody).didClose {
   661  		req.closeBody()
   662  	}
   663  	if req.GetBody == nil {
   664  		return nil, errCannotRewind
   665  	}
   666  	body, err := req.GetBody()
   667  	if err != nil {
   668  		return nil, err
   669  	}
   670  	newReq := *req
   671  	newReq.Body = &readTrackingBody{ReadCloser: body}
   672  	return &newReq, nil
   673  }
   674  
   675  // shouldRetryRequest reports whether we should retry sending a failed
   676  // HTTP request on a new connection. The non-nil input error is the
   677  // error from roundTrip.
   678  func (pc *persistConn) shouldRetryRequest(req *Request, err error) bool {
   679  	if http2isNoCachedConnError(err) {
   680  		// Issue 16582: if the user started a bunch of
   681  		// requests at once, they can all pick the same conn
   682  		// and violate the server's max concurrent streams.
   683  		// Instead, match the HTTP/1 behavior for now and dial
   684  		// again to get a new TCP connection, rather than failing
   685  		// this request.
   686  		return true
   687  	}
   688  	if err == errMissingHost {
   689  		// User error.
   690  		return false
   691  	}
   692  	if !pc.isReused() {
   693  		// This was a fresh connection. There's no reason the server
   694  		// should've hung up on us.
   695  		//
   696  		// Also, if we retried now, we could loop forever
   697  		// creating new connections and retrying if the server
   698  		// is just hanging up on us because it doesn't like
   699  		// our request (as opposed to sending an error).
   700  		return false
   701  	}
   702  	if _, ok := err.(nothingWrittenError); ok {
   703  		// We never wrote anything, so it's safe to retry, if there's no body or we
   704  		// can "rewind" the body with GetBody.
   705  		return req.outgoingLength() == 0 || req.GetBody != nil
   706  	}
   707  	if !req.isReplayable() {
   708  		// Don't retry non-idempotent requests.
   709  		return false
   710  	}
   711  	if _, ok := err.(transportReadFromServerError); ok {
   712  		// We got some non-EOF net.Conn.Read failure reading
   713  		// the 1st response byte from the server.
   714  		return true
   715  	}
   716  	if err == errServerClosedIdle {
   717  		// The server replied with io.EOF while we were trying to
   718  		// read the response. Probably an unfortunately keep-alive
   719  		// timeout, just as the client was writing a request.
   720  		return true
   721  	}
   722  	return false // conservatively
   723  }
   724  
   725  // ErrSkipAltProtocol is a sentinel error value defined by Transport.RegisterProtocol.
   726  var ErrSkipAltProtocol = errors.New("net/http: skip alternate protocol")
   727  
   728  // RegisterProtocol registers a new protocol with scheme.
   729  // The Transport will pass requests using the given scheme to rt.
   730  // It is rt's responsibility to simulate HTTP request semantics.
   731  //
   732  // RegisterProtocol can be used by other packages to provide
   733  // implementations of protocol schemes like "ftp" or "file".
   734  //
   735  // If rt.RoundTrip returns ErrSkipAltProtocol, the Transport will
   736  // handle the RoundTrip itself for that one request, as if the
   737  // protocol were not registered.
   738  func (t *Transport) RegisterProtocol(scheme string, rt RoundTripper) {
   739  	t.altMu.Lock()
   740  	defer t.altMu.Unlock()
   741  	oldMap, _ := t.altProto.Load().(map[string]RoundTripper)
   742  	if _, exists := oldMap[scheme]; exists {
   743  		panic("protocol " + scheme + " already registered")
   744  	}
   745  	newMap := make(map[string]RoundTripper)
   746  	for k, v := range oldMap {
   747  		newMap[k] = v
   748  	}
   749  	newMap[scheme] = rt
   750  	t.altProto.Store(newMap)
   751  }
   752  
   753  // CloseIdleConnections closes any connections which were previously
   754  // connected from previous requests but are now sitting idle in
   755  // a "keep-alive" state. It does not interrupt any connections currently
   756  // in use.
   757  func (t *Transport) CloseIdleConnections() {
   758  	t.nextProtoOnce.Do(t.onceSetNextProtoDefaults)
   759  	t.idleMu.Lock()
   760  	m := t.idleConn
   761  	t.idleConn = nil
   762  	t.closeIdle = true // close newly idle connections
   763  	t.idleLRU = connLRU{}
   764  	t.idleMu.Unlock()
   765  	for _, conns := range m {
   766  		for _, pconn := range conns {
   767  			pconn.close(errCloseIdleConns)
   768  		}
   769  	}
   770  	if t2 := t.H2transport; t2 != nil {
   771  		t2.CloseIdleConnections()
   772  	}
   773  }
   774  
   775  // CancelRequest cancels an in-flight request by closing its connection.
   776  // CancelRequest should only be called after RoundTrip has returned.
   777  //
   778  // Deprecated: Use Request.WithContext to create a request with a
   779  // cancelable context instead. CancelRequest cannot cancel HTTP/2
   780  // requests.
   781  func (t *Transport) CancelRequest(req *Request) {
   782  	t.cancelRequest(cancelKey{req}, errRequestCanceled)
   783  }
   784  
   785  // Cancel an in-flight request, recording the error value.
   786  // Returns whether the request was canceled.
   787  func (t *Transport) cancelRequest(key cancelKey, err error) bool {
   788  	t.reqMu.Lock()
   789  	cancel := t.reqCanceler[key]
   790  	delete(t.reqCanceler, key)
   791  	t.reqMu.Unlock()
   792  	if cancel != nil {
   793  		cancel(err)
   794  	}
   795  
   796  	return cancel != nil
   797  }
   798  
   799  //
   800  // Private implementation past this point.
   801  //
   802  
   803  var (
   804  	// proxyConfigOnce guards proxyConfig
   805  	envProxyOnce      sync.Once
   806  	envProxyFuncValue func(*url.URL) (*url.URL, error)
   807  )
   808  
   809  // defaultProxyConfig returns a ProxyConfig value looked up
   810  // from the environment. This mitigates expensive lookups
   811  // on some platforms (e.g. Windows).
   812  func envProxyFunc() func(*url.URL) (*url.URL, error) {
   813  	envProxyOnce.Do(func() {
   814  		envProxyFuncValue = httpproxy.FromEnvironment().ProxyFunc()
   815  	})
   816  	return envProxyFuncValue
   817  }
   818  
   819  // resetProxyConfig is used by tests.
   820  func resetProxyConfig() {
   821  	envProxyOnce = sync.Once{}
   822  	envProxyFuncValue = nil
   823  }
   824  
   825  func (t *Transport) connectMethodForRequest(treq *transportRequest) (cm connectMethod, err error) {
   826  	cm.targetScheme = treq.URL.Scheme
   827  	cm.targetAddr = canonicalAddr(treq.URL)
   828  	if t.Proxy != nil {
   829  		cm.proxyURL, err = t.Proxy(treq.Request)
   830  	}
   831  	cm.onlyH1 = treq.requiresHTTP1()
   832  	return cm, err
   833  }
   834  
   835  // proxyAuth returns the Proxy-Authorization header to set
   836  // on requests, if applicable.
   837  func (cm *connectMethod) proxyAuth() string {
   838  	if cm.proxyURL == nil {
   839  		return ""
   840  	}
   841  	if u := cm.proxyURL.User; u != nil {
   842  		username := u.Username()
   843  		password, _ := u.Password()
   844  		return "Basic " + basicAuth(username, password)
   845  	}
   846  	return ""
   847  }
   848  
   849  // error Values for debugging and testing, not seen by users.
   850  var (
   851  	errKeepAlivesDisabled = errors.New("http: putIdleConn: keep alives disabled")
   852  	errConnBroken         = errors.New("http: putIdleConn: connection is in bad state")
   853  	errCloseIdle          = errors.New("http: putIdleConn: CloseIdleConnections was called")
   854  	errTooManyIdle        = errors.New("http: putIdleConn: too many idle connections")
   855  	errTooManyIdleHost    = errors.New("http: putIdleConn: too many idle connections for host")
   856  	errCloseIdleConns     = errors.New("http: CloseIdleConnections called")
   857  	errReadLoopExiting    = errors.New("http: persistConn.readLoop exiting")
   858  	errIdleConnTimeout    = errors.New("http: idle connection timeout")
   859  
   860  	// errServerClosedIdle is not seen by users for idempotent requests, but may be
   861  	// seen by a user if the server shuts down an idle connection and sends its FIN
   862  	// in flight with already-written POST body bytes from the client.
   863  	// See https://github.com/golang/go/issues/19943#issuecomment-355607646
   864  	errServerClosedIdle = errors.New("http: server closed idle connection")
   865  )
   866  
   867  // transportReadFromServerError is used by Transport.readLoop when the
   868  // 1 byte peek read fails and we're actually anticipating a response.
   869  // Usually this is just due to the inherent keep-alive shut down race,
   870  // where the server closed the connection at the same time the client
   871  // wrote. The underlying err field is usually io.EOF or some
   872  // ECONNRESET sort of thing which varies by platform. But it might be
   873  // the user's custom net.Conn.Read error too, so we carry it along for
   874  // them to return from Transport.RoundTrip.
   875  type transportReadFromServerError struct {
   876  	err error
   877  }
   878  
   879  func (e transportReadFromServerError) Unwrap() error { return e.err }
   880  
   881  func (e transportReadFromServerError) Error() string {
   882  	return fmt.Sprintf("net/http: Transport failed to read from server: %v", e.err)
   883  }
   884  
   885  func (t *Transport) putOrCloseIdleConn(pconn *persistConn) {
   886  	if err := t.tryPutIdleConn(pconn); err != nil {
   887  		pconn.close(err)
   888  	}
   889  }
   890  
   891  func (t *Transport) maxIdleConnsPerHost() int {
   892  	if v := t.MaxIdleConnsPerHost; v != 0 {
   893  		return v
   894  	}
   895  	return DefaultMaxIdleConnsPerHost
   896  }
   897  
   898  // tryPutIdleConn adds pconn to the list of idle persistent connections awaiting
   899  // a new request.
   900  // If pconn is no longer needed or not in a good state, tryPutIdleConn returns
   901  // an error explaining why it wasn't registered.
   902  // tryPutIdleConn does not close pconn. Use putOrCloseIdleConn instead for that.
   903  func (t *Transport) tryPutIdleConn(pconn *persistConn) error {
   904  	if t.DisableKeepAlives || t.MaxIdleConnsPerHost < 0 {
   905  		return errKeepAlivesDisabled
   906  	}
   907  	if pconn.isBroken() {
   908  		return errConnBroken
   909  	}
   910  	pconn.markReused()
   911  
   912  	t.idleMu.Lock()
   913  	defer t.idleMu.Unlock()
   914  
   915  	// HTTP/2 (pconn.alt != nil) connections do not come out of the idle list,
   916  	// because multiple goroutines can use them simultaneously.
   917  	// If this is an HTTP/2 connection being “returned,” we're done.
   918  	if pconn.alt != nil && t.idleLRU.m[pconn] != nil {
   919  		return nil
   920  	}
   921  
   922  	// Deliver pconn to goroutine waiting for idle connection, if any.
   923  	// (They may be actively dialing, but this conn is ready first.
   924  	// Chrome calls this socket late binding.
   925  	// See https://www.chromium.org/developers/design-documents/network-stack#TOC-Connection-Management.)
   926  	key := pconn.cacheKey
   927  	if q, ok := t.idleConnWait[key]; ok {
   928  		done := false
   929  		if pconn.alt == nil {
   930  			// HTTP/1.
   931  			// Loop over the waiting list until we find a w that isn't done already, and hand it pconn.
   932  			for q.len() > 0 {
   933  				w := q.popFront()
   934  				if w.tryDeliver(pconn, nil) {
   935  					done = true
   936  					break
   937  				}
   938  			}
   939  		} else {
   940  			// HTTP/2.
   941  			// Can hand the same pconn to everyone in the waiting list,
   942  			// and we still won't be done: we want to put it in the idle
   943  			// list unconditionally, for any future clients too.
   944  			for q.len() > 0 {
   945  				w := q.popFront()
   946  				w.tryDeliver(pconn, nil)
   947  			}
   948  		}
   949  		if q.len() == 0 {
   950  			delete(t.idleConnWait, key)
   951  		} else {
   952  			t.idleConnWait[key] = q
   953  		}
   954  		if done {
   955  			return nil
   956  		}
   957  	}
   958  
   959  	if t.closeIdle {
   960  		return errCloseIdle
   961  	}
   962  	if t.idleConn == nil {
   963  		t.idleConn = make(map[connectMethodKey][]*persistConn)
   964  	}
   965  	idles := t.idleConn[key]
   966  	if len(idles) >= t.maxIdleConnsPerHost() {
   967  		return errTooManyIdleHost
   968  	}
   969  	for _, exist := range idles {
   970  		if exist == pconn {
   971  			log.Fatalf("dup idle pconn %p in freelist", pconn)
   972  		}
   973  	}
   974  	t.idleConn[key] = append(idles, pconn)
   975  	t.idleLRU.add(pconn)
   976  	if t.MaxIdleConns != 0 && t.idleLRU.len() > t.MaxIdleConns {
   977  		oldest := t.idleLRU.removeOldest()
   978  		oldest.close(errTooManyIdle)
   979  		t.removeIdleConnLocked(oldest)
   980  	}
   981  
   982  	// Set idle timer, but only for HTTP/1 (pconn.alt == nil).
   983  	// The HTTP/2 implementation manages the idle timer itself
   984  	// (see idleConnTimeout in h2_bundle.go).
   985  	if t.IdleConnTimeout > 0 && pconn.alt == nil {
   986  		if pconn.idleTimer != nil {
   987  			pconn.idleTimer.Reset(t.IdleConnTimeout)
   988  		} else {
   989  			pconn.idleTimer = time.AfterFunc(t.IdleConnTimeout, pconn.closeConnIfStillIdle)
   990  		}
   991  	}
   992  	pconn.idleAt = time.Now()
   993  	return nil
   994  }
   995  
   996  // queueForIdleConn queues w to receive the next idle connection for w.cm.
   997  // As an optimization hint to the caller, queueForIdleConn reports whether
   998  // it successfully delivered an already-idle connection.
   999  func (t *Transport) queueForIdleConn(w *wantConn) (delivered bool) {
  1000  	if t.DisableKeepAlives {
  1001  		return false
  1002  	}
  1003  
  1004  	t.idleMu.Lock()
  1005  	defer t.idleMu.Unlock()
  1006  
  1007  	// Stop closing connections that become idle - we might want one.
  1008  	// (That is, undo the effect of t.CloseIdleConnections.)
  1009  	t.closeIdle = false
  1010  
  1011  	if w == nil {
  1012  		// Happens in test hook.
  1013  		return false
  1014  	}
  1015  
  1016  	// If IdleConnTimeout is set, calculate the oldest
  1017  	// persistConn.idleAt time we're willing to use a cached idle
  1018  	// conn.
  1019  	var oldTime time.Time
  1020  	if t.IdleConnTimeout > 0 {
  1021  		oldTime = time.Now().Add(-t.IdleConnTimeout)
  1022  	}
  1023  
  1024  	// Look for most recently-used idle connection.
  1025  	if list, ok := t.idleConn[w.key]; ok {
  1026  		stop := false
  1027  		delivered := false
  1028  		for len(list) > 0 && !stop {
  1029  			pconn := list[len(list)-1]
  1030  
  1031  			// See whether this connection has been idle too long, considering
  1032  			// only the wall time (the Round(0)), in case this is a laptop or VM
  1033  			// coming out of suspend with previously cached idle connections.
  1034  			tooOld := !oldTime.IsZero() && pconn.idleAt.Round(0).Before(oldTime)
  1035  			if tooOld {
  1036  				// Async cleanup. Launch in its own goroutine (as if a
  1037  				// time.AfterFunc called it); it acquires idleMu, which we're
  1038  				// holding, and does a synchronous net.Conn.Close.
  1039  				go pconn.closeConnIfStillIdle()
  1040  			}
  1041  			if pconn.isBroken() || tooOld {
  1042  				// If either persistConn.readLoop has marked the connection
  1043  				// broken, but Transport.removeIdleConn has not yet removed it
  1044  				// from the idle list, or if this persistConn is too old (it was
  1045  				// idle too long), then ignore it and look for another. In both
  1046  				// cases it's already in the process of being closed.
  1047  				list = list[:len(list)-1]
  1048  				continue
  1049  			}
  1050  			delivered = w.tryDeliver(pconn, nil)
  1051  			if delivered {
  1052  				if pconn.alt != nil {
  1053  					// HTTP/2: multiple clients can share pconn.
  1054  					// Leave it in the list.
  1055  				} else {
  1056  					// HTTP/1: only one client can use pconn.
  1057  					// Remove it from the list.
  1058  					t.idleLRU.remove(pconn)
  1059  					list = list[:len(list)-1]
  1060  				}
  1061  			}
  1062  			stop = true
  1063  		}
  1064  		if len(list) > 0 {
  1065  			t.idleConn[w.key] = list
  1066  		} else {
  1067  			delete(t.idleConn, w.key)
  1068  		}
  1069  		if stop {
  1070  			return delivered
  1071  		}
  1072  	}
  1073  
  1074  	// Register to receive next connection that becomes idle.
  1075  	if t.idleConnWait == nil {
  1076  		t.idleConnWait = make(map[connectMethodKey]wantConnQueue)
  1077  	}
  1078  	q := t.idleConnWait[w.key]
  1079  	q.cleanFront()
  1080  	q.pushBack(w)
  1081  	t.idleConnWait[w.key] = q
  1082  	return false
  1083  }
  1084  
  1085  // removeIdleConn marks pconn as dead.
  1086  func (t *Transport) removeIdleConn(pconn *persistConn) bool {
  1087  	t.idleMu.Lock()
  1088  	defer t.idleMu.Unlock()
  1089  	return t.removeIdleConnLocked(pconn)
  1090  }
  1091  
  1092  // t.idleMu must be held.
  1093  func (t *Transport) removeIdleConnLocked(pconn *persistConn) bool {
  1094  	if pconn.idleTimer != nil {
  1095  		pconn.idleTimer.Stop()
  1096  	}
  1097  	t.idleLRU.remove(pconn)
  1098  	key := pconn.cacheKey
  1099  	pconns := t.idleConn[key]
  1100  	var removed bool
  1101  	switch len(pconns) {
  1102  	case 0:
  1103  		// Nothing
  1104  	case 1:
  1105  		if pconns[0] == pconn {
  1106  			delete(t.idleConn, key)
  1107  			removed = true
  1108  		}
  1109  	default:
  1110  		for i, v := range pconns {
  1111  			if v != pconn {
  1112  				continue
  1113  			}
  1114  			// Slide down, keeping most recently-used
  1115  			// conns at the end.
  1116  			copy(pconns[i:], pconns[i+1:])
  1117  			t.idleConn[key] = pconns[:len(pconns)-1]
  1118  			removed = true
  1119  			break
  1120  		}
  1121  	}
  1122  	return removed
  1123  }
  1124  
  1125  func (t *Transport) setReqCanceler(key cancelKey, fn func(error)) {
  1126  	t.reqMu.Lock()
  1127  	defer t.reqMu.Unlock()
  1128  	if t.reqCanceler == nil {
  1129  		t.reqCanceler = make(map[cancelKey]func(error))
  1130  	}
  1131  	if fn != nil {
  1132  		t.reqCanceler[key] = fn
  1133  	} else {
  1134  		delete(t.reqCanceler, key)
  1135  	}
  1136  }
  1137  
  1138  // replaceReqCanceler replaces an existing cancel function. If there is no cancel function
  1139  // for the request, we don't set the function and return false.
  1140  // Since CancelRequest will clear the canceler, we can use the return value to detect if
  1141  // the request was canceled since the last setReqCancel call.
  1142  func (t *Transport) replaceReqCanceler(key cancelKey, fn func(error)) bool {
  1143  	t.reqMu.Lock()
  1144  	defer t.reqMu.Unlock()
  1145  	_, ok := t.reqCanceler[key]
  1146  	if !ok {
  1147  		return false
  1148  	}
  1149  	if fn != nil {
  1150  		t.reqCanceler[key] = fn
  1151  	} else {
  1152  		delete(t.reqCanceler, key)
  1153  	}
  1154  	return true
  1155  }
  1156  
  1157  var zeroDialer net.Dialer
  1158  
  1159  func (t *Transport) dial(ctx context.Context, network, addr string) (net.Conn, error) {
  1160  	if t.DialContext != nil {
  1161  		return t.DialContext(ctx, network, addr)
  1162  	}
  1163  	if t.Dial != nil {
  1164  		c, err := t.Dial(network, addr)
  1165  		if c == nil && err == nil {
  1166  			err = errors.New("net/http: Transport.Dial hook returned (nil, nil)")
  1167  		}
  1168  		return c, err
  1169  	}
  1170  	return zeroDialer.DialContext(ctx, network, addr)
  1171  }
  1172  
  1173  // A wantConn records state about a wanted connection
  1174  // (that is, an active call to getConn).
  1175  // The conn may be gotten by dialing or by finding an idle connection,
  1176  // or a cancellation may make the conn no longer wanted.
  1177  // These three options are racing against each other and use
  1178  // wantConn to coordinate and agree about the winning outcome.
  1179  type wantConn struct {
  1180  	cm    connectMethod
  1181  	key   connectMethodKey // cm.Key()
  1182  	ctx   context.Context  // context for dial
  1183  	ready chan struct{}    // closed when pc, err pair is delivered
  1184  
  1185  	// hooks for testing to know when dials are done
  1186  	// beforeDial is called in the getConn goroutine when the dial is queued.
  1187  	// afterDial is called when the dial is completed or cancelled.
  1188  	beforeDial func()
  1189  	afterDial  func()
  1190  
  1191  	mu  sync.Mutex // protects pc, err, close(ready)
  1192  	pc  *persistConn
  1193  	err error
  1194  }
  1195  
  1196  // waiting reports whether w is still waiting for an answer (connection or error).
  1197  func (w *wantConn) waiting() bool {
  1198  	select {
  1199  	case <-w.ready:
  1200  		return false
  1201  	default:
  1202  		return true
  1203  	}
  1204  }
  1205  
  1206  // tryDeliver attempts to deliver pc, err to w and reports whether it succeeded.
  1207  func (w *wantConn) tryDeliver(pc *persistConn, err error) bool {
  1208  	w.mu.Lock()
  1209  	defer w.mu.Unlock()
  1210  
  1211  	if w.pc != nil || w.err != nil {
  1212  		return false
  1213  	}
  1214  
  1215  	w.pc = pc
  1216  	w.err = err
  1217  	if w.pc == nil && w.err == nil {
  1218  		panic("net/http: internal error: misuse of tryDeliver")
  1219  	}
  1220  	close(w.ready)
  1221  	return true
  1222  }
  1223  
  1224  // cancel marks w as no longer wanting a result (for example, due to cancellation).
  1225  // If a connection has been delivered already, cancel returns it with t.putOrCloseIdleConn.
  1226  func (w *wantConn) cancel(t *Transport, err error) {
  1227  	w.mu.Lock()
  1228  	if w.pc == nil && w.err == nil {
  1229  		close(w.ready) // catch misbehavior in future delivery
  1230  	}
  1231  	pc := w.pc
  1232  	w.pc = nil
  1233  	w.err = err
  1234  	w.mu.Unlock()
  1235  
  1236  	if pc != nil {
  1237  		t.putOrCloseIdleConn(pc)
  1238  	}
  1239  }
  1240  
  1241  // A wantConnQueue is a queue of wantConns.
  1242  type wantConnQueue struct {
  1243  	// This is a queue, not a deque.
  1244  	// It is split into two stages - head[headPos:] and tail.
  1245  	// popFront is trivial (headPos++) on the first stage, and
  1246  	// pushBack is trivial (append) on the second stage.
  1247  	// If the first stage is empty, popFront can swap the
  1248  	// first and second stages to remedy the situation.
  1249  	//
  1250  	// This two-stage split is analogous to the use of two lists
  1251  	// in Okasaki's purely functional queue but without the
  1252  	// overhead of reversing the list when swapping stages.
  1253  	head    []*wantConn
  1254  	headPos int
  1255  	tail    []*wantConn
  1256  }
  1257  
  1258  // len returns the number of items in the queue.
  1259  func (q *wantConnQueue) len() int {
  1260  	return len(q.head) - q.headPos + len(q.tail)
  1261  }
  1262  
  1263  // pushBack adds w to the back of the queue.
  1264  func (q *wantConnQueue) pushBack(w *wantConn) {
  1265  	q.tail = append(q.tail, w)
  1266  }
  1267  
  1268  // popFront removes and returns the wantConn at the front of the queue.
  1269  func (q *wantConnQueue) popFront() *wantConn {
  1270  	if q.headPos >= len(q.head) {
  1271  		if len(q.tail) == 0 {
  1272  			return nil
  1273  		}
  1274  		// Pick up tail as new head, clear tail.
  1275  		q.head, q.headPos, q.tail = q.tail, 0, q.head[:0]
  1276  	}
  1277  	w := q.head[q.headPos]
  1278  	q.head[q.headPos] = nil
  1279  	q.headPos++
  1280  	return w
  1281  }
  1282  
  1283  // peekFront returns the wantConn at the front of the queue without removing it.
  1284  func (q *wantConnQueue) peekFront() *wantConn {
  1285  	if q.headPos < len(q.head) {
  1286  		return q.head[q.headPos]
  1287  	}
  1288  	if len(q.tail) > 0 {
  1289  		return q.tail[0]
  1290  	}
  1291  	return nil
  1292  }
  1293  
  1294  // cleanFront pops any wantConns that are no longer waiting from the head of the
  1295  // queue, reporting whether any were popped.
  1296  func (q *wantConnQueue) cleanFront() (cleaned bool) {
  1297  	for {
  1298  		w := q.peekFront()
  1299  		if w == nil || w.waiting() {
  1300  			return cleaned
  1301  		}
  1302  		q.popFront()
  1303  		cleaned = true
  1304  	}
  1305  }
  1306  
  1307  func (t *Transport) customDialTLS(ctx context.Context, network, addr string) (conn net.Conn, err error) {
  1308  	if t.DialTLSContext != nil {
  1309  		conn, err = t.DialTLSContext(ctx, network, addr)
  1310  	} else {
  1311  		conn, err = t.DialTLS(network, addr)
  1312  	}
  1313  	if conn == nil && err == nil {
  1314  		err = errors.New("net/http: Transport.DialTLS or DialTLSContext returned (nil, nil)")
  1315  	}
  1316  	return
  1317  }
  1318  
  1319  // getConn dials and creates a new persistConn to the target as
  1320  // specified in the connectMethod. This includes doing a proxy CONNECT
  1321  // and/or setting up TLS.  If this doesn't return an error, the persistConn
  1322  // is ready to write requests to.
  1323  func (t *Transport) getConn(treq *transportRequest, cm connectMethod) (pc *persistConn, err error) {
  1324  	req := treq.Request
  1325  	trace := treq.trace
  1326  	ctx := req.Context()
  1327  	if trace != nil && trace.GetConn != nil {
  1328  		trace.GetConn(cm.addr())
  1329  	}
  1330  
  1331  	w := &wantConn{
  1332  		cm:         cm,
  1333  		key:        cm.key(),
  1334  		ctx:        ctx,
  1335  		ready:      make(chan struct{}, 1),
  1336  		beforeDial: testHookPrePendingDial,
  1337  		afterDial:  testHookPostPendingDial,
  1338  	}
  1339  	defer func() {
  1340  		if err != nil {
  1341  			w.cancel(t, err)
  1342  		}
  1343  	}()
  1344  
  1345  	// Queue for idle connection.
  1346  	if delivered := t.queueForIdleConn(w); delivered {
  1347  		pc := w.pc
  1348  		// Trace only for HTTP/1.
  1349  		// HTTP/2 calls trace.GotConn itself.
  1350  		if pc.alt == nil && trace != nil && trace.GotConn != nil {
  1351  			trace.GotConn(pc.gotIdleConnTrace(pc.idleAt))
  1352  		}
  1353  		// set request canceler to some non-nil function so we
  1354  		// can detect whether it was cleared between now and when
  1355  		// we enter roundTrip
  1356  		t.setReqCanceler(treq.cancelKey, func(error) {})
  1357  		return pc, nil
  1358  	}
  1359  
  1360  	cancelc := make(chan error, 1)
  1361  	t.setReqCanceler(treq.cancelKey, func(err error) { cancelc <- err })
  1362  
  1363  	// Queue for permission to dial.
  1364  	t.queueForDial(w)
  1365  
  1366  	// Wait for completion or cancellation.
  1367  	select {
  1368  	case <-w.ready:
  1369  		// Trace success but only for HTTP/1.
  1370  		// HTTP/2 calls trace.GotConn itself.
  1371  		if w.pc != nil && w.pc.alt == nil && trace != nil && trace.GotConn != nil {
  1372  			trace.GotConn(httptrace.GotConnInfo{Conn: w.pc.conn, Reused: w.pc.isReused()})
  1373  		}
  1374  		if w.err != nil {
  1375  			// If the request has been cancelled, that's probably
  1376  			// what caused w.err; if so, prefer to return the
  1377  			// cancellation error (see golang.org/issue/16049).
  1378  			select {
  1379  			case <-req.Cancel:
  1380  				return nil, errRequestCanceledConn
  1381  			case <-req.Context().Done():
  1382  				return nil, req.Context().Err()
  1383  			case err := <-cancelc:
  1384  				if err == errRequestCanceled {
  1385  					err = errRequestCanceledConn
  1386  				}
  1387  				return nil, err
  1388  			default:
  1389  				// return below
  1390  			}
  1391  		}
  1392  		return w.pc, w.err
  1393  	case <-req.Cancel:
  1394  		return nil, errRequestCanceledConn
  1395  	case <-req.Context().Done():
  1396  		return nil, req.Context().Err()
  1397  	case err := <-cancelc:
  1398  		if err == errRequestCanceled {
  1399  			err = errRequestCanceledConn
  1400  		}
  1401  		return nil, err
  1402  	}
  1403  }
  1404  
  1405  // queueForDial queues w to wait for permission to begin dialing.
  1406  // Once w receives permission to dial, it will do so in a separate goroutine.
  1407  func (t *Transport) queueForDial(w *wantConn) {
  1408  	w.beforeDial()
  1409  	if t.MaxConnsPerHost <= 0 {
  1410  		go t.dialConnFor(w)
  1411  		return
  1412  	}
  1413  
  1414  	t.connsPerHostMu.Lock()
  1415  	defer t.connsPerHostMu.Unlock()
  1416  
  1417  	if n := t.connsPerHost[w.key]; n < t.MaxConnsPerHost {
  1418  		if t.connsPerHost == nil {
  1419  			t.connsPerHost = make(map[connectMethodKey]int)
  1420  		}
  1421  		t.connsPerHost[w.key] = n + 1
  1422  		go t.dialConnFor(w)
  1423  		return
  1424  	}
  1425  
  1426  	if t.connsPerHostWait == nil {
  1427  		t.connsPerHostWait = make(map[connectMethodKey]wantConnQueue)
  1428  	}
  1429  	q := t.connsPerHostWait[w.key]
  1430  	q.cleanFront()
  1431  	q.pushBack(w)
  1432  	t.connsPerHostWait[w.key] = q
  1433  }
  1434  
  1435  // dialConnFor dials on behalf of w and delivers the result to w.
  1436  // dialConnFor has received permission to dial w.cm and is counted in t.connCount[w.cm.Key()].
  1437  // If the dial is cancelled or unsuccessful, dialConnFor decrements t.connCount[w.cm.Key()].
  1438  func (t *Transport) dialConnFor(w *wantConn) {
  1439  	defer w.afterDial()
  1440  
  1441  	pc, err := t.dialConn(w.ctx, w.cm)
  1442  	delivered := w.tryDeliver(pc, err)
  1443  	if err == nil && (!delivered || pc.alt != nil) {
  1444  		// pconn was not passed to w,
  1445  		// or it is HTTP/2 and can be shared.
  1446  		// Add to the idle connection pool.
  1447  		t.putOrCloseIdleConn(pc)
  1448  	}
  1449  	if err != nil {
  1450  		t.decConnsPerHost(w.key)
  1451  	}
  1452  }
  1453  
  1454  // decConnsPerHost decrements the per-host connection count for Key,
  1455  // which may in turn give a different waiting goroutine permission to dial.
  1456  func (t *Transport) decConnsPerHost(key connectMethodKey) {
  1457  	if t.MaxConnsPerHost <= 0 {
  1458  		return
  1459  	}
  1460  
  1461  	t.connsPerHostMu.Lock()
  1462  	defer t.connsPerHostMu.Unlock()
  1463  	n := t.connsPerHost[key]
  1464  	if n == 0 {
  1465  		// Shouldn't happen, but if it does, the counting is buggy and could
  1466  		// easily lead to a silent deadlock, so report the problem loudly.
  1467  		panic("net/http: internal error: connCount underflow")
  1468  	}
  1469  
  1470  	// Can we hand this count to a goroutine still waiting to dial?
  1471  	// (Some goroutines on the wait list may have timed out or
  1472  	// gotten a connection another way. If they're all gone,
  1473  	// we don't want to kick off any spurious dial operations.)
  1474  	if q := t.connsPerHostWait[key]; q.len() > 0 {
  1475  		done := false
  1476  		for q.len() > 0 {
  1477  			w := q.popFront()
  1478  			if w.waiting() {
  1479  				go t.dialConnFor(w)
  1480  				done = true
  1481  				break
  1482  			}
  1483  		}
  1484  		if q.len() == 0 {
  1485  			delete(t.connsPerHostWait, key)
  1486  		} else {
  1487  			// q is a value (like a slice), so we have to store
  1488  			// the updated q back into the map.
  1489  			t.connsPerHostWait[key] = q
  1490  		}
  1491  		if done {
  1492  			return
  1493  		}
  1494  	}
  1495  
  1496  	// Otherwise, decrement the recorded count.
  1497  	if n--; n == 0 {
  1498  		delete(t.connsPerHost, key)
  1499  	} else {
  1500  		t.connsPerHost[key] = n
  1501  	}
  1502  }
  1503  
  1504  // Add TLS to a persistent connection, i.e. negotiate a TLS session. If pconn is already a TLS
  1505  // tunnel, this function establishes a nested TLS session inside the encrypted channel.
  1506  // The remote endpoint's name may be overridden by TLSClientConfig.ServerName.
  1507  func (pconn *persistConn) addTLS(name string, trace *httptrace.ClientTrace) error {
  1508  	// Initiate TLS and check remote host name against certificate.
  1509  	cfg := cloneTLSConfig(pconn.t.TLSClientConfig)
  1510  	if cfg.ServerName == "" {
  1511  		cfg.ServerName = name
  1512  	}
  1513  	if pconn.cacheKey.onlyH1 {
  1514  		cfg.NextProtos = nil
  1515  	}
  1516  	plainConn := pconn.conn
  1517  	tlsConn := tls.Client(plainConn, cfg)
  1518  	errc := make(chan error, 2)
  1519  	var timer *time.Timer // for canceling TLS handshake
  1520  	if d := pconn.t.TLSHandshakeTimeout; d != 0 {
  1521  		timer = time.AfterFunc(d, func() {
  1522  			errc <- tlsHandshakeTimeoutError{}
  1523  		})
  1524  	}
  1525  	go func() {
  1526  		if trace != nil && trace.TLSHandshakeStart != nil {
  1527  			trace.TLSHandshakeStart()
  1528  		}
  1529  		err := tlsConn.Handshake()
  1530  		if timer != nil {
  1531  			timer.Stop()
  1532  		}
  1533  		errc <- err
  1534  	}()
  1535  	if err := <-errc; err != nil {
  1536  		plainConn.Close()
  1537  		if trace != nil && trace.TLSHandshakeDone != nil {
  1538  			trace.TLSHandshakeDone(tls.ConnectionState{}, err)
  1539  		}
  1540  		return err
  1541  	}
  1542  	cs := tlsConn.ConnectionState()
  1543  	if trace != nil && trace.TLSHandshakeDone != nil {
  1544  		trace.TLSHandshakeDone(cs, nil)
  1545  	}
  1546  	pconn.tlsState = &cs
  1547  	pconn.conn = tlsConn
  1548  	return nil
  1549  }
  1550  
  1551  type erringRoundTripper interface {
  1552  	RoundTripErr() error
  1553  }
  1554  
  1555  func (t *Transport) dialConn(ctx context.Context, cm connectMethod) (pconn *persistConn, err error) {
  1556  	pconn = &persistConn{
  1557  		t:             t,
  1558  		cacheKey:      cm.key(),
  1559  		reqch:         make(chan requestAndChan, 1),
  1560  		writech:       make(chan writeRequest, 1),
  1561  		closech:       make(chan struct{}),
  1562  		writeErrCh:    make(chan error, 1),
  1563  		writeLoopDone: make(chan struct{}),
  1564  	}
  1565  	trace := httptrace.ContextClientTrace(ctx)
  1566  	wrapErr := func(err error) error {
  1567  		if cm.proxyURL != nil {
  1568  			// Return a typed error, per Issue 16997
  1569  			return &net.OpError{Op: "proxyconnect", Net: "tcp", Err: err}
  1570  		}
  1571  		return err
  1572  	}
  1573  	if cm.scheme() == "https" && t.hasCustomTLSDialer() {
  1574  		var err error
  1575  		pconn.conn, err = t.customDialTLS(ctx, "tcp", cm.addr())
  1576  		if err != nil {
  1577  			return nil, wrapErr(err)
  1578  		}
  1579  		if tc, ok := pconn.conn.(*tls.Conn); ok {
  1580  			// Handshake here, in case DialTLS didn't. TLSNextProto below
  1581  			// depends on it for knowing the connection state.
  1582  			if trace != nil && trace.TLSHandshakeStart != nil {
  1583  				trace.TLSHandshakeStart()
  1584  			}
  1585  			if err := tc.Handshake(); err != nil {
  1586  				go pconn.conn.Close()
  1587  				if trace != nil && trace.TLSHandshakeDone != nil {
  1588  					trace.TLSHandshakeDone(tls.ConnectionState{}, err)
  1589  				}
  1590  				return nil, err
  1591  			}
  1592  			cs := tc.ConnectionState()
  1593  			if trace != nil && trace.TLSHandshakeDone != nil {
  1594  				trace.TLSHandshakeDone(cs, nil)
  1595  			}
  1596  			pconn.tlsState = &cs
  1597  		}
  1598  	} else {
  1599  		conn, err := t.dial(ctx, "tcp", cm.addr())
  1600  		if err != nil {
  1601  			return nil, wrapErr(err)
  1602  		}
  1603  		pconn.conn = conn
  1604  		if cm.scheme() == "https" {
  1605  			var firstTLSHost string
  1606  			if firstTLSHost, _, err = net.SplitHostPort(cm.addr()); err != nil {
  1607  				return nil, wrapErr(err)
  1608  			}
  1609  			if err = pconn.addTLS(firstTLSHost, trace); err != nil {
  1610  				return nil, wrapErr(err)
  1611  			}
  1612  		}
  1613  	}
  1614  
  1615  	// Proxy setup.
  1616  	switch {
  1617  	case cm.proxyURL == nil:
  1618  		// Do nothing. Not using a proxy.
  1619  	case cm.proxyURL.Scheme == "socks5":
  1620  		conn := pconn.conn
  1621  		d := socksNewDialer("tcp", conn.RemoteAddr().String())
  1622  		if u := cm.proxyURL.User; u != nil {
  1623  			auth := &socksUsernamePassword{
  1624  				Username: u.Username(),
  1625  			}
  1626  			auth.Password, _ = u.Password()
  1627  			d.AuthMethods = []socksAuthMethod{
  1628  				socksAuthMethodNotRequired,
  1629  				socksAuthMethodUsernamePassword,
  1630  			}
  1631  			d.Authenticate = auth.Authenticate
  1632  		}
  1633  		if _, err := d.DialWithConn(ctx, conn, "tcp", cm.targetAddr); err != nil {
  1634  			conn.Close()
  1635  			return nil, err
  1636  		}
  1637  	case cm.targetScheme == "http":
  1638  		pconn.isProxy = true
  1639  		if pa := cm.proxyAuth(); pa != "" {
  1640  			pconn.mutateHeaderFunc = func(h Header) {
  1641  				h.Set("Proxy-Authorization", pa)
  1642  			}
  1643  		}
  1644  	case cm.targetScheme == "https":
  1645  		conn := pconn.conn
  1646  		var hdr Header
  1647  		if t.GetProxyConnectHeader != nil {
  1648  			var err error
  1649  			hdr, err = t.GetProxyConnectHeader(ctx, cm.proxyURL, cm.targetAddr)
  1650  			if err != nil {
  1651  				conn.Close()
  1652  				return nil, err
  1653  			}
  1654  		} else {
  1655  			hdr = t.ProxyConnectHeader
  1656  		}
  1657  		if hdr == nil {
  1658  			hdr = make(Header)
  1659  		}
  1660  		if pa := cm.proxyAuth(); pa != "" {
  1661  			hdr = hdr.Clone()
  1662  			hdr.Set("Proxy-Authorization", pa)
  1663  		}
  1664  		connectReq := &Request{
  1665  			Method: "CONNECT",
  1666  			URL:    &url.URL{Opaque: cm.targetAddr},
  1667  			Host:   cm.targetAddr,
  1668  			Header: hdr,
  1669  		}
  1670  
  1671  		// If there's no done channel (no deadline or cancellation
  1672  		// from the caller possible), at least set some (long)
  1673  		// timeout here. This will make sure we don't block forever
  1674  		// and leak a goroutine if the connection stops replying
  1675  		// after the TCP connect.
  1676  		connectCtx := ctx
  1677  		if ctx.Done() == nil {
  1678  			newCtx, cancel := context.WithTimeout(ctx, 1*time.Minute)
  1679  			defer cancel()
  1680  			connectCtx = newCtx
  1681  		}
  1682  
  1683  		didReadResponse := make(chan struct{}) // closed after CONNECT write+read is done or fails
  1684  		var (
  1685  			resp *Response
  1686  			err  error // write or read error
  1687  		)
  1688  		// Write the CONNECT request & read the response.
  1689  		go func() {
  1690  			defer close(didReadResponse)
  1691  			err = connectReq.Write(conn)
  1692  			if err != nil {
  1693  				return
  1694  			}
  1695  			// Okay to use and discard buffered reader here, because
  1696  			// TLS server will not speak until spoken to.
  1697  			br := bufio.NewReader(conn)
  1698  			resp, err = ReadResponse(br, connectReq)
  1699  		}()
  1700  		select {
  1701  		case <-connectCtx.Done():
  1702  			conn.Close()
  1703  			<-didReadResponse
  1704  			return nil, connectCtx.Err()
  1705  		case <-didReadResponse:
  1706  			// resp or err now set
  1707  		}
  1708  		if err != nil {
  1709  			conn.Close()
  1710  			return nil, err
  1711  		}
  1712  		if resp.StatusCode != 200 {
  1713  			f := strings.SplitN(resp.Status, " ", 2)
  1714  			conn.Close()
  1715  			if len(f) < 2 {
  1716  				return nil, errors.New("unknown status code")
  1717  			}
  1718  			return nil, errors.New(f[1])
  1719  		}
  1720  	}
  1721  
  1722  	if cm.proxyURL != nil && cm.targetScheme == "https" {
  1723  		if err := pconn.addTLS(cm.tlsHost(), trace); err != nil {
  1724  			return nil, err
  1725  		}
  1726  	}
  1727  
  1728  	if s := pconn.tlsState; s != nil && s.NegotiatedProtocolIsMutual && s.NegotiatedProtocol != "" {
  1729  		if next, ok := t.TLSNextProto[s.NegotiatedProtocol]; ok {
  1730  			alt := next(cm.targetAddr, pconn.conn.(*tls.Conn))
  1731  			if e, ok := alt.(erringRoundTripper); ok {
  1732  				// pconn.conn was closed by next (http2configureTransports.upgradeFn).
  1733  				return nil, e.RoundTripErr()
  1734  			}
  1735  			return &persistConn{t: t, cacheKey: pconn.cacheKey, alt: alt}, nil
  1736  		}
  1737  	}
  1738  
  1739  	pconn.br = bufio.NewReaderSize(pconn, t.readBufferSize())
  1740  	pconn.bw = bufio.NewWriterSize(persistConnWriter{pconn}, t.writeBufferSize())
  1741  
  1742  	go pconn.readLoop()
  1743  	go pconn.writeLoop()
  1744  	return pconn, nil
  1745  }
  1746  
  1747  // persistConnWriter is the io.Writer written to by pc.bw.
  1748  // It accumulates the number of bytes written to the underlying conn,
  1749  // so the retry logic can determine whether any bytes made it across
  1750  // the wire.
  1751  // This is exactly 1 pointer field wide so it can go into an interface
  1752  // without allocation.
  1753  type persistConnWriter struct {
  1754  	pc *persistConn
  1755  }
  1756  
  1757  func (w persistConnWriter) Write(p []byte) (n int, err error) {
  1758  	n, err = w.pc.conn.Write(p)
  1759  	w.pc.nwrite += int64(n)
  1760  	return
  1761  }
  1762  
  1763  // ReadFrom exposes persistConnWriter's underlying Conn to io.Copy and if
  1764  // the Conn implements io.ReaderFrom, it can take advantage of optimizations
  1765  // such as sendfile.
  1766  func (w persistConnWriter) ReadFrom(r io.Reader) (n int64, err error) {
  1767  	n, err = io.Copy(w.pc.conn, r)
  1768  	w.pc.nwrite += n
  1769  	return
  1770  }
  1771  
  1772  var _ io.ReaderFrom = (*persistConnWriter)(nil)
  1773  
  1774  // connectMethod is the map key (in its String form) for keeping persistent
  1775  // TCP connections alive for subsequent HTTP requests.
  1776  //
  1777  // A connect method may be of the following types:
  1778  //
  1779  //	connectMethod.key().String()      Description
  1780  //	------------------------------    -------------------------
  1781  //	|http|foo.com                     http directly to server, no proxy
  1782  //	|https|foo.com                    https directly to server, no proxy
  1783  //	|https,h1|foo.com                 https directly to server w/o HTTP/2, no proxy
  1784  //	http://proxy.com|https|foo.com    http to proxy, then CONNECT to foo.com
  1785  //	http://proxy.com|http             http to proxy, http to anywhere after that
  1786  //	socks5://proxy.com|http|foo.com   socks5 to proxy, then http to foo.com
  1787  //	socks5://proxy.com|https|foo.com  socks5 to proxy, then https to foo.com
  1788  //	https://proxy.com|https|foo.com   https to proxy, then CONNECT to foo.com
  1789  //	https://proxy.com|http            https to proxy, http to anywhere after that
  1790  //
  1791  type connectMethod struct {
  1792  	_            incomparable
  1793  	proxyURL     *url.URL // nil for no proxy, else full proxy URL
  1794  	targetScheme string   // "http" or "https"
  1795  	// If proxyURL specifies an http or https proxy, and targetScheme is http (not https),
  1796  	// then targetAddr is not included in the connect method key, because the socket can
  1797  	// be reused for different targetAddr Values.
  1798  	targetAddr string
  1799  	onlyH1     bool // whether to disable HTTP/2 and force HTTP/1
  1800  }
  1801  
  1802  func (cm *connectMethod) key() connectMethodKey {
  1803  	proxyStr := ""
  1804  	targetAddr := cm.targetAddr
  1805  	if cm.proxyURL != nil {
  1806  		proxyStr = cm.proxyURL.String()
  1807  		if (cm.proxyURL.Scheme == "http" || cm.proxyURL.Scheme == "https") && cm.targetScheme == "http" {
  1808  			targetAddr = ""
  1809  		}
  1810  	}
  1811  	return connectMethodKey{
  1812  		proxy:  proxyStr,
  1813  		scheme: cm.targetScheme,
  1814  		addr:   targetAddr,
  1815  		onlyH1: cm.onlyH1,
  1816  	}
  1817  }
  1818  
  1819  // scheme returns the first hop scheme: http, https, or socks5
  1820  func (cm *connectMethod) scheme() string {
  1821  	if cm.proxyURL != nil {
  1822  		return cm.proxyURL.Scheme
  1823  	}
  1824  	return cm.targetScheme
  1825  }
  1826  
  1827  // addr returns the first hop "host:port" to which we need to TCP connect.
  1828  func (cm *connectMethod) addr() string {
  1829  	if cm.proxyURL != nil {
  1830  		return canonicalAddr(cm.proxyURL)
  1831  	}
  1832  	return cm.targetAddr
  1833  }
  1834  
  1835  // tlsHost returns the host name to match against the peer's
  1836  // TLS certificate.
  1837  func (cm *connectMethod) tlsHost() string {
  1838  	h := cm.targetAddr
  1839  	if hasPort(h) {
  1840  		h = h[:strings.LastIndex(h, ":")]
  1841  	}
  1842  	return h
  1843  }
  1844  
  1845  // connectMethodKey is the map Key version of connectMethod, with a
  1846  // stringified proxy URL (or the empty string) instead of a pointer to
  1847  // a URL.
  1848  type connectMethodKey struct {
  1849  	proxy, scheme, addr string
  1850  	onlyH1              bool
  1851  }
  1852  
  1853  func (k connectMethodKey) String() string {
  1854  	// Only used by tests.
  1855  	var h1 string
  1856  	if k.onlyH1 {
  1857  		h1 = ",h1"
  1858  	}
  1859  	return fmt.Sprintf("%s|%s%s|%s", k.proxy, k.scheme, h1, k.addr)
  1860  }
  1861  
  1862  // persistConn wraps a connection, usually a persistent one
  1863  // (but may be used for non-keep-alive requests as well)
  1864  type persistConn struct {
  1865  	// alt optionally specifies the TLS NextProto RoundTripper.
  1866  	// This is used for HTTP/2 today and future protocols later.
  1867  	// If it's non-nil, the rest of the fields are unused.
  1868  	alt RoundTripper
  1869  
  1870  	t         *Transport
  1871  	cacheKey  connectMethodKey
  1872  	conn      net.Conn
  1873  	tlsState  *tls.ConnectionState
  1874  	br        *bufio.Reader       // from conn
  1875  	bw        *bufio.Writer       // to conn
  1876  	nwrite    int64               // bytes written
  1877  	reqch     chan requestAndChan // written by roundTrip; read by readLoop
  1878  	writech   chan writeRequest   // written by roundTrip; read by writeLoop
  1879  	closech   chan struct{}       // closed when conn closed
  1880  	isProxy   bool
  1881  	sawEOF    bool  // whether we've seen EOF from conn; owned by readLoop
  1882  	readLimit int64 // bytes allowed to be read; owned by readLoop
  1883  	// writeErrCh passes the request write error (usually nil)
  1884  	// from the writeLoop goroutine to the readLoop which passes
  1885  	// it off to the res.Body reader, which then uses it to decide
  1886  	// whether or not a connection can be reused. Issue 7569.
  1887  	writeErrCh chan error
  1888  
  1889  	writeLoopDone chan struct{} // closed when write loop ends
  1890  
  1891  	// Both guarded by Transport.idleMu:
  1892  	idleAt    time.Time   // time it last become idle
  1893  	idleTimer *time.Timer // holding an AfterFunc to close it
  1894  
  1895  	mu                   sync.Mutex // guards following fields
  1896  	numExpectedResponses int
  1897  	closed               error // set non-nil when conn is closed, before closech is closed
  1898  	canceledErr          error // set non-nil if conn is canceled
  1899  	broken               bool  // an error has happened on this connection; marked broken so it's not reused.
  1900  	reused               bool  // whether conn has had successful request/response and is being reused.
  1901  	// mutateHeaderFunc is an optional func to modify extra
  1902  	// headers on each outbound request before it's written. (the
  1903  	// original Request given to RoundTrip is not modified)
  1904  	mutateHeaderFunc func(Header)
  1905  }
  1906  
  1907  func (pc *persistConn) maxHeaderResponseSize() int64 {
  1908  	if v := pc.t.MaxResponseHeaderBytes; v != 0 {
  1909  		return v
  1910  	}
  1911  	return 10 << 20 // conservative default; same as http2
  1912  }
  1913  
  1914  func (pc *persistConn) Read(p []byte) (n int, err error) {
  1915  	if pc.readLimit <= 0 {
  1916  		return 0, fmt.Errorf("read limit of %d bytes exhausted", pc.maxHeaderResponseSize())
  1917  	}
  1918  	if int64(len(p)) > pc.readLimit {
  1919  		p = p[:pc.readLimit]
  1920  	}
  1921  	n, err = pc.conn.Read(p)
  1922  	if err == io.EOF {
  1923  		pc.sawEOF = true
  1924  	}
  1925  	pc.readLimit -= int64(n)
  1926  	return
  1927  }
  1928  
  1929  // isBroken reports whether this connection is in a known broken state.
  1930  func (pc *persistConn) isBroken() bool {
  1931  	pc.mu.Lock()
  1932  	b := pc.closed != nil
  1933  	pc.mu.Unlock()
  1934  	return b
  1935  }
  1936  
  1937  // canceled returns non-nil if the connection was closed due to
  1938  // CancelRequest or due to context cancellation.
  1939  func (pc *persistConn) canceled() error {
  1940  	pc.mu.Lock()
  1941  	defer pc.mu.Unlock()
  1942  	return pc.canceledErr
  1943  }
  1944  
  1945  // isReused reports whether this connection has been used before.
  1946  func (pc *persistConn) isReused() bool {
  1947  	pc.mu.Lock()
  1948  	r := pc.reused
  1949  	pc.mu.Unlock()
  1950  	return r
  1951  }
  1952  
  1953  func (pc *persistConn) gotIdleConnTrace(idleAt time.Time) (t httptrace.GotConnInfo) {
  1954  	pc.mu.Lock()
  1955  	defer pc.mu.Unlock()
  1956  	t.Reused = pc.reused
  1957  	t.Conn = pc.conn
  1958  	t.WasIdle = true
  1959  	if !idleAt.IsZero() {
  1960  		t.IdleTime = time.Since(idleAt)
  1961  	}
  1962  	return
  1963  }
  1964  
  1965  func (pc *persistConn) cancelRequest(err error) {
  1966  	pc.mu.Lock()
  1967  	defer pc.mu.Unlock()
  1968  	pc.canceledErr = err
  1969  	pc.closeLocked(errRequestCanceled)
  1970  }
  1971  
  1972  // closeConnIfStillIdle closes the connection if it's still sitting idle.
  1973  // This is what's called by the persistConn's idleTimer, and is run in its
  1974  // own goroutine.
  1975  func (pc *persistConn) closeConnIfStillIdle() {
  1976  	t := pc.t
  1977  	t.idleMu.Lock()
  1978  	defer t.idleMu.Unlock()
  1979  	if _, ok := t.idleLRU.m[pc]; !ok {
  1980  		// Not idle.
  1981  		return
  1982  	}
  1983  	t.removeIdleConnLocked(pc)
  1984  	pc.close(errIdleConnTimeout)
  1985  }
  1986  
  1987  // mapRoundTripError returns the appropriate error value for
  1988  // persistConn.roundTrip.
  1989  //
  1990  // The provided err is the first error that (*persistConn).roundTrip
  1991  // happened to receive from its select statement.
  1992  //
  1993  // The startBytesWritten value should be the value of pc.nwrite before the roundTrip
  1994  // started writing the request.
  1995  func (pc *persistConn) mapRoundTripError(req *transportRequest, startBytesWritten int64, err error) error {
  1996  	if err == nil {
  1997  		return nil
  1998  	}
  1999  
  2000  	// Wait for the writeLoop goroutine to terminate to avoid data
  2001  	// races on callers who mutate the request on failure.
  2002  	//
  2003  	// When resc in pc.roundTrip and hence rc.ch receives a responseAndError
  2004  	// with a non-nil error it implies that the persistConn is either closed
  2005  	// or closing. Waiting on pc.writeLoopDone is hence safe as all callers
  2006  	// close closech which in turn ensures writeLoop returns.
  2007  	<-pc.writeLoopDone
  2008  
  2009  	// If the request was canceled, that's better than network
  2010  	// failures that were likely the result of tearing down the
  2011  	// connection.
  2012  	if cerr := pc.canceled(); cerr != nil {
  2013  		return cerr
  2014  	}
  2015  
  2016  	// See if an error was set explicitly.
  2017  	req.mu.Lock()
  2018  	reqErr := req.err
  2019  	req.mu.Unlock()
  2020  	if reqErr != nil {
  2021  		return reqErr
  2022  	}
  2023  
  2024  	if err == errServerClosedIdle {
  2025  		// Don't decorate
  2026  		return err
  2027  	}
  2028  
  2029  	if _, ok := err.(transportReadFromServerError); ok {
  2030  		// Don't decorate
  2031  		return err
  2032  	}
  2033  	if pc.isBroken() {
  2034  		if pc.nwrite == startBytesWritten {
  2035  			return nothingWrittenError{err}
  2036  		}
  2037  		return fmt.Errorf("net/http: HTTP/1.x transport connection broken: %v", err)
  2038  	}
  2039  	return err
  2040  }
  2041  
  2042  // errCallerOwnsConn is an internal sentinel error used when we hand
  2043  // off a writable response.Body to the caller. We use this to prevent
  2044  // closing a net.Conn that is now owned by the caller.
  2045  var errCallerOwnsConn = errors.New("read loop ending; caller owns writable underlying conn")
  2046  
  2047  func (pc *persistConn) readLoop() {
  2048  	closeErr := errReadLoopExiting // default value, if not changed below
  2049  	defer func() {
  2050  		pc.close(closeErr)
  2051  		pc.t.removeIdleConn(pc)
  2052  	}()
  2053  
  2054  	tryPutIdleConn := func(trace *httptrace.ClientTrace) bool {
  2055  		if err := pc.t.tryPutIdleConn(pc); err != nil {
  2056  			closeErr = err
  2057  			if trace != nil && trace.PutIdleConn != nil && err != errKeepAlivesDisabled {
  2058  				trace.PutIdleConn(err)
  2059  			}
  2060  			return false
  2061  		}
  2062  		if trace != nil && trace.PutIdleConn != nil {
  2063  			trace.PutIdleConn(nil)
  2064  		}
  2065  		return true
  2066  	}
  2067  
  2068  	// eofc is used to block caller goroutines reading from Response.Body
  2069  	// at EOF until this goroutines has (potentially) added the connection
  2070  	// back to the idle pool.
  2071  	eofc := make(chan struct{})
  2072  	defer close(eofc) // unblock reader on errors
  2073  
  2074  	// Read this once, before loop starts. (to avoid races in tests)
  2075  	testHookMu.Lock()
  2076  	testHookReadLoopBeforeNextRead := testHookReadLoopBeforeNextRead
  2077  	testHookMu.Unlock()
  2078  
  2079  	alive := true
  2080  	for alive {
  2081  		pc.readLimit = pc.maxHeaderResponseSize()
  2082  		_, err := pc.br.Peek(1)
  2083  
  2084  		pc.mu.Lock()
  2085  		if pc.numExpectedResponses == 0 {
  2086  			pc.readLoopPeekFailLocked(err)
  2087  			pc.mu.Unlock()
  2088  			return
  2089  		}
  2090  		pc.mu.Unlock()
  2091  
  2092  		rc := <-pc.reqch
  2093  		trace := httptrace.ContextClientTrace(rc.req.Context())
  2094  
  2095  		var resp *Response
  2096  		if err == nil {
  2097  			resp, err = pc.readResponse(rc, trace)
  2098  		} else {
  2099  			err = transportReadFromServerError{err}
  2100  			closeErr = err
  2101  		}
  2102  
  2103  		if err != nil {
  2104  			if pc.readLimit <= 0 {
  2105  				err = fmt.Errorf("net/http: server response headers exceeded %d bytes; aborted", pc.maxHeaderResponseSize())
  2106  			}
  2107  
  2108  			select {
  2109  			case rc.ch <- responseAndError{err: err}:
  2110  			case <-rc.callerGone:
  2111  				return
  2112  			}
  2113  			return
  2114  		}
  2115  		pc.readLimit = maxInt64 // effectively no limit for response bodies
  2116  
  2117  		pc.mu.Lock()
  2118  		pc.numExpectedResponses--
  2119  		pc.mu.Unlock()
  2120  
  2121  		bodyWritable := resp.bodyIsWritable()
  2122  		hasBody := rc.req.Method != "HEAD" && resp.ContentLength != 0
  2123  
  2124  		if resp.Close || rc.req.Close || resp.StatusCode <= 199 || bodyWritable {
  2125  			// Don't do keep-alive on error if either party requested a close
  2126  			// or we get an unexpected informational (1xx) response.
  2127  			// StatusCode 100 is already handled above.
  2128  			alive = false
  2129  		}
  2130  
  2131  		if !hasBody || bodyWritable {
  2132  			replaced := pc.t.replaceReqCanceler(rc.cancelKey, nil)
  2133  
  2134  			// Put the idle conn back into the pool before we send the response
  2135  			// so if they process it quickly and make another request, they'll
  2136  			// get this same conn. But we use the unbuffered channel 'rc'
  2137  			// to guarantee that persistConn.roundTrip got out of its select
  2138  			// potentially waiting for this persistConn to close.
  2139  			alive = alive &&
  2140  				!pc.sawEOF &&
  2141  				pc.wroteRequest() &&
  2142  				replaced && tryPutIdleConn(trace)
  2143  
  2144  			if bodyWritable {
  2145  				closeErr = errCallerOwnsConn
  2146  			}
  2147  
  2148  			select {
  2149  			case rc.ch <- responseAndError{res: resp}:
  2150  			case <-rc.callerGone:
  2151  				return
  2152  			}
  2153  
  2154  			// Now that they've read from the unbuffered channel, they're safely
  2155  			// out of the select that also waits on this goroutine to die, so
  2156  			// we're allowed to exit now if needed (if alive is false)
  2157  			testHookReadLoopBeforeNextRead()
  2158  			continue
  2159  		}
  2160  
  2161  		waitForBodyRead := make(chan bool, 2)
  2162  		body := &bodyEOFSignal{
  2163  			body: resp.Body,
  2164  			earlyCloseFn: func() error {
  2165  				waitForBodyRead <- false
  2166  				<-eofc // will be closed by deferred call at the end of the function
  2167  				return nil
  2168  
  2169  			},
  2170  			fn: func(err error) error {
  2171  				isEOF := err == io.EOF
  2172  				waitForBodyRead <- isEOF
  2173  				if isEOF {
  2174  					<-eofc // see comment above eofc declaration
  2175  				} else if err != nil {
  2176  					if cerr := pc.canceled(); cerr != nil {
  2177  						return cerr
  2178  					}
  2179  				}
  2180  				return err
  2181  			},
  2182  		}
  2183  
  2184  		resp.Body = body
  2185  		if rc.addedGzip {
  2186  			resp.Body = DecompressBody(resp)
  2187  			resp.Header.Del("Content-Encoding")
  2188  			resp.Header.Del("Content-Length")
  2189  			resp.ContentLength = -1
  2190  			resp.Uncompressed = true
  2191  		}
  2192  
  2193  		select {
  2194  		case rc.ch <- responseAndError{res: resp}:
  2195  		case <-rc.callerGone:
  2196  			return
  2197  		}
  2198  
  2199  		// Before looping back to the top of this function and peeking on
  2200  		// the bufio.Reader, wait for the caller goroutine to finish
  2201  		// reading the response body. (or for cancellation or death)
  2202  		select {
  2203  		case bodyEOF := <-waitForBodyRead:
  2204  			replaced := pc.t.replaceReqCanceler(rc.cancelKey, nil) // before pc might return to idle pool
  2205  			alive = alive &&
  2206  				bodyEOF &&
  2207  				!pc.sawEOF &&
  2208  				pc.wroteRequest() &&
  2209  				replaced && tryPutIdleConn(trace)
  2210  			if bodyEOF {
  2211  				eofc <- struct{}{}
  2212  			}
  2213  		case <-rc.req.Cancel:
  2214  			alive = false
  2215  			pc.t.CancelRequest(rc.req)
  2216  		case <-rc.req.Context().Done():
  2217  			alive = false
  2218  			pc.t.cancelRequest(rc.cancelKey, rc.req.Context().Err())
  2219  		case <-pc.closech:
  2220  			alive = false
  2221  		}
  2222  
  2223  		testHookReadLoopBeforeNextRead()
  2224  	}
  2225  }
  2226  
  2227  func DecompressBody(res *Response) io.ReadCloser {
  2228  	ce := res.Header.Get("Content-Encoding")
  2229  	res.ContentLength = -1
  2230  	res.Uncompressed = true
  2231  
  2232  	switch ce {
  2233  	case "gzip":
  2234  		return &gzipReader{
  2235  			body: res.Body,
  2236  		}
  2237  	case "br":
  2238  		return &brReader{
  2239  			body: res.Body,
  2240  		}
  2241  	case "deflate":
  2242  		return identifyDeflate(res.Body)
  2243  	default:
  2244  		return res.Body
  2245  	}
  2246  }
  2247  
  2248  // gzipReader wraps a response body so it can lazily
  2249  // call gzip.NewReader on the first call to Read
  2250  type gzipReader struct {
  2251  	_    incomparable
  2252  	body io.ReadCloser // underlying Response.Body
  2253  	zr   *gzip.Reader  // lazily-initialized gzip reader
  2254  	zerr error         // sticky error
  2255  }
  2256  
  2257  func (gz *gzipReader) Read(p []byte) (n int, err error) {
  2258  	if gz.zerr != nil {
  2259  		return 0, gz.zerr
  2260  	}
  2261  	if gz.zr == nil {
  2262  		gz.zr, err = gzip.NewReader(gz.body)
  2263  		if err != nil {
  2264  			gz.zerr = err
  2265  			return 0, err
  2266  		}
  2267  	}
  2268  	return gz.zr.Read(p)
  2269  }
  2270  
  2271  func (gz *gzipReader) Close() error {
  2272  	return gz.body.Close()
  2273  }
  2274  
  2275  // brReader lazily wraps a response body into an
  2276  // io.ReadCloser, will call gzip.NewReader on first
  2277  // call to read
  2278  type brReader struct {
  2279  	_    incomparable
  2280  	body io.ReadCloser
  2281  	zr   *brotli.Reader
  2282  	zerr error
  2283  }
  2284  
  2285  func (br *brReader) Read(p []byte) (n int, err error) {
  2286  	if br.zerr != nil {
  2287  		return 0, br.zerr
  2288  	}
  2289  	if br.zr == nil {
  2290  		br.zr = brotli.NewReader(br.body)
  2291  	}
  2292  	return br.zr.Read(p)
  2293  }
  2294  
  2295  func (br *brReader) Close() error {
  2296  	return br.body.Close()
  2297  }
  2298  
  2299  type zlibDeflateReader struct {
  2300  	_    incomparable
  2301  	body io.ReadCloser
  2302  	zr   io.ReadCloser
  2303  	err  error
  2304  }
  2305  
  2306  func (z *zlibDeflateReader) Read(p []byte) (n int, err error) {
  2307  	if z.err != nil {
  2308  		return 0, z.err
  2309  	}
  2310  	if z.zr == nil {
  2311  		z.zr, err = zlib.NewReader(z.body)
  2312  		if err != nil {
  2313  			z.err = err
  2314  			return 0, z.err
  2315  		}
  2316  	}
  2317  	return z.zr.Read(p)
  2318  }
  2319  
  2320  func (z *zlibDeflateReader) Close() error {
  2321  	return z.zr.Close()
  2322  }
  2323  
  2324  type deflateReader struct {
  2325  	_    incomparable
  2326  	body io.ReadCloser
  2327  	r    io.ReadCloser
  2328  	err  error
  2329  }
  2330  
  2331  func (dr *deflateReader) Read(p []byte) (n int, err error) {
  2332  	if dr.err != nil {
  2333  		return 0, dr.err
  2334  	}
  2335  	if dr.r == nil {
  2336  		dr.r = flate.NewReader(dr.body)
  2337  	}
  2338  	return dr.r.Read(p)
  2339  }
  2340  
  2341  func (dr *deflateReader) Close() error {
  2342  	return dr.r.Close()
  2343  }
  2344  
  2345  const (
  2346  	zlibMethodDeflate = 0x78
  2347  	zlibLevelDefault  = 0x9C
  2348  	zlibLevelLow      = 0x01
  2349  	zlibLevelMedium   = 0x5E
  2350  	zlibLevelBest     = 0xDA
  2351  )
  2352  
  2353  func identifyDeflate(body io.ReadCloser) io.ReadCloser {
  2354  	var header [2]byte
  2355  	_, err := io.ReadFull(body, header[:])
  2356  	if err != nil {
  2357  		return body
  2358  	}
  2359  
  2360  	if header[0] == zlibMethodDeflate &&
  2361  		(header[1] == zlibLevelDefault || header[1] == zlibLevelLow || header[1] == zlibLevelMedium || header[1] == zlibLevelBest) {
  2362  		return &zlibDeflateReader{
  2363  			body: prependBytesToReadCloser(header[:], body),
  2364  		}
  2365  	} else if header[0] == zlibMethodDeflate {
  2366  		return &deflateReader{
  2367  			body: prependBytesToReadCloser(header[:], body),
  2368  		}
  2369  	}
  2370  	return body
  2371  }
  2372  
  2373  func prependBytesToReadCloser(b []byte, r io.ReadCloser) io.ReadCloser {
  2374  	w := new(bytes.Buffer)
  2375  	w.Write(b)
  2376  	io.Copy(w, r)
  2377  	defer r.Close()
  2378  
  2379  	return io.NopCloser(w)
  2380  }
  2381  
  2382  func (pc *persistConn) readLoopPeekFailLocked(peekErr error) {
  2383  	if pc.closed != nil {
  2384  		return
  2385  	}
  2386  	if n := pc.br.Buffered(); n > 0 {
  2387  		buf, _ := pc.br.Peek(n)
  2388  		if is408Message(buf) {
  2389  			pc.closeLocked(errServerClosedIdle)
  2390  			return
  2391  		} else {
  2392  			log.Printf("Unsolicited response received on idle HTTP channel starting with %q; err=%v", buf, peekErr)
  2393  		}
  2394  	}
  2395  	if peekErr == io.EOF {
  2396  		// common case.
  2397  		pc.closeLocked(errServerClosedIdle)
  2398  	} else {
  2399  		pc.closeLocked(fmt.Errorf("readLoopPeekFailLocked: %v", peekErr))
  2400  	}
  2401  }
  2402  
  2403  // is408Message reports whether buf has the prefix of an
  2404  // HTTP 408 Request Timeout response.
  2405  // See golang.org/issue/32310.
  2406  func is408Message(buf []byte) bool {
  2407  	if len(buf) < len("HTTP/1.x 408") {
  2408  		return false
  2409  	}
  2410  	if string(buf[:7]) != "HTTP/1." {
  2411  		return false
  2412  	}
  2413  	return string(buf[8:12]) == " 408"
  2414  }
  2415  
  2416  // readResponse reads an HTTP response (or two, in the case of "Expect:
  2417  // 100-continue") from the server. It returns the final non-100 one.
  2418  // trace is optional.
  2419  func (pc *persistConn) readResponse(rc requestAndChan, trace *httptrace.ClientTrace) (resp *Response, err error) {
  2420  	if trace != nil && trace.GotFirstResponseByte != nil {
  2421  		if peek, err := pc.br.Peek(1); err == nil && len(peek) == 1 {
  2422  			trace.GotFirstResponseByte()
  2423  		}
  2424  	}
  2425  	num1xx := 0               // number of informational 1xx headers received
  2426  	const max1xxResponses = 5 // arbitrary bound on number of informational responses
  2427  
  2428  	continueCh := rc.continueCh
  2429  	for {
  2430  		resp, err = ReadResponse(pc.br, rc.req)
  2431  		if err != nil {
  2432  			return
  2433  		}
  2434  		resCode := resp.StatusCode
  2435  		if continueCh != nil {
  2436  			if resCode == 100 {
  2437  				if trace != nil && trace.Got100Continue != nil {
  2438  					trace.Got100Continue()
  2439  				}
  2440  				continueCh <- struct{}{}
  2441  				continueCh = nil
  2442  			} else if resCode >= 200 {
  2443  				close(continueCh)
  2444  				continueCh = nil
  2445  			}
  2446  		}
  2447  		is1xx := 100 <= resCode && resCode <= 199
  2448  		// treat 101 as a terminal status, see issue 26161
  2449  		is1xxNonTerminal := is1xx && resCode != StatusSwitchingProtocols
  2450  		if is1xxNonTerminal {
  2451  			num1xx++
  2452  			if num1xx > max1xxResponses {
  2453  				return nil, errors.New("net/http: too many 1xx informational responses")
  2454  			}
  2455  			pc.readLimit = pc.maxHeaderResponseSize() // reset the limit
  2456  			if trace != nil && trace.Got1xxResponse != nil {
  2457  				if err := trace.Got1xxResponse(resCode, textproto.MIMEHeader(resp.Header)); err != nil {
  2458  					return nil, err
  2459  				}
  2460  			}
  2461  			continue
  2462  		}
  2463  		break
  2464  	}
  2465  	if resp.isProtocolSwitch() {
  2466  		resp.Body = newReadWriteCloserBody(pc.br, pc.conn)
  2467  	}
  2468  
  2469  	resp.TLS = pc.tlsState
  2470  	return
  2471  }
  2472  
  2473  // waitForContinue returns the function to block until
  2474  // any response, timeout or connection close. After any of them,
  2475  // the function returns a bool which indicates if the body should be sent.
  2476  func (pc *persistConn) waitForContinue(continueCh <-chan struct{}) func() bool {
  2477  	if continueCh == nil {
  2478  		return nil
  2479  	}
  2480  	return func() bool {
  2481  		timer := time.NewTimer(pc.t.ExpectContinueTimeout)
  2482  		defer timer.Stop()
  2483  
  2484  		select {
  2485  		case _, ok := <-continueCh:
  2486  			return ok
  2487  		case <-timer.C:
  2488  			return true
  2489  		case <-pc.closech:
  2490  			return false
  2491  		}
  2492  	}
  2493  }
  2494  
  2495  func newReadWriteCloserBody(br *bufio.Reader, rwc io.ReadWriteCloser) io.ReadWriteCloser {
  2496  	body := &readWriteCloserBody{ReadWriteCloser: rwc}
  2497  	if br.Buffered() != 0 {
  2498  		body.br = br
  2499  	}
  2500  	return body
  2501  }
  2502  
  2503  // readWriteCloserBody is the Response.Body type used when we want to
  2504  // give users write access to the Body through the underlying
  2505  // connection (TCP, unless using custom dialers). This is then
  2506  // the concrete type for a Response.Body on the 101 Switching
  2507  // Protocols response, as used by WebSockets, h2c, etc.
  2508  type readWriteCloserBody struct {
  2509  	_  incomparable
  2510  	br *bufio.Reader // used until empty
  2511  	io.ReadWriteCloser
  2512  }
  2513  
  2514  func (b *readWriteCloserBody) Read(p []byte) (n int, err error) {
  2515  	if b.br != nil {
  2516  		if n := b.br.Buffered(); len(p) > n {
  2517  			p = p[:n]
  2518  		}
  2519  		n, err = b.br.Read(p)
  2520  		if b.br.Buffered() == 0 {
  2521  			b.br = nil
  2522  		}
  2523  		return n, err
  2524  	}
  2525  	return b.ReadWriteCloser.Read(p)
  2526  }
  2527  
  2528  // nothingWrittenError wraps a write errors which ended up writing zero bytes.
  2529  type nothingWrittenError struct {
  2530  	error
  2531  }
  2532  
  2533  func (pc *persistConn) writeLoop() {
  2534  	defer close(pc.writeLoopDone)
  2535  	for {
  2536  		select {
  2537  		case wr := <-pc.writech:
  2538  			startBytesWritten := pc.nwrite
  2539  			err := wr.req.Request.write(pc.bw, pc.isProxy, wr.req.extra, pc.waitForContinue(wr.continueCh))
  2540  			if bre, ok := err.(requestBodyReadError); ok {
  2541  				err = bre.error
  2542  				// Errors reading from the user's
  2543  				// Request.Body are high priority.
  2544  				// Set it here before sending on the
  2545  				// channels below or calling
  2546  				// pc.close() which tears down
  2547  				// connections and causes other
  2548  				// errors.
  2549  				wr.req.setError(err)
  2550  			}
  2551  			if err == nil {
  2552  				err = pc.bw.Flush()
  2553  			}
  2554  			if err != nil {
  2555  				if pc.nwrite == startBytesWritten {
  2556  					err = nothingWrittenError{err}
  2557  				}
  2558  			}
  2559  			pc.writeErrCh <- err // to the body reader, which might recycle us
  2560  			wr.ch <- err         // to the roundTrip function
  2561  			if err != nil {
  2562  				pc.close(err)
  2563  				return
  2564  			}
  2565  		case <-pc.closech:
  2566  			return
  2567  		}
  2568  	}
  2569  }
  2570  
  2571  // maxWriteWaitBeforeConnReuse is how long the a Transport RoundTrip
  2572  // will wait to see the Request's Body.Write result after getting a
  2573  // response from the server. See comments in (*persistConn).wroteRequest.
  2574  const maxWriteWaitBeforeConnReuse = 50 * time.Millisecond
  2575  
  2576  // wroteRequest is a check before recycling a connection that the previous write
  2577  // (from writeLoop above) happened and was successful.
  2578  func (pc *persistConn) wroteRequest() bool {
  2579  	select {
  2580  	case err := <-pc.writeErrCh:
  2581  		// Common case: the write happened well before the response, so
  2582  		// avoid creating a timer.
  2583  		return err == nil
  2584  	default:
  2585  		// Rare case: the request was written in writeLoop above but
  2586  		// before it could send to pc.writeErrCh, the reader read it
  2587  		// all, processed it, and called us here. In this case, give the
  2588  		// write goroutine a bit of time to finish its send.
  2589  		//
  2590  		// Less rare case: We also get here in the legitimate case of
  2591  		// Issue 7569, where the writer is still writing (or stalled),
  2592  		// but the server has already replied. In this case, we don't
  2593  		// want to wait too long, and we want to return false so this
  2594  		// connection isn't re-used.
  2595  		t := time.NewTimer(maxWriteWaitBeforeConnReuse)
  2596  		defer t.Stop()
  2597  		select {
  2598  		case err := <-pc.writeErrCh:
  2599  			return err == nil
  2600  		case <-t.C:
  2601  			return false
  2602  		}
  2603  	}
  2604  }
  2605  
  2606  // responseAndError is how the goroutine reading from an HTTP/1 server
  2607  // communicates with the goroutine doing the RoundTrip.
  2608  type responseAndError struct {
  2609  	_   incomparable
  2610  	res *Response // else use this response (see res method)
  2611  	err error
  2612  }
  2613  
  2614  type requestAndChan struct {
  2615  	_         incomparable
  2616  	req       *Request
  2617  	cancelKey cancelKey
  2618  	ch        chan responseAndError // unbuffered; always send in select on callerGone
  2619  
  2620  	// whether the Transport (as opposed to the user client code)
  2621  	// added the Accept-Encoding gzip header. If the Transport
  2622  	// set it, only then do we transparently decode the gzip.
  2623  	addedGzip bool
  2624  
  2625  	// Optional blocking chan for Expect: 100-continue (for send).
  2626  	// If the request has an "Expect: 100-continue" header and
  2627  	// the server responds 100 Continue, readLoop send a value
  2628  	// to writeLoop via this chan.
  2629  	continueCh chan<- struct{}
  2630  
  2631  	callerGone <-chan struct{} // closed when roundTrip caller has returned
  2632  }
  2633  
  2634  // A writeRequest is sent by the readLoop's goroutine to the
  2635  // writeLoop's goroutine to write a request while the read loop
  2636  // concurrently waits on both the write response and the server's
  2637  // reply.
  2638  type writeRequest struct {
  2639  	req *transportRequest
  2640  	ch  chan<- error
  2641  
  2642  	// Optional blocking chan for Expect: 100-continue (for receive).
  2643  	// If not nil, writeLoop blocks sending request body until
  2644  	// it receives from this chan.
  2645  	continueCh <-chan struct{}
  2646  }
  2647  
  2648  type httpError struct {
  2649  	err     string
  2650  	timeout bool
  2651  }
  2652  
  2653  func (e *httpError) Error() string   { return e.err }
  2654  func (e *httpError) Timeout() bool   { return e.timeout }
  2655  func (e *httpError) Temporary() bool { return true }
  2656  
  2657  var errTimeout error = &httpError{err: "net/http: timeout awaiting response headers", timeout: true}
  2658  
  2659  // errRequestCanceled is set to be identical to the one from h2 to facilitate
  2660  // testing.
  2661  var errRequestCanceled = http2errRequestCanceled
  2662  var errRequestCanceledConn = errors.New("net/http: request canceled while waiting for connection") // TODO: unify?
  2663  
  2664  func nop() {}
  2665  
  2666  // testHooks. Always non-nil.
  2667  var (
  2668  	testHookEnterRoundTrip   = nop
  2669  	testHookWaitResLoop      = nop
  2670  	testHookRoundTripRetried = nop
  2671  	testHookPrePendingDial   = nop
  2672  	testHookPostPendingDial  = nop
  2673  
  2674  	testHookMu                     sync.Locker = fakeLocker{} // guards following
  2675  	testHookReadLoopBeforeNextRead             = nop
  2676  )
  2677  
  2678  func (pc *persistConn) roundTrip(req *transportRequest) (resp *Response, err error) {
  2679  	testHookEnterRoundTrip()
  2680  	if !pc.t.replaceReqCanceler(req.cancelKey, pc.cancelRequest) {
  2681  		pc.t.putOrCloseIdleConn(pc)
  2682  		return nil, errRequestCanceled
  2683  	}
  2684  	pc.mu.Lock()
  2685  	pc.numExpectedResponses++
  2686  	headerFn := pc.mutateHeaderFunc
  2687  	pc.mu.Unlock()
  2688  
  2689  	if headerFn != nil {
  2690  		headerFn(req.extraHeaders())
  2691  	}
  2692  
  2693  	// Ask for a compressed version if the caller didn't set their
  2694  	// own value for Accept-Encoding. We only attempt to
  2695  	// uncompress the gzip stream if we were the layer that
  2696  	// requested it.
  2697  	requestedGzip := false
  2698  	if !pc.t.DisableCompression &&
  2699  		req.Header.Get("Accept-Encoding") == "" &&
  2700  		req.Header.get("accept-encoding") == "" &&
  2701  		req.Header.Get("Range") == "" &&
  2702  		req.Method != "HEAD" {
  2703  		// Request gzip, deflate, br if Accept-Encoding is
  2704  		// not specified
  2705  		//
  2706  		// Note that we don't request this for HEAD requests,
  2707  		// due to a bug in nginx:
  2708  		//   https://trac.nginx.org/nginx/ticket/358
  2709  		//   https://golang.org/issue/5522
  2710  		//
  2711  		// We don't request gzip if the request is for a range, since
  2712  		// auto-decoding a portion of a gzipped document will just fail
  2713  		// anyway. See https://golang.org/issue/8923
  2714  		requestedGzip = true
  2715  		req.extraHeaders().Set("Accept-Encoding", "gzip, deflate, br")
  2716  	}
  2717  
  2718  	var continueCh chan struct{}
  2719  	if req.ProtoAtLeast(1, 1) && req.Body != nil && req.expectsContinue() {
  2720  		continueCh = make(chan struct{}, 1)
  2721  	}
  2722  
  2723  	if pc.t.DisableKeepAlives &&
  2724  		!req.wantsClose() &&
  2725  		!isProtocolSwitchHeader(req.Header) {
  2726  		req.extraHeaders().Set("Connection", "close")
  2727  	}
  2728  
  2729  	gone := make(chan struct{})
  2730  	defer close(gone)
  2731  
  2732  	defer func() {
  2733  		if err != nil {
  2734  			pc.t.setReqCanceler(req.cancelKey, nil)
  2735  		}
  2736  	}()
  2737  
  2738  	const debugRoundTrip = false
  2739  
  2740  	// Write the request concurrently with waiting for a response,
  2741  	// in case the server decides to reply before reading our full
  2742  	// request body.
  2743  	startBytesWritten := pc.nwrite
  2744  	writeErrCh := make(chan error, 1)
  2745  	pc.writech <- writeRequest{req, writeErrCh, continueCh}
  2746  
  2747  	resc := make(chan responseAndError)
  2748  	pc.reqch <- requestAndChan{
  2749  		req:        req.Request,
  2750  		cancelKey:  req.cancelKey,
  2751  		ch:         resc,
  2752  		addedGzip:  requestedGzip,
  2753  		continueCh: continueCh,
  2754  		callerGone: gone,
  2755  	}
  2756  
  2757  	var respHeaderTimer <-chan time.Time
  2758  	cancelChan := req.Request.Cancel
  2759  	ctxDoneChan := req.Context().Done()
  2760  	pcClosed := pc.closech
  2761  	canceled := false
  2762  	for {
  2763  		testHookWaitResLoop()
  2764  		select {
  2765  		case err := <-writeErrCh:
  2766  			if debugRoundTrip {
  2767  				req.logf("writeErrCh resv: %T/%#v", err, err)
  2768  			}
  2769  			if err != nil {
  2770  				pc.close(fmt.Errorf("write error: %v", err))
  2771  				return nil, pc.mapRoundTripError(req, startBytesWritten, err)
  2772  			}
  2773  			if d := pc.t.ResponseHeaderTimeout; d > 0 {
  2774  				if debugRoundTrip {
  2775  					req.logf("starting timer for %v", d)
  2776  				}
  2777  				timer := time.NewTimer(d)
  2778  				defer timer.Stop() // prevent leaks
  2779  				respHeaderTimer = timer.C
  2780  			}
  2781  		case <-pcClosed:
  2782  			pcClosed = nil
  2783  			if canceled || pc.t.replaceReqCanceler(req.cancelKey, nil) {
  2784  				if debugRoundTrip {
  2785  					req.logf("closech recv: %T %#v", pc.closed, pc.closed)
  2786  				}
  2787  				return nil, pc.mapRoundTripError(req, startBytesWritten, pc.closed)
  2788  			}
  2789  		case <-respHeaderTimer:
  2790  			if debugRoundTrip {
  2791  				req.logf("timeout waiting for response headers.")
  2792  			}
  2793  			pc.close(errTimeout)
  2794  			return nil, errTimeout
  2795  		case re := <-resc:
  2796  			if (re.res == nil) == (re.err == nil) {
  2797  				panic(fmt.Sprintf("internal error: exactly one of res or err should be set; nil=%v", re.res == nil))
  2798  			}
  2799  			if debugRoundTrip {
  2800  				req.logf("resc recv: %p, %T/%#v", re.res, re.err, re.err)
  2801  			}
  2802  			if re.err != nil {
  2803  				return nil, pc.mapRoundTripError(req, startBytesWritten, re.err)
  2804  			}
  2805  			return re.res, nil
  2806  		case <-cancelChan:
  2807  			canceled = pc.t.cancelRequest(req.cancelKey, errRequestCanceled)
  2808  			cancelChan = nil
  2809  		case <-ctxDoneChan:
  2810  			canceled = pc.t.cancelRequest(req.cancelKey, req.Context().Err())
  2811  			cancelChan = nil
  2812  			ctxDoneChan = nil
  2813  		}
  2814  	}
  2815  }
  2816  
  2817  // tLogKey is a context WithValue Key for test debugging contexts containing
  2818  // a t.Logf func. See export_test.go's Request.WithT method.
  2819  type tLogKey struct{}
  2820  
  2821  func (tr *transportRequest) logf(format string, args ...interface{}) {
  2822  	if logf, ok := tr.Request.Context().Value(tLogKey{}).(func(string, ...interface{})); ok {
  2823  		logf(time.Now().Format(time.RFC3339Nano)+": "+format, args...)
  2824  	}
  2825  }
  2826  
  2827  // markReused marks this connection as having been successfully used for a
  2828  // request and response.
  2829  func (pc *persistConn) markReused() {
  2830  	pc.mu.Lock()
  2831  	pc.reused = true
  2832  	pc.mu.Unlock()
  2833  }
  2834  
  2835  // close closes the underlying TCP connection and closes
  2836  // the pc.closech channel.
  2837  //
  2838  // The provided err is only for testing and debugging; in normal
  2839  // circumstances it should never be seen by users.
  2840  func (pc *persistConn) close(err error) {
  2841  	pc.mu.Lock()
  2842  	defer pc.mu.Unlock()
  2843  	pc.closeLocked(err)
  2844  }
  2845  
  2846  func (pc *persistConn) closeLocked(err error) {
  2847  	if err == nil {
  2848  		panic("nil error")
  2849  	}
  2850  	pc.broken = true
  2851  	if pc.closed == nil {
  2852  		pc.closed = err
  2853  		pc.t.decConnsPerHost(pc.cacheKey)
  2854  		// Close HTTP/1 (pc.alt == nil) connection.
  2855  		// HTTP/2 closes its connection itself.
  2856  		if pc.alt == nil {
  2857  			if err != errCallerOwnsConn {
  2858  				pc.conn.Close()
  2859  			}
  2860  			close(pc.closech)
  2861  		}
  2862  	}
  2863  	pc.mutateHeaderFunc = nil
  2864  }
  2865  
  2866  var portMap = map[string]string{
  2867  	"http":   "80",
  2868  	"https":  "443",
  2869  	"socks5": "1080",
  2870  }
  2871  
  2872  // canonicalAddr returns url.Host but always with a ":port" suffix
  2873  func canonicalAddr(url *url.URL) string {
  2874  	addr := url.Hostname()
  2875  	if v, err := idnaASCII(addr); err == nil {
  2876  		addr = v
  2877  	}
  2878  	port := url.Port()
  2879  	if port == "" {
  2880  		port = portMap[url.Scheme]
  2881  	}
  2882  	return net.JoinHostPort(addr, port)
  2883  }
  2884  
  2885  // bodyEOFSignal is used by the HTTP/1 transport when reading response
  2886  // bodies to make sure we see the end of a response body before
  2887  // proceeding and reading on the connection again.
  2888  //
  2889  // It wraps a ReadCloser but runs fn (if non-nil) at most
  2890  // once, right before its final (error-producing) Read or Close call
  2891  // returns. fn should return the new error to return from Read or Close.
  2892  //
  2893  // If earlyCloseFn is non-nil and Close is called before io.EOF is
  2894  // seen, earlyCloseFn is called instead of fn, and its return value is
  2895  // the return value from Close.
  2896  type bodyEOFSignal struct {
  2897  	body         io.ReadCloser
  2898  	mu           sync.Mutex        // guards following 4 fields
  2899  	closed       bool              // whether Close has been called
  2900  	rerr         error             // sticky Read error
  2901  	fn           func(error) error // err will be nil on Read io.EOF
  2902  	earlyCloseFn func() error      // optional alt Close func used if io.EOF not seen
  2903  }
  2904  
  2905  var errReadOnClosedResBody = errors.New("http: read on closed response body")
  2906  
  2907  func (es *bodyEOFSignal) Read(p []byte) (n int, err error) {
  2908  	es.mu.Lock()
  2909  	closed, rerr := es.closed, es.rerr
  2910  	es.mu.Unlock()
  2911  	if closed {
  2912  		return 0, errReadOnClosedResBody
  2913  	}
  2914  	if rerr != nil {
  2915  		return 0, rerr
  2916  	}
  2917  
  2918  	n, err = es.body.Read(p)
  2919  	if err != nil {
  2920  		es.mu.Lock()
  2921  		defer es.mu.Unlock()
  2922  		if es.rerr == nil {
  2923  			es.rerr = err
  2924  		}
  2925  		err = es.condfn(err)
  2926  	}
  2927  	return
  2928  }
  2929  
  2930  func (es *bodyEOFSignal) Close() error {
  2931  	es.mu.Lock()
  2932  	defer es.mu.Unlock()
  2933  	if es.closed {
  2934  		return nil
  2935  	}
  2936  	es.closed = true
  2937  	if es.earlyCloseFn != nil && es.rerr != io.EOF {
  2938  		return es.earlyCloseFn()
  2939  	}
  2940  	err := es.body.Close()
  2941  	return es.condfn(err)
  2942  }
  2943  
  2944  // caller must hold es.mu.
  2945  func (es *bodyEOFSignal) condfn(err error) error {
  2946  	if es.fn == nil {
  2947  		return err
  2948  	}
  2949  	err = es.fn(err)
  2950  	es.fn = nil
  2951  	return err
  2952  }
  2953  
  2954  type tlsHandshakeTimeoutError struct{}
  2955  
  2956  func (tlsHandshakeTimeoutError) Timeout() bool   { return true }
  2957  func (tlsHandshakeTimeoutError) Temporary() bool { return true }
  2958  func (tlsHandshakeTimeoutError) Error() string   { return "net/http: TLS handshake timeout" }
  2959  
  2960  // fakeLocker is a sync.Locker which does nothing. It's used to guard
  2961  // test-only fields when not under test, to avoid runtime atomic
  2962  // overhead.
  2963  type fakeLocker struct{}
  2964  
  2965  func (fakeLocker) Lock()   {}
  2966  func (fakeLocker) Unlock() {}
  2967  
  2968  // cloneTLSConfig returns a shallow clone of cfg, or a new zero tls.Config if
  2969  // cfg is nil. This is safe to call even if cfg is in active use by a TLS
  2970  // client or server.
  2971  func cloneTLSConfig(cfg *tls.Config) *tls.Config {
  2972  	if cfg == nil {
  2973  		return &tls.Config{}
  2974  	}
  2975  	return cfg.Clone()
  2976  }
  2977  
  2978  type connLRU struct {
  2979  	ll *list.List // list.Element.Value type is of *persistConn
  2980  	m  map[*persistConn]*list.Element
  2981  }
  2982  
  2983  // add adds pc to the head of the linked list.
  2984  func (cl *connLRU) add(pc *persistConn) {
  2985  	if cl.ll == nil {
  2986  		cl.ll = list.New()
  2987  		cl.m = make(map[*persistConn]*list.Element)
  2988  	}
  2989  	ele := cl.ll.PushFront(pc)
  2990  	if _, ok := cl.m[pc]; ok {
  2991  		panic("persistConn was already in LRU")
  2992  	}
  2993  	cl.m[pc] = ele
  2994  }
  2995  
  2996  func (cl *connLRU) removeOldest() *persistConn {
  2997  	ele := cl.ll.Back()
  2998  	pc := ele.Value.(*persistConn)
  2999  	cl.ll.Remove(ele)
  3000  	delete(cl.m, pc)
  3001  	return pc
  3002  }
  3003  
  3004  // remove removes pc from cl.
  3005  func (cl *connLRU) remove(pc *persistConn) {
  3006  	if ele, ok := cl.m[pc]; ok {
  3007  		cl.ll.Remove(ele)
  3008  		delete(cl.m, pc)
  3009  	}
  3010  }
  3011  
  3012  // len returns the number of items in the cache.
  3013  func (cl *connLRU) len() int {
  3014  	return len(cl.m)
  3015  }