github.com/vantum/vantum@v0.0.0-20180815184342-fe37d5f7a990/p2p/rlpx.go (about) 1 // Copyright 2015 The go-ethereum Authors 2 // This file is part of the go-ethereum library. 3 // 4 // The go-ethereum library is free software: you can redistribute it and/or modify 5 // it under the terms of the GNU Lesser General Public License as published by 6 // the Free Software Foundation, either version 3 of the License, or 7 // (at your option) any later version. 8 // 9 // The go-ethereum library is distributed in the hope that it will be useful, 10 // but WITHOUT ANY WARRANTY; without even the implied warranty of 11 // MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the 12 // GNU Lesser General Public License for more details. 13 // 14 // You should have received a copy of the GNU Lesser General Public License 15 // along with the go-ethereum library. If not, see <http://www.gnu.org/licenses/>. 16 17 package p2p 18 19 import ( 20 "bytes" 21 "crypto/aes" 22 "crypto/cipher" 23 "crypto/ecdsa" 24 "crypto/elliptic" 25 "crypto/hmac" 26 "crypto/rand" 27 "encoding/binary" 28 "errors" 29 "fmt" 30 "hash" 31 "io" 32 "io/ioutil" 33 mrand "math/rand" 34 "net" 35 "sync" 36 "time" 37 38 "github.com/vantum/vantum/crypto" 39 "github.com/vantum/vantum/crypto/ecies" 40 "github.com/vantum/vantum/crypto/secp256k1" 41 "github.com/vantum/vantum/crypto/sha3" 42 "github.com/vantum/vantum/p2p/discover" 43 "github.com/vantum/vantum/rlp" 44 "github.com/golang/snappy" 45 ) 46 47 const ( 48 maxUint24 = ^uint32(0) >> 8 49 50 sskLen = 16 // ecies.MaxSharedKeyLength(pubKey) / 2 51 sigLen = 65 // elliptic S256 52 pubLen = 64 // 512 bit pubkey in uncompressed representation without format byte 53 shaLen = 32 // hash length (for nonce etc) 54 55 authMsgLen = sigLen + shaLen + pubLen + shaLen + 1 56 authRespLen = pubLen + shaLen + 1 57 58 eciesOverhead = 65 /* pubkey */ + 16 /* IV */ + 32 /* MAC */ 59 60 encAuthMsgLen = authMsgLen + eciesOverhead // size of encrypted pre-EIP-8 initiator handshake 61 encAuthRespLen = authRespLen + eciesOverhead // size of encrypted pre-EIP-8 handshake reply 62 63 // total timeout for encryption handshake and protocol 64 // handshake in both directions. 65 handshakeTimeout = 5 * time.Second 66 67 // This is the timeout for sending the disconnect reason. 68 // This is shorter than the usual timeout because we don't want 69 // to wait if the connection is known to be bad anyway. 70 discWriteTimeout = 1 * time.Second 71 ) 72 73 // errPlainMessageTooLarge is returned if a decompressed message length exceeds 74 // the allowed 24 bits (i.e. length >= 16MB). 75 var errPlainMessageTooLarge = errors.New("message length >= 16MB") 76 77 // rlpx is the transport protocol used by actual (non-test) connections. 78 // It wraps the frame encoder with locks and read/write deadlines. 79 type rlpx struct { 80 fd net.Conn 81 82 rmu, wmu sync.Mutex 83 rw *rlpxFrameRW 84 } 85 86 func newRLPX(fd net.Conn) transport { 87 fd.SetDeadline(time.Now().Add(handshakeTimeout)) 88 return &rlpx{fd: fd} 89 } 90 91 func (t *rlpx) ReadMsg() (Msg, error) { 92 t.rmu.Lock() 93 defer t.rmu.Unlock() 94 t.fd.SetReadDeadline(time.Now().Add(frameReadTimeout)) 95 return t.rw.ReadMsg() 96 } 97 98 func (t *rlpx) WriteMsg(msg Msg) error { 99 t.wmu.Lock() 100 defer t.wmu.Unlock() 101 t.fd.SetWriteDeadline(time.Now().Add(frameWriteTimeout)) 102 return t.rw.WriteMsg(msg) 103 } 104 105 func (t *rlpx) close(err error) { 106 t.wmu.Lock() 107 defer t.wmu.Unlock() 108 // Tell the remote end why we're disconnecting if possible. 109 if t.rw != nil { 110 if r, ok := err.(DiscReason); ok && r != DiscNetworkError { 111 t.fd.SetWriteDeadline(time.Now().Add(discWriteTimeout)) 112 SendItems(t.rw, discMsg, r) 113 } 114 } 115 t.fd.Close() 116 } 117 118 // doEncHandshake runs the protocol handshake using authenticated 119 // messages. the protocol handshake is the first authenticated message 120 // and also verifies whether the encryption handshake 'worked' and the 121 // remote side actually provided the right public key. 122 func (t *rlpx) doProtoHandshake(our *protoHandshake) (their *protoHandshake, err error) { 123 // Writing our handshake happens concurrently, we prefer 124 // returning the handshake read error. If the remote side 125 // disconnects us early with a valid reason, we should return it 126 // as the error so it can be tracked elsewhere. 127 werr := make(chan error, 1) 128 go func() { werr <- Send(t.rw, handshakeMsg, our) }() 129 if their, err = readProtocolHandshake(t.rw, our); err != nil { 130 <-werr // make sure the write terminates too 131 return nil, err 132 } 133 if err := <-werr; err != nil { 134 return nil, fmt.Errorf("write error: %v", err) 135 } 136 // If the protocol version supports Snappy encoding, upgrade immediately 137 t.rw.snappy = their.Version >= snappyProtocolVersion 138 139 return their, nil 140 } 141 142 func readProtocolHandshake(rw MsgReader, our *protoHandshake) (*protoHandshake, error) { 143 msg, err := rw.ReadMsg() 144 if err != nil { 145 return nil, err 146 } 147 if msg.Size > baseProtocolMaxMsgSize { 148 return nil, fmt.Errorf("message too big") 149 } 150 if msg.Code == discMsg { 151 // Disconnect before protocol handshake is valid according to the 152 // spec and we send it ourself if the posthanshake checks fail. 153 // We can't return the reason directly, though, because it is echoed 154 // back otherwise. Wrap it in a string instead. 155 var reason [1]DiscReason 156 rlp.Decode(msg.Payload, &reason) 157 return nil, reason[0] 158 } 159 if msg.Code != handshakeMsg { 160 return nil, fmt.Errorf("expected handshake, got %x", msg.Code) 161 } 162 var hs protoHandshake 163 if err := msg.Decode(&hs); err != nil { 164 return nil, err 165 } 166 if (hs.ID == discover.NodeID{}) { 167 return nil, DiscInvalidIdentity 168 } 169 return &hs, nil 170 } 171 172 func (t *rlpx) doEncHandshake(prv *ecdsa.PrivateKey, dial *discover.Node) (discover.NodeID, error) { 173 var ( 174 sec secrets 175 err error 176 ) 177 if dial == nil { 178 sec, err = receiverEncHandshake(t.fd, prv, nil) 179 } else { 180 sec, err = initiatorEncHandshake(t.fd, prv, dial.ID, nil) 181 } 182 if err != nil { 183 return discover.NodeID{}, err 184 } 185 t.wmu.Lock() 186 t.rw = newRLPXFrameRW(t.fd, sec) 187 t.wmu.Unlock() 188 return sec.RemoteID, nil 189 } 190 191 // encHandshake contains the state of the encryption handshake. 192 type encHandshake struct { 193 initiator bool 194 remoteID discover.NodeID 195 196 remotePub *ecies.PublicKey // remote-pubk 197 initNonce, respNonce []byte // nonce 198 randomPrivKey *ecies.PrivateKey // ecdhe-random 199 remoteRandomPub *ecies.PublicKey // ecdhe-random-pubk 200 } 201 202 // secrets represents the connection secrets 203 // which are negotiated during the encryption handshake. 204 type secrets struct { 205 RemoteID discover.NodeID 206 AES, MAC []byte 207 EgressMAC, IngressMAC hash.Hash 208 Token []byte 209 } 210 211 // RLPx v4 handshake auth (defined in EIP-8). 212 type authMsgV4 struct { 213 gotPlain bool // whether read packet had plain format. 214 215 Signature [sigLen]byte 216 InitiatorPubkey [pubLen]byte 217 Nonce [shaLen]byte 218 Version uint 219 220 // Ignore additional fields (forward-compatibility) 221 Rest []rlp.RawValue `rlp:"tail"` 222 } 223 224 // RLPx v4 handshake response (defined in EIP-8). 225 type authRespV4 struct { 226 RandomPubkey [pubLen]byte 227 Nonce [shaLen]byte 228 Version uint 229 230 // Ignore additional fields (forward-compatibility) 231 Rest []rlp.RawValue `rlp:"tail"` 232 } 233 234 // secrets is called after the handshake is completed. 235 // It extracts the connection secrets from the handshake values. 236 func (h *encHandshake) secrets(auth, authResp []byte) (secrets, error) { 237 ecdheSecret, err := h.randomPrivKey.GenerateShared(h.remoteRandomPub, sskLen, sskLen) 238 if err != nil { 239 return secrets{}, err 240 } 241 242 // derive base secrets from ephemeral key agreement 243 sharedSecret := crypto.Keccak256(ecdheSecret, crypto.Keccak256(h.respNonce, h.initNonce)) 244 aesSecret := crypto.Keccak256(ecdheSecret, sharedSecret) 245 s := secrets{ 246 RemoteID: h.remoteID, 247 AES: aesSecret, 248 MAC: crypto.Keccak256(ecdheSecret, aesSecret), 249 } 250 251 // setup sha3 instances for the MACs 252 mac1 := sha3.NewKeccak256() 253 mac1.Write(xor(s.MAC, h.respNonce)) 254 mac1.Write(auth) 255 mac2 := sha3.NewKeccak256() 256 mac2.Write(xor(s.MAC, h.initNonce)) 257 mac2.Write(authResp) 258 if h.initiator { 259 s.EgressMAC, s.IngressMAC = mac1, mac2 260 } else { 261 s.EgressMAC, s.IngressMAC = mac2, mac1 262 } 263 264 return s, nil 265 } 266 267 // staticSharedSecret returns the static shared secret, the result 268 // of key agreement between the local and remote static node key. 269 func (h *encHandshake) staticSharedSecret(prv *ecdsa.PrivateKey) ([]byte, error) { 270 return ecies.ImportECDSA(prv).GenerateShared(h.remotePub, sskLen, sskLen) 271 } 272 273 // initiatorEncHandshake negotiates a session token on conn. 274 // it should be called on the dialing side of the connection. 275 // 276 // prv is the local client's private key. 277 func initiatorEncHandshake(conn io.ReadWriter, prv *ecdsa.PrivateKey, remoteID discover.NodeID, token []byte) (s secrets, err error) { 278 h := &encHandshake{initiator: true, remoteID: remoteID} 279 authMsg, err := h.makeAuthMsg(prv, token) 280 if err != nil { 281 return s, err 282 } 283 authPacket, err := sealEIP8(authMsg, h) 284 if err != nil { 285 return s, err 286 } 287 if _, err = conn.Write(authPacket); err != nil { 288 return s, err 289 } 290 291 authRespMsg := new(authRespV4) 292 authRespPacket, err := readHandshakeMsg(authRespMsg, encAuthRespLen, prv, conn) 293 if err != nil { 294 return s, err 295 } 296 if err := h.handleAuthResp(authRespMsg); err != nil { 297 return s, err 298 } 299 return h.secrets(authPacket, authRespPacket) 300 } 301 302 // makeAuthMsg creates the initiator handshake message. 303 func (h *encHandshake) makeAuthMsg(prv *ecdsa.PrivateKey, token []byte) (*authMsgV4, error) { 304 rpub, err := h.remoteID.Pubkey() 305 if err != nil { 306 return nil, fmt.Errorf("bad remoteID: %v", err) 307 } 308 h.remotePub = ecies.ImportECDSAPublic(rpub) 309 // Generate random initiator nonce. 310 h.initNonce = make([]byte, shaLen) 311 if _, err := rand.Read(h.initNonce); err != nil { 312 return nil, err 313 } 314 // Generate random keypair to for ECDH. 315 h.randomPrivKey, err = ecies.GenerateKey(rand.Reader, crypto.S256(), nil) 316 if err != nil { 317 return nil, err 318 } 319 320 // Sign known message: static-shared-secret ^ nonce 321 token, err = h.staticSharedSecret(prv) 322 if err != nil { 323 return nil, err 324 } 325 signed := xor(token, h.initNonce) 326 signature, err := crypto.Sign(signed, h.randomPrivKey.ExportECDSA()) 327 if err != nil { 328 return nil, err 329 } 330 331 msg := new(authMsgV4) 332 copy(msg.Signature[:], signature) 333 copy(msg.InitiatorPubkey[:], crypto.FromECDSAPub(&prv.PublicKey)[1:]) 334 copy(msg.Nonce[:], h.initNonce) 335 msg.Version = 4 336 return msg, nil 337 } 338 339 func (h *encHandshake) handleAuthResp(msg *authRespV4) (err error) { 340 h.respNonce = msg.Nonce[:] 341 h.remoteRandomPub, err = importPublicKey(msg.RandomPubkey[:]) 342 return err 343 } 344 345 // receiverEncHandshake negotiates a session token on conn. 346 // it should be called on the listening side of the connection. 347 // 348 // prv is the local client's private key. 349 // token is the token from a previous session with this node. 350 func receiverEncHandshake(conn io.ReadWriter, prv *ecdsa.PrivateKey, token []byte) (s secrets, err error) { 351 authMsg := new(authMsgV4) 352 authPacket, err := readHandshakeMsg(authMsg, encAuthMsgLen, prv, conn) 353 if err != nil { 354 return s, err 355 } 356 h := new(encHandshake) 357 if err := h.handleAuthMsg(authMsg, prv); err != nil { 358 return s, err 359 } 360 361 authRespMsg, err := h.makeAuthResp() 362 if err != nil { 363 return s, err 364 } 365 var authRespPacket []byte 366 if authMsg.gotPlain { 367 authRespPacket, err = authRespMsg.sealPlain(h) 368 } else { 369 authRespPacket, err = sealEIP8(authRespMsg, h) 370 } 371 if err != nil { 372 return s, err 373 } 374 if _, err = conn.Write(authRespPacket); err != nil { 375 return s, err 376 } 377 return h.secrets(authPacket, authRespPacket) 378 } 379 380 func (h *encHandshake) handleAuthMsg(msg *authMsgV4, prv *ecdsa.PrivateKey) error { 381 // Import the remote identity. 382 h.initNonce = msg.Nonce[:] 383 h.remoteID = msg.InitiatorPubkey 384 rpub, err := h.remoteID.Pubkey() 385 if err != nil { 386 return fmt.Errorf("bad remoteID: %#v", err) 387 } 388 h.remotePub = ecies.ImportECDSAPublic(rpub) 389 390 // Generate random keypair for ECDH. 391 // If a private key is already set, use it instead of generating one (for testing). 392 if h.randomPrivKey == nil { 393 h.randomPrivKey, err = ecies.GenerateKey(rand.Reader, crypto.S256(), nil) 394 if err != nil { 395 return err 396 } 397 } 398 399 // Check the signature. 400 token, err := h.staticSharedSecret(prv) 401 if err != nil { 402 return err 403 } 404 signedMsg := xor(token, h.initNonce) 405 remoteRandomPub, err := secp256k1.RecoverPubkey(signedMsg, msg.Signature[:]) 406 if err != nil { 407 return err 408 } 409 h.remoteRandomPub, _ = importPublicKey(remoteRandomPub) 410 return nil 411 } 412 413 func (h *encHandshake) makeAuthResp() (msg *authRespV4, err error) { 414 // Generate random nonce. 415 h.respNonce = make([]byte, shaLen) 416 if _, err = rand.Read(h.respNonce); err != nil { 417 return nil, err 418 } 419 420 msg = new(authRespV4) 421 copy(msg.Nonce[:], h.respNonce) 422 copy(msg.RandomPubkey[:], exportPubkey(&h.randomPrivKey.PublicKey)) 423 msg.Version = 4 424 return msg, nil 425 } 426 427 func (msg *authMsgV4) sealPlain(h *encHandshake) ([]byte, error) { 428 buf := make([]byte, authMsgLen) 429 n := copy(buf, msg.Signature[:]) 430 n += copy(buf[n:], crypto.Keccak256(exportPubkey(&h.randomPrivKey.PublicKey))) 431 n += copy(buf[n:], msg.InitiatorPubkey[:]) 432 n += copy(buf[n:], msg.Nonce[:]) 433 buf[n] = 0 // token-flag 434 return ecies.Encrypt(rand.Reader, h.remotePub, buf, nil, nil) 435 } 436 437 func (msg *authMsgV4) decodePlain(input []byte) { 438 n := copy(msg.Signature[:], input) 439 n += shaLen // skip sha3(initiator-ephemeral-pubk) 440 n += copy(msg.InitiatorPubkey[:], input[n:]) 441 copy(msg.Nonce[:], input[n:]) 442 msg.Version = 4 443 msg.gotPlain = true 444 } 445 446 func (msg *authRespV4) sealPlain(hs *encHandshake) ([]byte, error) { 447 buf := make([]byte, authRespLen) 448 n := copy(buf, msg.RandomPubkey[:]) 449 copy(buf[n:], msg.Nonce[:]) 450 return ecies.Encrypt(rand.Reader, hs.remotePub, buf, nil, nil) 451 } 452 453 func (msg *authRespV4) decodePlain(input []byte) { 454 n := copy(msg.RandomPubkey[:], input) 455 copy(msg.Nonce[:], input[n:]) 456 msg.Version = 4 457 } 458 459 var padSpace = make([]byte, 300) 460 461 func sealEIP8(msg interface{}, h *encHandshake) ([]byte, error) { 462 buf := new(bytes.Buffer) 463 if err := rlp.Encode(buf, msg); err != nil { 464 return nil, err 465 } 466 // pad with random amount of data. the amount needs to be at least 100 bytes to make 467 // the message distinguishable from pre-EIP-8 handshakes. 468 pad := padSpace[:mrand.Intn(len(padSpace)-100)+100] 469 buf.Write(pad) 470 prefix := make([]byte, 2) 471 binary.BigEndian.PutUint16(prefix, uint16(buf.Len()+eciesOverhead)) 472 473 enc, err := ecies.Encrypt(rand.Reader, h.remotePub, buf.Bytes(), nil, prefix) 474 return append(prefix, enc...), err 475 } 476 477 type plainDecoder interface { 478 decodePlain([]byte) 479 } 480 481 func readHandshakeMsg(msg plainDecoder, plainSize int, prv *ecdsa.PrivateKey, r io.Reader) ([]byte, error) { 482 buf := make([]byte, plainSize) 483 if _, err := io.ReadFull(r, buf); err != nil { 484 return buf, err 485 } 486 // Attempt decoding pre-EIP-8 "plain" format. 487 key := ecies.ImportECDSA(prv) 488 if dec, err := key.Decrypt(rand.Reader, buf, nil, nil); err == nil { 489 msg.decodePlain(dec) 490 return buf, nil 491 } 492 // Could be EIP-8 format, try that. 493 prefix := buf[:2] 494 size := binary.BigEndian.Uint16(prefix) 495 if size < uint16(plainSize) { 496 return buf, fmt.Errorf("size underflow, need at least %d bytes", plainSize) 497 } 498 buf = append(buf, make([]byte, size-uint16(plainSize)+2)...) 499 if _, err := io.ReadFull(r, buf[plainSize:]); err != nil { 500 return buf, err 501 } 502 dec, err := key.Decrypt(rand.Reader, buf[2:], nil, prefix) 503 if err != nil { 504 return buf, err 505 } 506 // Can't use rlp.DecodeBytes here because it rejects 507 // trailing data (forward-compatibility). 508 s := rlp.NewStream(bytes.NewReader(dec), 0) 509 return buf, s.Decode(msg) 510 } 511 512 // importPublicKey unmarshals 512 bit public keys. 513 func importPublicKey(pubKey []byte) (*ecies.PublicKey, error) { 514 var pubKey65 []byte 515 switch len(pubKey) { 516 case 64: 517 // add 'uncompressed key' flag 518 pubKey65 = append([]byte{0x04}, pubKey...) 519 case 65: 520 pubKey65 = pubKey 521 default: 522 return nil, fmt.Errorf("invalid public key length %v (expect 64/65)", len(pubKey)) 523 } 524 // TODO: fewer pointless conversions 525 pub := crypto.ToECDSAPub(pubKey65) 526 if pub.X == nil { 527 return nil, fmt.Errorf("invalid public key") 528 } 529 return ecies.ImportECDSAPublic(pub), nil 530 } 531 532 func exportPubkey(pub *ecies.PublicKey) []byte { 533 if pub == nil { 534 panic("nil pubkey") 535 } 536 return elliptic.Marshal(pub.Curve, pub.X, pub.Y)[1:] 537 } 538 539 func xor(one, other []byte) (xor []byte) { 540 xor = make([]byte, len(one)) 541 for i := 0; i < len(one); i++ { 542 xor[i] = one[i] ^ other[i] 543 } 544 return xor 545 } 546 547 var ( 548 // this is used in place of actual frame header data. 549 // TODO: replace this when Msg contains the protocol type code. 550 zeroHeader = []byte{0xC2, 0x80, 0x80} 551 // sixteen zero bytes 552 zero16 = make([]byte, 16) 553 ) 554 555 // rlpxFrameRW implements a simplified version of RLPx framing. 556 // chunked messages are not supported and all headers are equal to 557 // zeroHeader. 558 // 559 // rlpxFrameRW is not safe for concurrent use from multiple goroutines. 560 type rlpxFrameRW struct { 561 conn io.ReadWriter 562 enc cipher.Stream 563 dec cipher.Stream 564 565 macCipher cipher.Block 566 egressMAC hash.Hash 567 ingressMAC hash.Hash 568 569 snappy bool 570 } 571 572 func newRLPXFrameRW(conn io.ReadWriter, s secrets) *rlpxFrameRW { 573 macc, err := aes.NewCipher(s.MAC) 574 if err != nil { 575 panic("invalid MAC secret: " + err.Error()) 576 } 577 encc, err := aes.NewCipher(s.AES) 578 if err != nil { 579 panic("invalid AES secret: " + err.Error()) 580 } 581 // we use an all-zeroes IV for AES because the key used 582 // for encryption is ephemeral. 583 iv := make([]byte, encc.BlockSize()) 584 return &rlpxFrameRW{ 585 conn: conn, 586 enc: cipher.NewCTR(encc, iv), 587 dec: cipher.NewCTR(encc, iv), 588 macCipher: macc, 589 egressMAC: s.EgressMAC, 590 ingressMAC: s.IngressMAC, 591 } 592 } 593 594 func (rw *rlpxFrameRW) WriteMsg(msg Msg) error { 595 ptype, _ := rlp.EncodeToBytes(msg.Code) 596 597 // if snappy is enabled, compress message now 598 if rw.snappy { 599 if msg.Size > maxUint24 { 600 return errPlainMessageTooLarge 601 } 602 payload, _ := ioutil.ReadAll(msg.Payload) 603 payload = snappy.Encode(nil, payload) 604 605 msg.Payload = bytes.NewReader(payload) 606 msg.Size = uint32(len(payload)) 607 } 608 // write header 609 headbuf := make([]byte, 32) 610 fsize := uint32(len(ptype)) + msg.Size 611 if fsize > maxUint24 { 612 return errors.New("message size overflows uint24") 613 } 614 putInt24(fsize, headbuf) // TODO: check overflow 615 copy(headbuf[3:], zeroHeader) 616 rw.enc.XORKeyStream(headbuf[:16], headbuf[:16]) // first half is now encrypted 617 618 // write header MAC 619 copy(headbuf[16:], updateMAC(rw.egressMAC, rw.macCipher, headbuf[:16])) 620 if _, err := rw.conn.Write(headbuf); err != nil { 621 return err 622 } 623 624 // write encrypted frame, updating the egress MAC hash with 625 // the data written to conn. 626 tee := cipher.StreamWriter{S: rw.enc, W: io.MultiWriter(rw.conn, rw.egressMAC)} 627 if _, err := tee.Write(ptype); err != nil { 628 return err 629 } 630 if _, err := io.Copy(tee, msg.Payload); err != nil { 631 return err 632 } 633 if padding := fsize % 16; padding > 0 { 634 if _, err := tee.Write(zero16[:16-padding]); err != nil { 635 return err 636 } 637 } 638 639 // write frame MAC. egress MAC hash is up to date because 640 // frame content was written to it as well. 641 fmacseed := rw.egressMAC.Sum(nil) 642 mac := updateMAC(rw.egressMAC, rw.macCipher, fmacseed) 643 _, err := rw.conn.Write(mac) 644 return err 645 } 646 647 func (rw *rlpxFrameRW) ReadMsg() (msg Msg, err error) { 648 // read the header 649 headbuf := make([]byte, 32) 650 if _, err := io.ReadFull(rw.conn, headbuf); err != nil { 651 return msg, err 652 } 653 // verify header mac 654 shouldMAC := updateMAC(rw.ingressMAC, rw.macCipher, headbuf[:16]) 655 if !hmac.Equal(shouldMAC, headbuf[16:]) { 656 return msg, errors.New("bad header MAC") 657 } 658 rw.dec.XORKeyStream(headbuf[:16], headbuf[:16]) // first half is now decrypted 659 fsize := readInt24(headbuf) 660 // ignore protocol type for now 661 662 // read the frame content 663 var rsize = fsize // frame size rounded up to 16 byte boundary 664 if padding := fsize % 16; padding > 0 { 665 rsize += 16 - padding 666 } 667 framebuf := make([]byte, rsize) 668 if _, err := io.ReadFull(rw.conn, framebuf); err != nil { 669 return msg, err 670 } 671 672 // read and validate frame MAC. we can re-use headbuf for that. 673 rw.ingressMAC.Write(framebuf) 674 fmacseed := rw.ingressMAC.Sum(nil) 675 if _, err := io.ReadFull(rw.conn, headbuf[:16]); err != nil { 676 return msg, err 677 } 678 shouldMAC = updateMAC(rw.ingressMAC, rw.macCipher, fmacseed) 679 if !hmac.Equal(shouldMAC, headbuf[:16]) { 680 return msg, errors.New("bad frame MAC") 681 } 682 683 // decrypt frame content 684 rw.dec.XORKeyStream(framebuf, framebuf) 685 686 // decode message code 687 content := bytes.NewReader(framebuf[:fsize]) 688 if err := rlp.Decode(content, &msg.Code); err != nil { 689 return msg, err 690 } 691 msg.Size = uint32(content.Len()) 692 msg.Payload = content 693 694 // if snappy is enabled, verify and decompress message 695 if rw.snappy { 696 payload, err := ioutil.ReadAll(msg.Payload) 697 if err != nil { 698 return msg, err 699 } 700 size, err := snappy.DecodedLen(payload) 701 if err != nil { 702 return msg, err 703 } 704 if size > int(maxUint24) { 705 return msg, errPlainMessageTooLarge 706 } 707 payload, err = snappy.Decode(nil, payload) 708 if err != nil { 709 return msg, err 710 } 711 msg.Size, msg.Payload = uint32(size), bytes.NewReader(payload) 712 } 713 return msg, nil 714 } 715 716 // updateMAC reseeds the given hash with encrypted seed. 717 // it returns the first 16 bytes of the hash sum after seeding. 718 func updateMAC(mac hash.Hash, block cipher.Block, seed []byte) []byte { 719 aesbuf := make([]byte, aes.BlockSize) 720 block.Encrypt(aesbuf, mac.Sum(nil)) 721 for i := range aesbuf { 722 aesbuf[i] ^= seed[i] 723 } 724 mac.Write(aesbuf) 725 return mac.Sum(nil)[:16] 726 } 727 728 func readInt24(b []byte) uint32 { 729 return uint32(b[2]) | uint32(b[1])<<8 | uint32(b[0])<<16 730 } 731 732 func putInt24(v uint32, b []byte) { 733 b[0] = byte(v >> 16) 734 b[1] = byte(v >> 8) 735 b[2] = byte(v) 736 }