github.com/v2fly/tools@v0.100.0/godoc/analysis/implements.go (about)

     1  // Copyright 2014 The Go Authors. All rights reserved.
     2  // Use of this source code is governed by a BSD-style
     3  // license that can be found in the LICENSE file.
     4  
     5  package analysis
     6  
     7  // This file computes the "implements" relation over all pairs of
     8  // named types in the program.  (The mark-up is done by typeinfo.go.)
     9  
    10  // TODO(adonovan): do we want to report implements(C, I) where C and I
    11  // belong to different packages and at least one is not exported?
    12  
    13  import (
    14  	"go/types"
    15  	"sort"
    16  
    17  	"github.com/v2fly/tools/go/types/typeutil"
    18  )
    19  
    20  // computeImplements computes the "implements" relation over all pairs
    21  // of named types in allNamed.
    22  func computeImplements(cache *typeutil.MethodSetCache, allNamed []*types.Named) map[*types.Named]implementsFacts {
    23  	// Information about a single type's method set.
    24  	type msetInfo struct {
    25  		typ          types.Type
    26  		mset         *types.MethodSet
    27  		mask1, mask2 uint64
    28  	}
    29  
    30  	initMsetInfo := func(info *msetInfo, typ types.Type) {
    31  		info.typ = typ
    32  		info.mset = cache.MethodSet(typ)
    33  		for i := 0; i < info.mset.Len(); i++ {
    34  			name := info.mset.At(i).Obj().Name()
    35  			info.mask1 |= 1 << methodBit(name[0])
    36  			info.mask2 |= 1 << methodBit(name[len(name)-1])
    37  		}
    38  	}
    39  
    40  	// satisfies(T, U) reports whether type T satisfies type U.
    41  	// U must be an interface.
    42  	//
    43  	// Since there are thousands of types (and thus millions of
    44  	// pairs of types) and types.Assignable(T, U) is relatively
    45  	// expensive, we compute assignability directly from the
    46  	// method sets.  (At least one of T and U must be an
    47  	// interface.)
    48  	//
    49  	// We use a trick (thanks gri!) related to a Bloom filter to
    50  	// quickly reject most tests, which are false.  For each
    51  	// method set, we precompute a mask, a set of bits, one per
    52  	// distinct initial byte of each method name.  Thus the mask
    53  	// for io.ReadWriter would be {'R','W'}.  AssignableTo(T, U)
    54  	// cannot be true unless mask(T)&mask(U)==mask(U).
    55  	//
    56  	// As with a Bloom filter, we can improve precision by testing
    57  	// additional hashes, e.g. using the last letter of each
    58  	// method name, so long as the subset mask property holds.
    59  	//
    60  	// When analyzing the standard library, there are about 1e6
    61  	// calls to satisfies(), of which 0.6% return true.  With a
    62  	// 1-hash filter, 95% of calls avoid the expensive check; with
    63  	// a 2-hash filter, this grows to 98.2%.
    64  	satisfies := func(T, U *msetInfo) bool {
    65  		return T.mask1&U.mask1 == U.mask1 &&
    66  			T.mask2&U.mask2 == U.mask2 &&
    67  			containsAllIdsOf(T.mset, U.mset)
    68  	}
    69  
    70  	// Information about a named type N, and perhaps also *N.
    71  	type namedInfo struct {
    72  		isInterface bool
    73  		base        msetInfo // N
    74  		ptr         msetInfo // *N, iff N !isInterface
    75  	}
    76  
    77  	var infos []namedInfo
    78  
    79  	// Precompute the method sets and their masks.
    80  	for _, N := range allNamed {
    81  		var info namedInfo
    82  		initMsetInfo(&info.base, N)
    83  		_, info.isInterface = N.Underlying().(*types.Interface)
    84  		if !info.isInterface {
    85  			initMsetInfo(&info.ptr, types.NewPointer(N))
    86  		}
    87  
    88  		if info.base.mask1|info.ptr.mask1 == 0 {
    89  			continue // neither N nor *N has methods
    90  		}
    91  
    92  		infos = append(infos, info)
    93  	}
    94  
    95  	facts := make(map[*types.Named]implementsFacts)
    96  
    97  	// Test all pairs of distinct named types (T, U).
    98  	// TODO(adonovan): opt: compute (U, T) at the same time.
    99  	for t := range infos {
   100  		T := &infos[t]
   101  		var to, from, fromPtr []types.Type
   102  		for u := range infos {
   103  			if t == u {
   104  				continue
   105  			}
   106  			U := &infos[u]
   107  			switch {
   108  			case T.isInterface && U.isInterface:
   109  				if satisfies(&U.base, &T.base) {
   110  					to = append(to, U.base.typ)
   111  				}
   112  				if satisfies(&T.base, &U.base) {
   113  					from = append(from, U.base.typ)
   114  				}
   115  			case T.isInterface: // U concrete
   116  				if satisfies(&U.base, &T.base) {
   117  					to = append(to, U.base.typ)
   118  				} else if satisfies(&U.ptr, &T.base) {
   119  					to = append(to, U.ptr.typ)
   120  				}
   121  			case U.isInterface: // T concrete
   122  				if satisfies(&T.base, &U.base) {
   123  					from = append(from, U.base.typ)
   124  				} else if satisfies(&T.ptr, &U.base) {
   125  					fromPtr = append(fromPtr, U.base.typ)
   126  				}
   127  			}
   128  		}
   129  
   130  		// Sort types (arbitrarily) to avoid nondeterminism.
   131  		sort.Sort(typesByString(to))
   132  		sort.Sort(typesByString(from))
   133  		sort.Sort(typesByString(fromPtr))
   134  
   135  		facts[T.base.typ.(*types.Named)] = implementsFacts{to, from, fromPtr}
   136  	}
   137  
   138  	return facts
   139  }
   140  
   141  type implementsFacts struct {
   142  	to      []types.Type // named or ptr-to-named types assignable to interface T
   143  	from    []types.Type // named interfaces assignable from T
   144  	fromPtr []types.Type // named interfaces assignable only from *T
   145  }
   146  
   147  type typesByString []types.Type
   148  
   149  func (p typesByString) Len() int           { return len(p) }
   150  func (p typesByString) Less(i, j int) bool { return p[i].String() < p[j].String() }
   151  func (p typesByString) Swap(i, j int)      { p[i], p[j] = p[j], p[i] }
   152  
   153  // methodBit returns the index of x in [a-zA-Z], or 52 if not found.
   154  func methodBit(x byte) uint64 {
   155  	switch {
   156  	case 'a' <= x && x <= 'z':
   157  		return uint64(x - 'a')
   158  	case 'A' <= x && x <= 'Z':
   159  		return uint64(26 + x - 'A')
   160  	}
   161  	return 52 // all other bytes
   162  }
   163  
   164  // containsAllIdsOf reports whether the method identifiers of T are a
   165  // superset of those in U.  If U belongs to an interface type, the
   166  // result is equal to types.Assignable(T, U), but is cheaper to compute.
   167  //
   168  // TODO(gri): make this a method of *types.MethodSet.
   169  //
   170  func containsAllIdsOf(T, U *types.MethodSet) bool {
   171  	t, tlen := 0, T.Len()
   172  	u, ulen := 0, U.Len()
   173  	for t < tlen && u < ulen {
   174  		tMeth := T.At(t).Obj()
   175  		uMeth := U.At(u).Obj()
   176  		tId := tMeth.Id()
   177  		uId := uMeth.Id()
   178  		if tId > uId {
   179  			// U has a method T lacks: fail.
   180  			return false
   181  		}
   182  		if tId < uId {
   183  			// T has a method U lacks: ignore it.
   184  			t++
   185  			continue
   186  		}
   187  		// U and T both have a method of this Id.  Check types.
   188  		if !types.Identical(tMeth.Type(), uMeth.Type()) {
   189  			return false // type mismatch
   190  		}
   191  		u++
   192  		t++
   193  	}
   194  	return u == ulen
   195  }