github.com/varialus/godfly@v0.0.0-20130904042352-1934f9f095ab/src/cmd/5g/gsubr.c (about)

     1  // Derived from Inferno utils/5c/txt.c
     2  // http://code.google.com/p/inferno-os/source/browse/utils/5c/txt.c
     3  //
     4  //	Copyright © 1994-1999 Lucent Technologies Inc.  All rights reserved.
     5  //	Portions Copyright © 1995-1997 C H Forsyth (forsyth@terzarima.net)
     6  //	Portions Copyright © 1997-1999 Vita Nuova Limited
     7  //	Portions Copyright © 2000-2007 Vita Nuova Holdings Limited (www.vitanuova.com)
     8  //	Portions Copyright © 2004,2006 Bruce Ellis
     9  //	Portions Copyright © 2005-2007 C H Forsyth (forsyth@terzarima.net)
    10  //	Revisions Copyright © 2000-2007 Lucent Technologies Inc. and others
    11  //	Portions Copyright © 2009 The Go Authors.  All rights reserved.
    12  //
    13  // Permission is hereby granted, free of charge, to any person obtaining a copy
    14  // of this software and associated documentation files (the "Software"), to deal
    15  // in the Software without restriction, including without limitation the rights
    16  // to use, copy, modify, merge, publish, distribute, sublicense, and/or sell
    17  // copies of the Software, and to permit persons to whom the Software is
    18  // furnished to do so, subject to the following conditions:
    19  //
    20  // The above copyright notice and this permission notice shall be included in
    21  // all copies or substantial portions of the Software.
    22  //
    23  // THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
    24  // IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
    25  // FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT.  IN NO EVENT SHALL THE
    26  // AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
    27  // LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM,
    28  // OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN
    29  // THE SOFTWARE.
    30  
    31  #include <u.h>
    32  #include <libc.h>
    33  #include "gg.h"
    34  #include "../../pkg/runtime/funcdata.h"
    35  
    36  // TODO(rsc): Can make this bigger if we move
    37  // the text segment up higher in 5l for all GOOS.
    38  // At the same time, can raise StackBig in ../../pkg/runtime/stack.h.
    39  long unmappedzero = 4096;
    40  
    41  void
    42  clearp(Prog *p)
    43  {
    44  	p->as = AEND;
    45  	p->reg = NREG;
    46  	p->scond = C_SCOND_NONE;
    47  	p->from.type = D_NONE;
    48  	p->from.name = D_NONE;
    49  	p->from.reg = NREG;
    50  	p->to.type = D_NONE;
    51  	p->to.name = D_NONE;
    52  	p->to.reg = NREG;
    53  	p->loc = pcloc;
    54  	pcloc++;
    55  }
    56  
    57  static int ddumped;
    58  static Prog *dfirst;
    59  static Prog *dpc;
    60  
    61  /*
    62   * generate and return proc with p->as = as,
    63   * linked into program.  pc is next instruction.
    64   */
    65  Prog*
    66  prog(int as)
    67  {
    68  	Prog *p;
    69  
    70  	if(as == ADATA || as == AGLOBL) {
    71  		if(ddumped)
    72  			fatal("already dumped data");
    73  		if(dpc == nil) {
    74  			dpc = mal(sizeof(*dpc));
    75  			dfirst = dpc;
    76  		}
    77  		p = dpc;
    78  		dpc = mal(sizeof(*dpc));
    79  		p->link = dpc;
    80  		p->reg = 0;  // used for flags
    81  	} else {
    82  		p = pc;
    83  		pc = mal(sizeof(*pc));
    84  		clearp(pc);
    85  		p->link = pc;
    86  	}
    87  
    88  	if(lineno == 0) {
    89  		if(debug['K'])
    90  			warn("prog: line 0");
    91  	}
    92  
    93  	p->as = as;
    94  	p->lineno = lineno;
    95  	return p;
    96  }
    97  
    98  void
    99  dumpdata(void)
   100  {
   101  	ddumped = 1;
   102  	if(dfirst == nil)
   103  		return;
   104  	newplist();
   105  	*pc = *dfirst;
   106  	pc = dpc;
   107  	clearp(pc);
   108  }
   109  
   110  /*
   111   * generate a branch.
   112   * t is ignored.
   113   * likely values are for branch prediction:
   114   *	-1 unlikely
   115   *	0 no opinion
   116   *	+1 likely
   117   */
   118  Prog*
   119  gbranch(int as, Type *t, int likely)
   120  {
   121  	Prog *p;
   122  
   123  	USED(t);
   124  	USED(likely);  // TODO: record this for linker
   125  
   126  	p = prog(as);
   127  	p->to.type = D_BRANCH;
   128  	p->to.u.branch = P;
   129  	return p;
   130  }
   131  
   132  /*
   133   * patch previous branch to jump to to.
   134   */
   135  void
   136  patch(Prog *p, Prog *to)
   137  {
   138  	if(p->to.type != D_BRANCH)
   139  		fatal("patch: not a branch");
   140  	p->to.u.branch = to;
   141  	p->to.offset = to->loc;
   142  }
   143  
   144  Prog*
   145  unpatch(Prog *p)
   146  {
   147  	Prog *q;
   148  
   149  	if(p->to.type != D_BRANCH)
   150  		fatal("unpatch: not a branch");
   151  	q = p->to.u.branch;
   152  	p->to.u.branch = P;
   153  	p->to.offset = 0;
   154  	return q;
   155  }
   156  
   157  /*
   158   * start a new Prog list.
   159   */
   160  Plist*
   161  newplist(void)
   162  {
   163  	Plist *pl;
   164  
   165  	pl = mal(sizeof(*pl));
   166  	if(plist == nil)
   167  		plist = pl;
   168  	else
   169  		plast->link = pl;
   170  	plast = pl;
   171  
   172  	pc = mal(sizeof(*pc));
   173  	clearp(pc);
   174  	pl->firstpc = pc;
   175  
   176  	return pl;
   177  }
   178  
   179  void
   180  gused(Node *n)
   181  {
   182  	gins(ANOP, n, N);	// used
   183  }
   184  
   185  Prog*
   186  gjmp(Prog *to)
   187  {
   188  	Prog *p;
   189  
   190  	p = gbranch(AB, T, 0);
   191  	if(to != P)
   192  		patch(p, to);
   193  	return p;
   194  }
   195  
   196  void
   197  ggloblnod(Node *nam)
   198  {
   199  	Prog *p;
   200  
   201  	p = gins(AGLOBL, nam, N);
   202  	p->lineno = nam->lineno;
   203  	p->from.gotype = ngotype(nam);
   204  	p->to.sym = S;
   205  	p->to.type = D_CONST;
   206  	p->to.offset = nam->type->width;
   207  	if(nam->readonly)
   208  		p->reg = RODATA;
   209  	if(nam->type != T && !haspointers(nam->type))
   210  		p->reg |= NOPTR;
   211  }
   212  
   213  void
   214  gargsize(int32 size)
   215  {
   216  	Node n1, n2;
   217  	
   218  	nodconst(&n1, types[TINT32], PCDATA_ArgSize);
   219  	nodconst(&n2, types[TINT32], size);
   220  	gins(APCDATA, &n1, &n2);
   221  }
   222  
   223  void
   224  ggloblsym(Sym *s, int32 width, int dupok, int rodata)
   225  {
   226  	Prog *p;
   227  
   228  	p = gins(AGLOBL, N, N);
   229  	p->from.type = D_OREG;
   230  	p->from.name = D_EXTERN;
   231  	p->from.sym = s;
   232  	p->to.type = D_CONST;
   233  	p->to.name = D_NONE;
   234  	p->to.offset = width;
   235  	if(dupok)
   236  		p->reg |= DUPOK;
   237  	if(rodata)
   238  		p->reg |= RODATA;
   239  }
   240  
   241  void
   242  gtrack(Sym *s)
   243  {
   244  	Prog *p;
   245  	
   246  	p = gins(AUSEFIELD, N, N);
   247  	p->from.type = D_OREG;
   248  	p->from.name = D_EXTERN;
   249  	p->from.sym = s;
   250  }
   251  
   252  int
   253  isfat(Type *t)
   254  {
   255  	if(t != T)
   256  	switch(t->etype) {
   257  	case TSTRUCT:
   258  	case TARRAY:
   259  	case TSTRING:
   260  	case TINTER:	// maybe remove later
   261  		return 1;
   262  	}
   263  	return 0;
   264  }
   265  
   266  /*
   267   * naddr of func generates code for address of func.
   268   * if using opcode that can take address implicitly,
   269   * call afunclit to fix up the argument.
   270   * also fix up direct register references to be D_OREG.
   271   */
   272  void
   273  afunclit(Addr *a, Node *n)
   274  {
   275  	if(a->type == D_CONST && a->name == D_EXTERN || a->type == D_REG) {
   276  		a->type = D_OREG;
   277  		if(n->op == ONAME)
   278  			a->sym = n->sym;
   279  	}
   280  }
   281  
   282  static	int	resvd[] =
   283  {
   284  	9,     // reserved for m
   285  	10,    // reserved for g
   286  	REGSP, // reserved for SP
   287  };
   288  
   289  void
   290  ginit(void)
   291  {
   292  	int i;
   293  
   294  	for(i=0; i<nelem(reg); i++)
   295  		reg[i] = 0;
   296  	for(i=0; i<nelem(resvd); i++)
   297  		reg[resvd[i]]++;
   298  }
   299  
   300  void
   301  gclean(void)
   302  {
   303  	int i;
   304  
   305  	for(i=0; i<nelem(resvd); i++)
   306  		reg[resvd[i]]--;
   307  
   308  	for(i=0; i<nelem(reg); i++)
   309  		if(reg[i])
   310  			yyerror("reg %R left allocated\n", i);
   311  }
   312  
   313  int32
   314  anyregalloc(void)
   315  {
   316  	int i, j;
   317  
   318  	for(i=0; i<nelem(reg); i++) {
   319  		if(reg[i] == 0)
   320  			goto ok;
   321  		for(j=0; j<nelem(resvd); j++)
   322  			if(resvd[j] == i)
   323  				goto ok;
   324  		return 1;
   325  	ok:;
   326  	}
   327  	return 0;
   328  }
   329  
   330  uintptr regpc[REGALLOC_FMAX+1];
   331  
   332  /*
   333   * allocate register of type t, leave in n.
   334   * if o != N, o is desired fixed register.
   335   * caller must regfree(n).
   336   */
   337  void
   338  regalloc(Node *n, Type *t, Node *o)
   339  {
   340  	int i, et, fixfree, floatfree;
   341  
   342  	if(0 && debug['r']) {
   343  		fixfree = 0;
   344  		for(i=REGALLOC_R0; i<=REGALLOC_RMAX; i++)
   345  			if(reg[i] == 0)
   346  				fixfree++;
   347  		floatfree = 0;
   348  		for(i=REGALLOC_F0; i<=REGALLOC_FMAX; i++)
   349  			if(reg[i] == 0)
   350  				floatfree++;
   351  		print("regalloc fix %d float %d\n", fixfree, floatfree);
   352  	}
   353  
   354  	if(t == T)
   355  		fatal("regalloc: t nil");
   356  	et = simtype[t->etype];
   357  	if(is64(t))
   358  		fatal("regalloc: 64 bit type %T");
   359  
   360  	switch(et) {
   361  	case TINT8:
   362  	case TUINT8:
   363  	case TINT16:
   364  	case TUINT16:
   365  	case TINT32:
   366  	case TUINT32:
   367  	case TPTR32:
   368  	case TBOOL:
   369  		if(o != N && o->op == OREGISTER) {
   370  			i = o->val.u.reg;
   371  			if(i >= REGALLOC_R0 && i <= REGALLOC_RMAX)
   372  				goto out;
   373  		}
   374  		for(i=REGALLOC_R0; i<=REGALLOC_RMAX; i++)
   375  			if(reg[i] == 0) {
   376  				regpc[i] = (uintptr)getcallerpc(&n);
   377  				goto out;
   378  			}
   379  		print("registers allocated at\n");
   380  		for(i=REGALLOC_R0; i<=REGALLOC_RMAX; i++)
   381  			print("%d %p\n", i, regpc[i]);
   382  		yyerror("out of fixed registers");
   383  		goto err;
   384  
   385  	case TFLOAT32:
   386  	case TFLOAT64:
   387  		if(o != N && o->op == OREGISTER) {
   388  			i = o->val.u.reg;
   389  			if(i >= REGALLOC_F0 && i <= REGALLOC_FMAX)
   390  				goto out;
   391  		}
   392  		for(i=REGALLOC_F0; i<=REGALLOC_FMAX; i++)
   393  			if(reg[i] == 0)
   394  				goto out;
   395  		yyerror("out of floating point registers");
   396  		goto err;
   397  
   398  	case TCOMPLEX64:
   399  	case TCOMPLEX128:
   400  		tempname(n, t);
   401  		return;
   402  	}
   403  	yyerror("regalloc: unknown type %T", t);
   404  
   405  err:
   406  	nodreg(n, t, 0);
   407  	return;
   408  
   409  out:
   410  	reg[i]++;
   411  	nodreg(n, t, i);
   412  }
   413  
   414  void
   415  regfree(Node *n)
   416  {
   417  	int i, fixfree, floatfree;
   418  
   419  	if(0 && debug['r']) {
   420  		fixfree = 0;
   421  		for(i=REGALLOC_R0; i<=REGALLOC_RMAX; i++)
   422  			if(reg[i] == 0)
   423  				fixfree++;
   424  		floatfree = 0;
   425  		for(i=REGALLOC_F0; i<=REGALLOC_FMAX; i++)
   426  			if(reg[i] == 0)
   427  				floatfree++;
   428  		print("regalloc fix %d float %d\n", fixfree, floatfree);
   429  	}
   430  
   431  	if(n->op == ONAME)
   432  		return;
   433  	if(n->op != OREGISTER && n->op != OINDREG)
   434  		fatal("regfree: not a register");
   435  	i = n->val.u.reg;
   436  	if(i == REGSP)
   437  		return;
   438  	if(i < 0 || i >= nelem(reg) || i >= nelem(regpc))
   439  		fatal("regfree: reg out of range");
   440  	if(reg[i] <= 0)
   441  		fatal("regfree: reg %R not allocated", i);
   442  	reg[i]--;
   443  	if(reg[i] == 0)
   444  		regpc[i] = 0;
   445  }
   446  
   447  /*
   448   * initialize n to be register r of type t.
   449   */
   450  void
   451  nodreg(Node *n, Type *t, int r)
   452  {
   453  	if(t == T)
   454  		fatal("nodreg: t nil");
   455  
   456  	memset(n, 0, sizeof(*n));
   457  	n->op = OREGISTER;
   458  	n->addable = 1;
   459  	ullmancalc(n);
   460  	n->val.u.reg = r;
   461  	n->type = t;
   462  }
   463  
   464  /*
   465   * initialize n to be indirect of register r; n is type t.
   466   */
   467  void
   468  nodindreg(Node *n, Type *t, int r)
   469  {
   470  	nodreg(n, t, r);
   471  	n->op = OINDREG;
   472  }
   473  
   474  Node*
   475  nodarg(Type *t, int fp)
   476  {
   477  	Node *n;
   478  	Type *first;
   479  	Iter savet;
   480  
   481  	// entire argument struct, not just one arg
   482  	if(t->etype == TSTRUCT && t->funarg) {
   483  		n = nod(ONAME, N, N);
   484  		n->sym = lookup(".args");
   485  		n->type = t;
   486  		first = structfirst(&savet, &t);
   487  		if(first == nil)
   488  			fatal("nodarg: bad struct");
   489  		if(first->width == BADWIDTH)
   490  			fatal("nodarg: offset not computed for %T", t);
   491  		n->xoffset = first->width;
   492  		n->addable = 1;
   493  		goto fp;
   494  	}
   495  
   496  	if(t->etype != TFIELD)
   497  		fatal("nodarg: not field %T", t);
   498  
   499  	n = nod(ONAME, N, N);
   500  	n->type = t->type;
   501  	n->sym = t->sym;
   502  	if(t->width == BADWIDTH)
   503  		fatal("nodarg: offset not computed for %T", t);
   504  	n->xoffset = t->width;
   505  	n->addable = 1;
   506  	n->orig = t->nname;
   507  
   508  fp:
   509  	// Rewrite argument named _ to __,
   510  	// or else the assignment to _ will be
   511  	// discarded during code generation.
   512  	if(isblank(n))
   513  		n->sym = lookup("__");
   514  
   515  	switch(fp) {
   516  	default:
   517  		fatal("nodarg %T %d", t, fp);
   518  
   519  	case 0:		// output arg for calling another function
   520  		n->op = OINDREG;
   521  		n->val.u.reg = REGSP;
   522  		n->xoffset += 4;
   523  		break;
   524  
   525  	case 1:		// input arg to current function
   526  		n->class = PPARAM;
   527  		break;
   528  	}
   529  	n->typecheck = 1;
   530  	return n;
   531  }
   532  
   533  /*
   534   * return constant i node.
   535   * overwritten by next call, but useful in calls to gins.
   536   */
   537  Node*
   538  ncon(uint32 i)
   539  {
   540  	static Node n;
   541  
   542  	if(n.type == T)
   543  		nodconst(&n, types[TUINT32], 0);
   544  	mpmovecfix(n.val.u.xval, i);
   545  	return &n;
   546  }
   547  
   548  /*
   549   * Is this node a memory operand?
   550   */
   551  int
   552  ismem(Node *n)
   553  {
   554  	switch(n->op) {
   555  	case OINDREG:
   556  	case ONAME:
   557  	case OPARAM:
   558  	case OCLOSUREVAR:
   559  		return 1;
   560  	}
   561  	return 0;
   562  }
   563  
   564  Node sclean[10];
   565  int nsclean;
   566  
   567  /*
   568   * n is a 64-bit value.  fill in lo and hi to refer to its 32-bit halves.
   569   */
   570  void
   571  split64(Node *n, Node *lo, Node *hi)
   572  {
   573  	Node n1;
   574  	int64 i;
   575  
   576  	if(!is64(n->type))
   577  		fatal("split64 %T", n->type);
   578  
   579  	if(nsclean >= nelem(sclean))
   580  		fatal("split64 clean");
   581  	sclean[nsclean].op = OEMPTY;
   582  	nsclean++;
   583  	switch(n->op) {
   584  	default:
   585  		if(!dotaddable(n, &n1)) {
   586  			igen(n, &n1, N);
   587  			sclean[nsclean-1] = n1;
   588  		}
   589  		n = &n1;
   590  		goto common;
   591  	case ONAME:
   592  		if(n->class == PPARAMREF) {
   593  			cgen(n->heapaddr, &n1);
   594  			sclean[nsclean-1] = n1;
   595  			// fall through.
   596  			n = &n1;
   597  		}
   598  		goto common;
   599  	case OINDREG:
   600  	common:
   601  		*lo = *n;
   602  		*hi = *n;
   603  		lo->type = types[TUINT32];
   604  		if(n->type->etype == TINT64)
   605  			hi->type = types[TINT32];
   606  		else
   607  			hi->type = types[TUINT32];
   608  		hi->xoffset += 4;
   609  		break;
   610  
   611  	case OLITERAL:
   612  		convconst(&n1, n->type, &n->val);
   613  		i = mpgetfix(n1.val.u.xval);
   614  		nodconst(lo, types[TUINT32], (uint32)i);
   615  		i >>= 32;
   616  		if(n->type->etype == TINT64)
   617  			nodconst(hi, types[TINT32], (int32)i);
   618  		else
   619  			nodconst(hi, types[TUINT32], (uint32)i);
   620  		break;
   621  	}
   622  }
   623  
   624  void
   625  splitclean(void)
   626  {
   627  	if(nsclean <= 0)
   628  		fatal("splitclean");
   629  	nsclean--;
   630  	if(sclean[nsclean].op != OEMPTY)
   631  		regfree(&sclean[nsclean]);
   632  }
   633  
   634  #define	CASE(a,b)	(((a)<<16)|((b)<<0))
   635  
   636  void
   637  gmove(Node *f, Node *t)
   638  {
   639  	int a, ft, tt, fa, ta;
   640  	Type *cvt;
   641  	Node r1, r2, flo, fhi, tlo, thi, con;
   642  	Prog *p1;
   643  
   644  	if(debug['M'])
   645  		print("gmove %N -> %N\n", f, t);
   646  
   647  	ft = simsimtype(f->type);
   648  	tt = simsimtype(t->type);
   649  	cvt = t->type;
   650  
   651  	if(iscomplex[ft] || iscomplex[tt]) {
   652  		complexmove(f, t);
   653  		return;
   654  	}
   655  
   656  	// cannot have two memory operands;
   657  	// except 64-bit, which always copies via registers anyway.
   658  	if(!is64(f->type) && !is64(t->type) && ismem(f) && ismem(t))
   659  		goto hard;
   660  
   661  	// convert constant to desired type
   662  	if(f->op == OLITERAL) {
   663  		switch(tt) {
   664  		default:
   665  			convconst(&con, t->type, &f->val);
   666  			break;
   667  
   668  		case TINT16:
   669  		case TINT8:
   670  			convconst(&con, types[TINT32], &f->val);
   671  			regalloc(&r1, con.type, t);
   672  			gins(AMOVW, &con, &r1);
   673  			gmove(&r1, t);
   674  			regfree(&r1);
   675  			return;
   676  
   677  		case TUINT16:
   678  		case TUINT8:
   679  			convconst(&con, types[TUINT32], &f->val);
   680  			regalloc(&r1, con.type, t);
   681  			gins(AMOVW, &con, &r1);
   682  			gmove(&r1, t);
   683  			regfree(&r1);
   684  			return;
   685  		}
   686  
   687  		f = &con;
   688  		ft = simsimtype(con.type);
   689  
   690  		// constants can't move directly to memory
   691  		if(ismem(t) && !is64(t->type)) goto hard;
   692  	}
   693  
   694  	// value -> value copy, only one memory operand.
   695  	// figure out the instruction to use.
   696  	// break out of switch for one-instruction gins.
   697  	// goto rdst for "destination must be register".
   698  	// goto hard for "convert to cvt type first".
   699  	// otherwise handle and return.
   700  
   701  	switch(CASE(ft, tt)) {
   702  	default:
   703  		goto fatal;
   704  
   705  	/*
   706  	 * integer copy and truncate
   707  	 */
   708  	case CASE(TINT8, TINT8):	// same size
   709  		if(!ismem(f)) {
   710  			a = AMOVB;
   711  			break;
   712  		}
   713  	case CASE(TUINT8, TINT8):
   714  	case CASE(TINT16, TINT8):	// truncate
   715  	case CASE(TUINT16, TINT8):
   716  	case CASE(TINT32, TINT8):
   717  	case CASE(TUINT32, TINT8):
   718  		a = AMOVBS;
   719  		break;
   720  
   721  	case CASE(TUINT8, TUINT8):
   722  		if(!ismem(f)) {
   723  			a = AMOVB;
   724  			break;
   725  		}
   726  	case CASE(TINT8, TUINT8):
   727  	case CASE(TINT16, TUINT8):
   728  	case CASE(TUINT16, TUINT8):
   729  	case CASE(TINT32, TUINT8):
   730  	case CASE(TUINT32, TUINT8):
   731  		a = AMOVBU;
   732  		break;
   733  
   734  	case CASE(TINT64, TINT8):	// truncate low word
   735  	case CASE(TUINT64, TINT8):
   736  		a = AMOVBS;
   737  		goto trunc64;
   738  
   739  	case CASE(TINT64, TUINT8):
   740  	case CASE(TUINT64, TUINT8):
   741  		a = AMOVBU;
   742  		goto trunc64;
   743  
   744  	case CASE(TINT16, TINT16):	// same size
   745  		if(!ismem(f)) {
   746  			a = AMOVH;
   747  			break;
   748  		}
   749  	case CASE(TUINT16, TINT16):
   750  	case CASE(TINT32, TINT16):	// truncate
   751  	case CASE(TUINT32, TINT16):
   752  		a = AMOVHS;
   753  		break;
   754  
   755  	case CASE(TUINT16, TUINT16):
   756  		if(!ismem(f)) {
   757  			a = AMOVH;
   758  			break;
   759  		}
   760  	case CASE(TINT16, TUINT16):
   761  	case CASE(TINT32, TUINT16):
   762  	case CASE(TUINT32, TUINT16):
   763  		a = AMOVHU;
   764  		break;
   765  
   766  	case CASE(TINT64, TINT16):	// truncate low word
   767  	case CASE(TUINT64, TINT16):
   768  		a = AMOVHS;
   769  		goto trunc64;
   770  
   771  	case CASE(TINT64, TUINT16):
   772  	case CASE(TUINT64, TUINT16):
   773  		a = AMOVHU;
   774  		goto trunc64;
   775  
   776  	case CASE(TINT32, TINT32):	// same size
   777  	case CASE(TINT32, TUINT32):
   778  	case CASE(TUINT32, TINT32):
   779  	case CASE(TUINT32, TUINT32):
   780  		a = AMOVW;
   781  		break;
   782  
   783  	case CASE(TINT64, TINT32):	// truncate
   784  	case CASE(TUINT64, TINT32):
   785  	case CASE(TINT64, TUINT32):
   786  	case CASE(TUINT64, TUINT32):
   787  		split64(f, &flo, &fhi);
   788  		regalloc(&r1, t->type, N);
   789  		gins(AMOVW, &flo, &r1);
   790  		gins(AMOVW, &r1, t);
   791  		regfree(&r1);
   792  		splitclean();
   793  		return;
   794  
   795  	case CASE(TINT64, TINT64):	// same size
   796  	case CASE(TINT64, TUINT64):
   797  	case CASE(TUINT64, TINT64):
   798  	case CASE(TUINT64, TUINT64):
   799  		split64(f, &flo, &fhi);
   800  		split64(t, &tlo, &thi);
   801  		regalloc(&r1, flo.type, N);
   802  		regalloc(&r2, fhi.type, N);
   803  		gins(AMOVW, &flo, &r1);
   804  		gins(AMOVW, &fhi, &r2);
   805  		gins(AMOVW, &r1, &tlo);
   806  		gins(AMOVW, &r2, &thi);
   807  		regfree(&r1);
   808  		regfree(&r2);
   809  		splitclean();
   810  		splitclean();
   811  		return;
   812  
   813  	/*
   814  	 * integer up-conversions
   815  	 */
   816  	case CASE(TINT8, TINT16):	// sign extend int8
   817  	case CASE(TINT8, TUINT16):
   818  	case CASE(TINT8, TINT32):
   819  	case CASE(TINT8, TUINT32):
   820  		a = AMOVBS;
   821  		goto rdst;
   822  	case CASE(TINT8, TINT64):	// convert via int32
   823  	case CASE(TINT8, TUINT64):
   824  		cvt = types[TINT32];
   825  		goto hard;
   826  
   827  	case CASE(TUINT8, TINT16):	// zero extend uint8
   828  	case CASE(TUINT8, TUINT16):
   829  	case CASE(TUINT8, TINT32):
   830  	case CASE(TUINT8, TUINT32):
   831  		a = AMOVBU;
   832  		goto rdst;
   833  	case CASE(TUINT8, TINT64):	// convert via uint32
   834  	case CASE(TUINT8, TUINT64):
   835  		cvt = types[TUINT32];
   836  		goto hard;
   837  
   838  	case CASE(TINT16, TINT32):	// sign extend int16
   839  	case CASE(TINT16, TUINT32):
   840  		a = AMOVHS;
   841  		goto rdst;
   842  	case CASE(TINT16, TINT64):	// convert via int32
   843  	case CASE(TINT16, TUINT64):
   844  		cvt = types[TINT32];
   845  		goto hard;
   846  
   847  	case CASE(TUINT16, TINT32):	// zero extend uint16
   848  	case CASE(TUINT16, TUINT32):
   849  		a = AMOVHU;
   850  		goto rdst;
   851  	case CASE(TUINT16, TINT64):	// convert via uint32
   852  	case CASE(TUINT16, TUINT64):
   853  		cvt = types[TUINT32];
   854  		goto hard;
   855  
   856  	case CASE(TINT32, TINT64):	// sign extend int32
   857  	case CASE(TINT32, TUINT64):
   858  		split64(t, &tlo, &thi);
   859  		regalloc(&r1, tlo.type, N);
   860  		regalloc(&r2, thi.type, N);
   861  		gmove(f, &r1);
   862  		p1 = gins(AMOVW, &r1, &r2);
   863  		p1->from.type = D_SHIFT;
   864  		p1->from.offset = 2 << 5 | 31 << 7 | r1.val.u.reg; // r1->31
   865  		p1->from.reg = NREG;
   866  //print("gmove: %P\n", p1);
   867  		gins(AMOVW, &r1, &tlo);
   868  		gins(AMOVW, &r2, &thi);
   869  		regfree(&r1);
   870  		regfree(&r2);
   871  		splitclean();
   872  		return;
   873  
   874  	case CASE(TUINT32, TINT64):	// zero extend uint32
   875  	case CASE(TUINT32, TUINT64):
   876  		split64(t, &tlo, &thi);
   877  		gmove(f, &tlo);
   878  		regalloc(&r1, thi.type, N);
   879  		gins(AMOVW, ncon(0), &r1);
   880  		gins(AMOVW, &r1, &thi);
   881  		regfree(&r1);
   882  		splitclean();
   883  		return;
   884  
   885  	/*
   886  	* float to integer
   887  	*/
   888  	case CASE(TFLOAT32, TINT8):
   889  	case CASE(TFLOAT32, TUINT8):
   890  	case CASE(TFLOAT32, TINT16):
   891  	case CASE(TFLOAT32, TUINT16):
   892  	case CASE(TFLOAT32, TINT32):
   893  	case CASE(TFLOAT32, TUINT32):
   894  //	case CASE(TFLOAT32, TUINT64):
   895  
   896  	case CASE(TFLOAT64, TINT8):
   897  	case CASE(TFLOAT64, TUINT8):
   898  	case CASE(TFLOAT64, TINT16):
   899  	case CASE(TFLOAT64, TUINT16):
   900  	case CASE(TFLOAT64, TINT32):
   901  	case CASE(TFLOAT64, TUINT32):
   902  //	case CASE(TFLOAT64, TUINT64):
   903  		fa = AMOVF;
   904  		a = AMOVFW;
   905  		if(ft == TFLOAT64) {
   906  			fa = AMOVD;
   907  			a = AMOVDW;
   908  		}
   909  		ta = AMOVW;
   910  		switch(tt) {
   911  		case TINT8:
   912  			ta = AMOVBS;
   913  			break;
   914  		case TUINT8:
   915  			ta = AMOVBU;
   916  			break;
   917  		case TINT16:
   918  			ta = AMOVHS;
   919  			break;
   920  		case TUINT16:
   921  			ta = AMOVHU;
   922  			break;
   923  		}
   924  
   925  		regalloc(&r1, types[ft], f);
   926  		regalloc(&r2, types[tt], t);
   927  		gins(fa, f, &r1);	// load to fpu
   928  		p1 = gins(a, &r1, &r1);	// convert to w
   929  		switch(tt) {
   930  		case TUINT8:
   931  		case TUINT16:
   932  		case TUINT32:
   933  			p1->scond |= C_UBIT;
   934  		}
   935  		gins(AMOVW, &r1, &r2);	// copy to cpu
   936  		gins(ta, &r2, t);	// store
   937  		regfree(&r1);
   938  		regfree(&r2);
   939  		return;
   940  
   941  	/*
   942  	 * integer to float
   943  	 */
   944  	case CASE(TINT8, TFLOAT32):
   945  	case CASE(TUINT8, TFLOAT32):
   946  	case CASE(TINT16, TFLOAT32):
   947  	case CASE(TUINT16, TFLOAT32):
   948  	case CASE(TINT32, TFLOAT32):
   949  	case CASE(TUINT32, TFLOAT32):
   950  	case CASE(TINT8, TFLOAT64):
   951  	case CASE(TUINT8, TFLOAT64):
   952  	case CASE(TINT16, TFLOAT64):
   953  	case CASE(TUINT16, TFLOAT64):
   954  	case CASE(TINT32, TFLOAT64):
   955  	case CASE(TUINT32, TFLOAT64):
   956  		fa = AMOVW;
   957  		switch(ft) {
   958  		case TINT8:
   959  			fa = AMOVBS;
   960  			break;
   961  		case TUINT8:
   962  			fa = AMOVBU;
   963  			break;
   964  		case TINT16:
   965  			fa = AMOVHS;
   966  			break;
   967  		case TUINT16:
   968  			fa = AMOVHU;
   969  			break;
   970  		}
   971  		a = AMOVWF;
   972  		ta = AMOVF;
   973  		if(tt == TFLOAT64) {
   974  			a = AMOVWD;
   975  			ta = AMOVD;
   976  		}
   977  		regalloc(&r1, types[ft], f);
   978  		regalloc(&r2, types[tt], t);
   979  		gins(fa, f, &r1);	// load to cpu
   980  		gins(AMOVW, &r1, &r2);	// copy to fpu
   981  		p1 = gins(a, &r2, &r2);	// convert
   982  		switch(ft) {
   983  		case TUINT8:
   984  		case TUINT16:
   985  		case TUINT32:
   986  			p1->scond |= C_UBIT;
   987  		}
   988  		gins(ta, &r2, t);	// store
   989  		regfree(&r1);
   990  		regfree(&r2);
   991  		return;
   992  
   993  	case CASE(TUINT64, TFLOAT32):
   994  	case CASE(TUINT64, TFLOAT64):
   995  		fatal("gmove UINT64, TFLOAT not implemented");
   996  		return;
   997  
   998  
   999  	/*
  1000  	 * float to float
  1001  	 */
  1002  	case CASE(TFLOAT32, TFLOAT32):
  1003  		a = AMOVF;
  1004  		break;
  1005  
  1006  	case CASE(TFLOAT64, TFLOAT64):
  1007  		a = AMOVD;
  1008  		break;
  1009  
  1010  	case CASE(TFLOAT32, TFLOAT64):
  1011  		regalloc(&r1, types[TFLOAT64], t);
  1012  		gins(AMOVF, f, &r1);
  1013  		gins(AMOVFD, &r1, &r1);
  1014  		gins(AMOVD, &r1, t);
  1015  		regfree(&r1);
  1016  		return;
  1017  
  1018  	case CASE(TFLOAT64, TFLOAT32):
  1019  		regalloc(&r1, types[TFLOAT64], t);
  1020  		gins(AMOVD, f, &r1);
  1021  		gins(AMOVDF, &r1, &r1);
  1022  		gins(AMOVF, &r1, t);
  1023  		regfree(&r1);
  1024  		return;
  1025  	}
  1026  
  1027  	gins(a, f, t);
  1028  	return;
  1029  
  1030  rdst:
  1031  	// TODO(kaib): we almost always require a register dest anyway, this can probably be
  1032  	// removed.
  1033  	// requires register destination
  1034  	regalloc(&r1, t->type, t);
  1035  	gins(a, f, &r1);
  1036  	gmove(&r1, t);
  1037  	regfree(&r1);
  1038  	return;
  1039  
  1040  hard:
  1041  	// requires register intermediate
  1042  	regalloc(&r1, cvt, t);
  1043  	gmove(f, &r1);
  1044  	gmove(&r1, t);
  1045  	regfree(&r1);
  1046  	return;
  1047  
  1048  trunc64:
  1049  	// truncate 64 bit integer
  1050  	split64(f, &flo, &fhi);
  1051  	regalloc(&r1, t->type, N);
  1052  	gins(a, &flo, &r1);
  1053  	gins(a, &r1, t);
  1054  	regfree(&r1);
  1055  	splitclean();
  1056  	return;
  1057  
  1058  fatal:
  1059  	// should not happen
  1060  	fatal("gmove %N -> %N", f, t);
  1061  }
  1062  
  1063  int
  1064  samaddr(Node *f, Node *t)
  1065  {
  1066  
  1067  	if(f->op != t->op)
  1068  		return 0;
  1069  
  1070  	switch(f->op) {
  1071  	case OREGISTER:
  1072  		if(f->val.u.reg != t->val.u.reg)
  1073  			break;
  1074  		return 1;
  1075  	}
  1076  	return 0;
  1077  }
  1078  
  1079  /*
  1080   * generate one instruction:
  1081   *	as f, t
  1082   */
  1083  Prog*
  1084  gins(int as, Node *f, Node *t)
  1085  {
  1086  //	Node nod;
  1087  //	int32 v;
  1088  	Prog *p;
  1089  	Addr af, at;
  1090  
  1091  	if(f != N && f->op == OINDEX) {
  1092  		fatal("gins OINDEX not implemented");
  1093  //		regalloc(&nod, &regnode, Z);
  1094  //		v = constnode.vconst;
  1095  //		cgen(f->right, &nod);
  1096  //		constnode.vconst = v;
  1097  //		idx.reg = nod.reg;
  1098  //		regfree(&nod);
  1099  	}
  1100  	if(t != N && t->op == OINDEX) {
  1101  		fatal("gins OINDEX not implemented");
  1102  //		regalloc(&nod, &regnode, Z);
  1103  //		v = constnode.vconst;
  1104  //		cgen(t->right, &nod);
  1105  //		constnode.vconst = v;
  1106  //		idx.reg = nod.reg;
  1107  //		regfree(&nod);
  1108  	}
  1109  
  1110  	memset(&af, 0, sizeof af);
  1111  	memset(&at, 0, sizeof at);
  1112  	if(f != N)
  1113  		naddr(f, &af, 1);
  1114  	if(t != N)
  1115  		naddr(t, &at, 1);
  1116  	p = prog(as);
  1117  	if(f != N)
  1118  		p->from = af;
  1119  	if(t != N)
  1120  		p->to = at;
  1121  	if(debug['g'])
  1122  		print("%P\n", p);
  1123  	return p;
  1124  }
  1125  
  1126  /*
  1127   * insert n into reg slot of p
  1128   */
  1129  void
  1130  raddr(Node *n, Prog *p)
  1131  {
  1132  	Addr a;
  1133  
  1134  	naddr(n, &a, 1);
  1135  	if(a.type != D_REG && a.type != D_FREG) {
  1136  		if(n)
  1137  			fatal("bad in raddr: %O", n->op);
  1138  		else
  1139  			fatal("bad in raddr: <null>");
  1140  		p->reg = NREG;
  1141  	} else
  1142  		p->reg = a.reg;
  1143  }
  1144  
  1145  /* generate a comparison
  1146  TODO(kaib): one of the args can actually be a small constant. relax the constraint and fix call sites.
  1147   */
  1148  Prog*
  1149  gcmp(int as, Node *lhs, Node *rhs)
  1150  {
  1151  	Prog *p;
  1152  
  1153  	if(lhs->op != OREGISTER)
  1154  		fatal("bad operands to gcmp: %O %O", lhs->op, rhs->op);
  1155  
  1156  	p = gins(as, rhs, N);
  1157  	raddr(lhs, p);
  1158  	return p;
  1159  }
  1160  
  1161  /* generate a constant shift
  1162   * arm encodes a shift by 32 as 0, thus asking for 0 shift is illegal.
  1163  */
  1164  Prog*
  1165  gshift(int as, Node *lhs, int32 stype, int32 sval, Node *rhs)
  1166  {
  1167  	Prog *p;
  1168  
  1169  	if(sval <= 0 || sval > 32)
  1170  		fatal("bad shift value: %d", sval);
  1171  
  1172  	sval = sval&0x1f;
  1173  
  1174  	p = gins(as, N, rhs);
  1175  	p->from.type = D_SHIFT;
  1176  	p->from.offset = stype | sval<<7 | lhs->val.u.reg;
  1177  	return p;
  1178  }
  1179  
  1180  /* generate a register shift
  1181  */
  1182  Prog *
  1183  gregshift(int as, Node *lhs, int32 stype, Node *reg, Node *rhs)
  1184  {
  1185  	Prog *p;
  1186  	p = gins(as, N, rhs);
  1187  	p->from.type = D_SHIFT;
  1188  	p->from.offset = stype | reg->val.u.reg << 8 | 1<<4 | lhs->val.u.reg;
  1189  	return p;
  1190  }
  1191  
  1192  /*
  1193   * generate code to compute n;
  1194   * make a refer to result.
  1195   */
  1196  void
  1197  naddr(Node *n, Addr *a, int canemitcode)
  1198  {
  1199  	a->type = D_NONE;
  1200  	a->name = D_NONE;
  1201  	a->reg = NREG;
  1202  	a->gotype = S;
  1203  	a->node = N;
  1204  	a->etype = 0;
  1205  	if(n == N)
  1206  		return;
  1207  
  1208  	if(n->type != T && n->type->etype != TIDEAL) {
  1209  		dowidth(n->type);
  1210  		a->width = n->type->width;
  1211  	}
  1212  
  1213  	switch(n->op) {
  1214  	default:
  1215  		fatal("naddr: bad %O %D", n->op, a);
  1216  		break;
  1217  
  1218  	case OREGISTER:
  1219  		if(n->val.u.reg <= REGALLOC_RMAX) {
  1220  			a->type = D_REG;
  1221  			a->reg = n->val.u.reg;
  1222  		} else {
  1223  			a->type = D_FREG;
  1224  			a->reg = n->val.u.reg - REGALLOC_F0;
  1225  		}
  1226  		a->sym = S;
  1227  		break;
  1228  
  1229  	case OINDEX:
  1230  	case OIND:
  1231  		fatal("naddr: OINDEX");
  1232  //		naddr(n->left, a);
  1233  //		if(a->type >= D_AX && a->type <= D_DI)
  1234  //			a->type += D_INDIR;
  1235  //		else
  1236  //		if(a->type == D_CONST)
  1237  //			a->type = D_NONE+D_INDIR;
  1238  //		else
  1239  //		if(a->type == D_ADDR) {
  1240  //			a->type = a->index;
  1241  //			a->index = D_NONE;
  1242  //		} else
  1243  //			goto bad;
  1244  //		if(n->op == OINDEX) {
  1245  //			a->index = idx.reg;
  1246  //			a->scale = n->scale;
  1247  //		}
  1248  //		break;
  1249  
  1250  	case OINDREG:
  1251  		a->type = D_OREG;
  1252  		a->reg = n->val.u.reg;
  1253  		a->sym = n->sym;
  1254  		a->offset = n->xoffset;
  1255  		break;
  1256  
  1257  	case OPARAM:
  1258  		// n->left is PHEAP ONAME for stack parameter.
  1259  		// compute address of actual parameter on stack.
  1260  		a->etype = simtype[n->left->type->etype];
  1261  		a->width = n->left->type->width;
  1262  		a->offset = n->xoffset;
  1263  		a->sym = n->left->sym;
  1264  		a->type = D_OREG;
  1265  		a->name = D_PARAM;
  1266  		a->node = n->left->orig;
  1267  		break;
  1268  	
  1269  	case OCLOSUREVAR:
  1270  		a->type = D_OREG;
  1271  		a->reg = 7;
  1272  		a->offset = n->xoffset;
  1273  		a->sym = S;
  1274  		break;		
  1275  
  1276  	case OCFUNC:
  1277  		naddr(n->left, a, canemitcode);
  1278  		a->sym = n->left->sym;
  1279  		break;
  1280  
  1281  	case ONAME:
  1282  		a->etype = 0;
  1283  		a->width = 0;
  1284  		a->reg = NREG;
  1285  		if(n->type != T) {
  1286  			a->etype = simtype[n->type->etype];
  1287  			a->width = n->type->width;
  1288  		}
  1289  		a->offset = n->xoffset;
  1290  		a->sym = n->sym;
  1291  		a->node = n->orig;
  1292  		//if(a->node >= (Node*)&n)
  1293  		//	fatal("stack node");
  1294  		if(a->sym == S)
  1295  			a->sym = lookup(".noname");
  1296  		if(n->method) {
  1297  			if(n->type != T)
  1298  			if(n->type->sym != S)
  1299  			if(n->type->sym->pkg != nil)
  1300  				a->sym = pkglookup(a->sym->name, n->type->sym->pkg);
  1301  		}
  1302  
  1303  		a->type = D_OREG;
  1304  		switch(n->class) {
  1305  		default:
  1306  			fatal("naddr: ONAME class %S %d\n", n->sym, n->class);
  1307  		case PEXTERN:
  1308  			a->name = D_EXTERN;
  1309  			break;
  1310  		case PAUTO:
  1311  			a->name = D_AUTO;
  1312  			break;
  1313  		case PPARAM:
  1314  		case PPARAMOUT:
  1315  			a->name = D_PARAM;
  1316  			break;
  1317  		case PFUNC:
  1318  			a->name = D_EXTERN;
  1319  			a->type = D_CONST;
  1320  			a->sym = funcsym(a->sym);
  1321  			break;
  1322  		}
  1323  		break;
  1324  
  1325  	case OLITERAL:
  1326  		switch(n->val.ctype) {
  1327  		default:
  1328  			fatal("naddr: const %lT", n->type);
  1329  			break;
  1330  		case CTFLT:
  1331  			a->type = D_FCONST;
  1332  			a->u.dval = mpgetflt(n->val.u.fval);
  1333  			break;
  1334  		case CTINT:
  1335  		case CTRUNE:
  1336  			a->sym = S;
  1337  			a->type = D_CONST;
  1338  			a->offset = mpgetfix(n->val.u.xval);
  1339  			break;
  1340  		case CTSTR:
  1341  			datagostring(n->val.u.sval, a);
  1342  			break;
  1343  		case CTBOOL:
  1344  			a->sym = S;
  1345  			a->type = D_CONST;
  1346  			a->offset = n->val.u.bval;
  1347  			break;
  1348  		case CTNIL:
  1349  			a->sym = S;
  1350  			a->type = D_CONST;
  1351  			a->offset = 0;
  1352  			break;
  1353  		}
  1354  		break;
  1355  
  1356  	case OITAB:
  1357  		// itable of interface value
  1358  		naddr(n->left, a, canemitcode);
  1359  		a->etype = TINT32;
  1360  		if(a->type == D_CONST && a->offset == 0)
  1361  			break;	// len(nil)
  1362  		break;
  1363  
  1364  	case OLEN:
  1365  		// len of string or slice
  1366  		naddr(n->left, a, canemitcode);
  1367  		a->etype = TINT32;
  1368  		if(a->type == D_CONST && a->offset == 0)
  1369  			break;	// len(nil)
  1370  		a->offset += Array_nel;
  1371  		break;
  1372  
  1373  	case OCAP:
  1374  		// cap of string or slice
  1375  		naddr(n->left, a, canemitcode);
  1376  		a->etype = TINT32;
  1377  		if(a->type == D_CONST && a->offset == 0)
  1378  			break;	// cap(nil)
  1379  		a->offset += Array_cap;
  1380  		break;
  1381  
  1382  	case OADDR:
  1383  		naddr(n->left, a, canemitcode);
  1384  		a->etype = tptr;
  1385  		switch(a->type) {
  1386  		case D_OREG:
  1387  			a->type = D_CONST;
  1388  			break;
  1389  
  1390  		case D_REG:
  1391  		case D_CONST:
  1392  			break;
  1393  		
  1394  		default:
  1395  			fatal("naddr: OADDR %d\n", a->type);
  1396  		}
  1397  	}
  1398  	
  1399  	if(a->width < 0)
  1400  		fatal("naddr: bad width for %N -> %D", n, a);
  1401  }
  1402  
  1403  /*
  1404   * return Axxx for Oxxx on type t.
  1405   */
  1406  int
  1407  optoas(int op, Type *t)
  1408  {
  1409  	int a;
  1410  
  1411  	if(t == T)
  1412  		fatal("optoas: t is nil");
  1413  
  1414  	a = AGOK;
  1415  	switch(CASE(op, simtype[t->etype])) {
  1416  	default:
  1417  		fatal("optoas: no entry %O-%T etype %T simtype %T", op, t, types[t->etype], types[simtype[t->etype]]);
  1418  		break;
  1419  
  1420  /*	case CASE(OADDR, TPTR32):
  1421  		a = ALEAL;
  1422  		break;
  1423  
  1424  	case CASE(OADDR, TPTR64):
  1425  		a = ALEAQ;
  1426  		break;
  1427  */
  1428  	// TODO(kaib): make sure the conditional branches work on all edge cases
  1429  	case CASE(OEQ, TBOOL):
  1430  	case CASE(OEQ, TINT8):
  1431  	case CASE(OEQ, TUINT8):
  1432  	case CASE(OEQ, TINT16):
  1433  	case CASE(OEQ, TUINT16):
  1434  	case CASE(OEQ, TINT32):
  1435  	case CASE(OEQ, TUINT32):
  1436  	case CASE(OEQ, TINT64):
  1437  	case CASE(OEQ, TUINT64):
  1438  	case CASE(OEQ, TPTR32):
  1439  	case CASE(OEQ, TPTR64):
  1440  	case CASE(OEQ, TFLOAT32):
  1441  	case CASE(OEQ, TFLOAT64):
  1442  		a = ABEQ;
  1443  		break;
  1444  
  1445  	case CASE(ONE, TBOOL):
  1446  	case CASE(ONE, TINT8):
  1447  	case CASE(ONE, TUINT8):
  1448  	case CASE(ONE, TINT16):
  1449  	case CASE(ONE, TUINT16):
  1450  	case CASE(ONE, TINT32):
  1451  	case CASE(ONE, TUINT32):
  1452  	case CASE(ONE, TINT64):
  1453  	case CASE(ONE, TUINT64):
  1454  	case CASE(ONE, TPTR32):
  1455  	case CASE(ONE, TPTR64):
  1456  	case CASE(ONE, TFLOAT32):
  1457  	case CASE(ONE, TFLOAT64):
  1458  		a = ABNE;
  1459  		break;
  1460  
  1461  	case CASE(OLT, TINT8):
  1462  	case CASE(OLT, TINT16):
  1463  	case CASE(OLT, TINT32):
  1464  	case CASE(OLT, TINT64):
  1465  	case CASE(OLT, TFLOAT32):
  1466  	case CASE(OLT, TFLOAT64):
  1467  		a = ABLT;
  1468  		break;
  1469  
  1470  	case CASE(OLT, TUINT8):
  1471  	case CASE(OLT, TUINT16):
  1472  	case CASE(OLT, TUINT32):
  1473  	case CASE(OLT, TUINT64):
  1474  		a = ABLO;
  1475  		break;
  1476  
  1477  	case CASE(OLE, TINT8):
  1478  	case CASE(OLE, TINT16):
  1479  	case CASE(OLE, TINT32):
  1480  	case CASE(OLE, TINT64):
  1481  	case CASE(OLE, TFLOAT32):
  1482  	case CASE(OLE, TFLOAT64):
  1483  		a = ABLE;
  1484  		break;
  1485  
  1486  	case CASE(OLE, TUINT8):
  1487  	case CASE(OLE, TUINT16):
  1488  	case CASE(OLE, TUINT32):
  1489  	case CASE(OLE, TUINT64):
  1490  		a = ABLS;
  1491  		break;
  1492  
  1493  	case CASE(OGT, TINT8):
  1494  	case CASE(OGT, TINT16):
  1495  	case CASE(OGT, TINT32):
  1496  	case CASE(OGT, TINT64):
  1497  	case CASE(OGT, TFLOAT32):
  1498  	case CASE(OGT, TFLOAT64):
  1499  		a = ABGT;
  1500  		break;
  1501  
  1502  	case CASE(OGT, TUINT8):
  1503  	case CASE(OGT, TUINT16):
  1504  	case CASE(OGT, TUINT32):
  1505  	case CASE(OGT, TUINT64):
  1506  		a = ABHI;
  1507  		break;
  1508  
  1509  	case CASE(OGE, TINT8):
  1510  	case CASE(OGE, TINT16):
  1511  	case CASE(OGE, TINT32):
  1512  	case CASE(OGE, TINT64):
  1513  	case CASE(OGE, TFLOAT32):
  1514  	case CASE(OGE, TFLOAT64):
  1515  		a = ABGE;
  1516  		break;
  1517  
  1518  	case CASE(OGE, TUINT8):
  1519  	case CASE(OGE, TUINT16):
  1520  	case CASE(OGE, TUINT32):
  1521  	case CASE(OGE, TUINT64):
  1522  		a = ABHS;
  1523  		break;
  1524  
  1525  	case CASE(OCMP, TBOOL):
  1526  	case CASE(OCMP, TINT8):
  1527  	case CASE(OCMP, TUINT8):
  1528  	case CASE(OCMP, TINT16):
  1529  	case CASE(OCMP, TUINT16):
  1530  	case CASE(OCMP, TINT32):
  1531  	case CASE(OCMP, TUINT32):
  1532  	case CASE(OCMP, TPTR32):
  1533  		a = ACMP;
  1534  		break;
  1535  
  1536  	case CASE(OCMP, TFLOAT32):
  1537  		a = ACMPF;
  1538  		break;
  1539  
  1540  	case CASE(OCMP, TFLOAT64):
  1541  		a = ACMPD;
  1542  		break;
  1543  
  1544  	case CASE(OAS, TBOOL):
  1545  		a = AMOVB;
  1546  		break;
  1547  
  1548  	case CASE(OAS, TINT8):
  1549  		a = AMOVBS;
  1550  		break;
  1551  
  1552  	case CASE(OAS, TUINT8):
  1553  		a = AMOVBU;
  1554  		break;
  1555  
  1556  	case CASE(OAS, TINT16):
  1557  		a = AMOVHS;
  1558  		break;
  1559  
  1560  	case CASE(OAS, TUINT16):
  1561  		a = AMOVHU;
  1562  		break;
  1563  
  1564  	case CASE(OAS, TINT32):
  1565  	case CASE(OAS, TUINT32):
  1566  	case CASE(OAS, TPTR32):
  1567  		a = AMOVW;
  1568  		break;
  1569  
  1570  	case CASE(OAS, TFLOAT32):
  1571  		a = AMOVF;
  1572  		break;
  1573  
  1574  	case CASE(OAS, TFLOAT64):
  1575  		a = AMOVD;
  1576  		break;
  1577  
  1578  	case CASE(OADD, TINT8):
  1579  	case CASE(OADD, TUINT8):
  1580  	case CASE(OADD, TINT16):
  1581  	case CASE(OADD, TUINT16):
  1582  	case CASE(OADD, TINT32):
  1583  	case CASE(OADD, TUINT32):
  1584  	case CASE(OADD, TPTR32):
  1585  		a = AADD;
  1586  		break;
  1587  
  1588  	case CASE(OADD, TFLOAT32):
  1589  		a = AADDF;
  1590  		break;
  1591  
  1592  	case CASE(OADD, TFLOAT64):
  1593  		a = AADDD;
  1594  		break;
  1595  
  1596  	case CASE(OSUB, TINT8):
  1597  	case CASE(OSUB, TUINT8):
  1598  	case CASE(OSUB, TINT16):
  1599  	case CASE(OSUB, TUINT16):
  1600  	case CASE(OSUB, TINT32):
  1601  	case CASE(OSUB, TUINT32):
  1602  	case CASE(OSUB, TPTR32):
  1603  		a = ASUB;
  1604  		break;
  1605  
  1606  	case CASE(OSUB, TFLOAT32):
  1607  		a = ASUBF;
  1608  		break;
  1609  
  1610  	case CASE(OSUB, TFLOAT64):
  1611  		a = ASUBD;
  1612  		break;
  1613  
  1614  	case CASE(OMINUS, TINT8):
  1615  	case CASE(OMINUS, TUINT8):
  1616  	case CASE(OMINUS, TINT16):
  1617  	case CASE(OMINUS, TUINT16):
  1618  	case CASE(OMINUS, TINT32):
  1619  	case CASE(OMINUS, TUINT32):
  1620  	case CASE(OMINUS, TPTR32):
  1621  		a = ARSB;
  1622  		break;
  1623  
  1624  	case CASE(OAND, TINT8):
  1625  	case CASE(OAND, TUINT8):
  1626  	case CASE(OAND, TINT16):
  1627  	case CASE(OAND, TUINT16):
  1628  	case CASE(OAND, TINT32):
  1629  	case CASE(OAND, TUINT32):
  1630  	case CASE(OAND, TPTR32):
  1631  		a = AAND;
  1632  		break;
  1633  
  1634  	case CASE(OOR, TINT8):
  1635  	case CASE(OOR, TUINT8):
  1636  	case CASE(OOR, TINT16):
  1637  	case CASE(OOR, TUINT16):
  1638  	case CASE(OOR, TINT32):
  1639  	case CASE(OOR, TUINT32):
  1640  	case CASE(OOR, TPTR32):
  1641  		a = AORR;
  1642  		break;
  1643  
  1644  	case CASE(OXOR, TINT8):
  1645  	case CASE(OXOR, TUINT8):
  1646  	case CASE(OXOR, TINT16):
  1647  	case CASE(OXOR, TUINT16):
  1648  	case CASE(OXOR, TINT32):
  1649  	case CASE(OXOR, TUINT32):
  1650  	case CASE(OXOR, TPTR32):
  1651  		a = AEOR;
  1652  		break;
  1653  
  1654  	case CASE(OLSH, TINT8):
  1655  	case CASE(OLSH, TUINT8):
  1656  	case CASE(OLSH, TINT16):
  1657  	case CASE(OLSH, TUINT16):
  1658  	case CASE(OLSH, TINT32):
  1659  	case CASE(OLSH, TUINT32):
  1660  	case CASE(OLSH, TPTR32):
  1661  		a = ASLL;
  1662  		break;
  1663  
  1664  	case CASE(ORSH, TUINT8):
  1665  	case CASE(ORSH, TUINT16):
  1666  	case CASE(ORSH, TUINT32):
  1667  	case CASE(ORSH, TPTR32):
  1668  		a = ASRL;
  1669  		break;
  1670  
  1671  	case CASE(ORSH, TINT8):
  1672  	case CASE(ORSH, TINT16):
  1673  	case CASE(ORSH, TINT32):
  1674  		a = ASRA;
  1675  		break;
  1676  
  1677  	case CASE(OMUL, TUINT8):
  1678  	case CASE(OMUL, TUINT16):
  1679  	case CASE(OMUL, TUINT32):
  1680  	case CASE(OMUL, TPTR32):
  1681  		a = AMULU;
  1682  		break;
  1683  
  1684  	case CASE(OMUL, TINT8):
  1685  	case CASE(OMUL, TINT16):
  1686  	case CASE(OMUL, TINT32):
  1687  		a = AMUL;
  1688  		break;
  1689  
  1690  	case CASE(OMUL, TFLOAT32):
  1691  		a = AMULF;
  1692  		break;
  1693  
  1694  	case CASE(OMUL, TFLOAT64):
  1695  		a = AMULD;
  1696  		break;
  1697  
  1698  	case CASE(ODIV, TUINT8):
  1699  	case CASE(ODIV, TUINT16):
  1700  	case CASE(ODIV, TUINT32):
  1701  	case CASE(ODIV, TPTR32):
  1702  		a = ADIVU;
  1703  		break;
  1704  
  1705  	case CASE(ODIV, TINT8):
  1706  	case CASE(ODIV, TINT16):
  1707  	case CASE(ODIV, TINT32):
  1708  		a = ADIV;
  1709  		break;
  1710  
  1711  	case CASE(OMOD, TUINT8):
  1712  	case CASE(OMOD, TUINT16):
  1713  	case CASE(OMOD, TUINT32):
  1714  	case CASE(OMOD, TPTR32):
  1715  		a = AMODU;
  1716  		break;
  1717  
  1718  	case CASE(OMOD, TINT8):
  1719  	case CASE(OMOD, TINT16):
  1720  	case CASE(OMOD, TINT32):
  1721  		a = AMOD;
  1722  		break;
  1723  
  1724  //	case CASE(OEXTEND, TINT16):
  1725  //		a = ACWD;
  1726  //		break;
  1727  
  1728  //	case CASE(OEXTEND, TINT32):
  1729  //		a = ACDQ;
  1730  //		break;
  1731  
  1732  //	case CASE(OEXTEND, TINT64):
  1733  //		a = ACQO;
  1734  //		break;
  1735  
  1736  	case CASE(ODIV, TFLOAT32):
  1737  		a = ADIVF;
  1738  		break;
  1739  
  1740  	case CASE(ODIV, TFLOAT64):
  1741  		a = ADIVD;
  1742  		break;
  1743  
  1744  	}
  1745  	return a;
  1746  }
  1747  
  1748  enum
  1749  {
  1750  	ODynam	= 1<<0,
  1751  	OPtrto	= 1<<1,
  1752  };
  1753  
  1754  static	Node	clean[20];
  1755  static	int	cleani = 0;
  1756  
  1757  void
  1758  sudoclean(void)
  1759  {
  1760  	if(clean[cleani-1].op != OEMPTY)
  1761  		regfree(&clean[cleani-1]);
  1762  	if(clean[cleani-2].op != OEMPTY)
  1763  		regfree(&clean[cleani-2]);
  1764  	cleani -= 2;
  1765  }
  1766  
  1767  int
  1768  dotaddable(Node *n, Node *n1)
  1769  {
  1770  	int o;
  1771  	int64 oary[10];
  1772  	Node *nn;
  1773  
  1774  	if(n->op != ODOT)
  1775  		return 0;
  1776  
  1777  	o = dotoffset(n, oary, &nn);
  1778  	if(nn != N && nn->addable && o == 1 && oary[0] >= 0) {
  1779  		*n1 = *nn;
  1780  		n1->type = n->type;
  1781  		n1->xoffset += oary[0];
  1782  		return 1;
  1783  	}
  1784  	return 0;
  1785  }
  1786  
  1787  /*
  1788   * generate code to compute address of n,
  1789   * a reference to a (perhaps nested) field inside
  1790   * an array or struct.
  1791   * return 0 on failure, 1 on success.
  1792   * on success, leaves usable address in a.
  1793   *
  1794   * caller is responsible for calling sudoclean
  1795   * after successful sudoaddable,
  1796   * to release the register used for a.
  1797   */
  1798  int
  1799  sudoaddable(int as, Node *n, Addr *a, int *w)
  1800  {
  1801  	int o, i;
  1802  	int64 oary[10];
  1803  	int64 v;
  1804  	Node n1, n2, n3, n4, *nn, *l, *r;
  1805  	Node *reg, *reg1;
  1806  	Prog *p1, *p2;
  1807  	Type *t;
  1808  
  1809  	if(n->type == T)
  1810  		return 0;
  1811  
  1812  	switch(n->op) {
  1813  	case OLITERAL:
  1814  		if(!isconst(n, CTINT))
  1815  			break;
  1816  		v = mpgetfix(n->val.u.xval);
  1817  		if(v >= 32000 || v <= -32000)
  1818  			break;
  1819  		goto lit;
  1820  
  1821  	case ODOT:
  1822  	case ODOTPTR:
  1823  		cleani += 2;
  1824  		reg = &clean[cleani-1];
  1825  		reg1 = &clean[cleani-2];
  1826  		reg->op = OEMPTY;
  1827  		reg1->op = OEMPTY;
  1828  		goto odot;
  1829  
  1830  	case OINDEX:
  1831  		return 0;
  1832  		// disabled: OINDEX case is now covered by agenr
  1833  		// for a more suitable register allocation pattern.
  1834  		if(n->left->type->etype == TSTRING)
  1835  			return 0;
  1836  		cleani += 2;
  1837  		reg = &clean[cleani-1];
  1838  		reg1 = &clean[cleani-2];
  1839  		reg->op = OEMPTY;
  1840  		reg1->op = OEMPTY;
  1841  		goto oindex;
  1842  	}
  1843  	return 0;
  1844  
  1845  lit:
  1846  	switch(as) {
  1847  	default:
  1848  		return 0;
  1849  	case AADD: case ASUB: case AAND: case AORR: case AEOR:
  1850  	case AMOVB: case AMOVBS: case AMOVBU:
  1851  	case AMOVH: case AMOVHS: case AMOVHU:
  1852  	case AMOVW:
  1853  		break;
  1854  	}
  1855  
  1856  	cleani += 2;
  1857  	reg = &clean[cleani-1];
  1858  	reg1 = &clean[cleani-2];
  1859  	reg->op = OEMPTY;
  1860  	reg1->op = OEMPTY;
  1861  	naddr(n, a, 1);
  1862  	goto yes;
  1863  
  1864  odot:
  1865  	o = dotoffset(n, oary, &nn);
  1866  	if(nn == N)
  1867  		goto no;
  1868  
  1869  	if(nn->addable && o == 1 && oary[0] >= 0) {
  1870  		// directly addressable set of DOTs
  1871  		n1 = *nn;
  1872  		n1.type = n->type;
  1873  		n1.xoffset += oary[0];
  1874  		naddr(&n1, a, 1);
  1875  		goto yes;
  1876  	}
  1877  
  1878  	regalloc(reg, types[tptr], N);
  1879  	n1 = *reg;
  1880  	n1.op = OINDREG;
  1881  	if(oary[0] >= 0) {
  1882  		agen(nn, reg);
  1883  		n1.xoffset = oary[0];
  1884  	} else {
  1885  		cgen(nn, reg);
  1886  		cgen_checknil(reg);
  1887  		n1.xoffset = -(oary[0]+1);
  1888  	}
  1889  
  1890  	for(i=1; i<o; i++) {
  1891  		if(oary[i] >= 0)
  1892  			fatal("can't happen");
  1893  		gins(AMOVW, &n1, reg);
  1894  		cgen_checknil(reg);
  1895  		n1.xoffset = -(oary[i]+1);
  1896  	}
  1897  
  1898  	a->type = D_NONE;
  1899  	a->name = D_NONE;
  1900  	n1.type = n->type;
  1901  	naddr(&n1, a, 1);
  1902  	goto yes;
  1903  
  1904  oindex:
  1905  	l = n->left;
  1906  	r = n->right;
  1907  	if(l->ullman >= UINF && r->ullman >= UINF)
  1908  		goto no;
  1909  
  1910  	// set o to type of array
  1911  	o = 0;
  1912  	if(isptr[l->type->etype]) {
  1913  		o += OPtrto;
  1914  		if(l->type->type->etype != TARRAY)
  1915  			fatal("not ptr ary");
  1916  		if(l->type->type->bound < 0)
  1917  			o += ODynam;
  1918  	} else {
  1919  		if(l->type->etype != TARRAY)
  1920  			fatal("not ary");
  1921  		if(l->type->bound < 0)
  1922  			o += ODynam;
  1923  	}
  1924  
  1925  	*w = n->type->width;
  1926  	if(isconst(r, CTINT))
  1927  		goto oindex_const;
  1928  
  1929  	switch(*w) {
  1930  	default:
  1931  		goto no;
  1932  	case 1:
  1933  	case 2:
  1934  	case 4:
  1935  	case 8:
  1936  		break;
  1937  	}
  1938  
  1939  	// load the array (reg)
  1940  	if(l->ullman > r->ullman) {
  1941  		regalloc(reg, types[tptr], N);
  1942  		if(o & OPtrto) {
  1943  			cgen(l, reg);
  1944  			cgen_checknil(reg);
  1945  		} else
  1946  			agen(l, reg);
  1947  	}
  1948  
  1949  	// load the index (reg1)
  1950  	t = types[TUINT32];
  1951  	if(issigned[r->type->etype])
  1952  		t = types[TINT32];
  1953  	regalloc(reg1, t, N);
  1954  	regalloc(&n3, types[TINT32], reg1);
  1955  	p2 = cgenindex(r, &n3, debug['B'] || n->bounded);
  1956  	gmove(&n3, reg1);
  1957  	regfree(&n3);
  1958  
  1959  	// load the array (reg)
  1960  	if(l->ullman <= r->ullman) {
  1961  		regalloc(reg, types[tptr], N);
  1962  		if(o & OPtrto) {
  1963  			cgen(l, reg);
  1964  			cgen_checknil(reg);
  1965  		} else
  1966  			agen(l, reg);
  1967  	}
  1968  
  1969  	// check bounds
  1970  	if(!debug['B']) {
  1971  		if(o & ODynam) {
  1972  			n2 = *reg;
  1973  			n2.op = OINDREG;
  1974  			n2.type = types[tptr];
  1975  			n2.xoffset = Array_nel;
  1976  		} else {
  1977  			if(o & OPtrto)
  1978  				nodconst(&n2, types[TUINT32], l->type->type->bound);
  1979  			else
  1980  				nodconst(&n2, types[TUINT32], l->type->bound);
  1981  		}
  1982  		regalloc(&n3, n2.type, N);
  1983  		cgen(&n2, &n3);
  1984  		gcmp(optoas(OCMP, types[TUINT32]), reg1, &n3);
  1985  		regfree(&n3);
  1986  		p1 = gbranch(optoas(OLT, types[TUINT32]), T, +1);
  1987  		if(p2)
  1988  			patch(p2, pc);
  1989  		ginscall(panicindex, 0);
  1990  		patch(p1, pc);
  1991  	}
  1992  
  1993  	if(o & ODynam) {
  1994  		n2 = *reg;
  1995  		n2.op = OINDREG;
  1996  		n2.type = types[tptr];
  1997  		n2.xoffset = Array_array;
  1998  		gmove(&n2, reg);
  1999  	}
  2000  
  2001  	switch(*w) {
  2002  	case 1:
  2003  		gins(AADD, reg1, reg);
  2004  		break;
  2005  	case 2:
  2006  		gshift(AADD, reg1, SHIFT_LL, 1, reg);
  2007  		break;
  2008  	case 4:
  2009  		gshift(AADD, reg1, SHIFT_LL, 2, reg);
  2010  		break;
  2011  	case 8:
  2012  		gshift(AADD, reg1, SHIFT_LL, 3, reg);
  2013  		break;
  2014  	}
  2015  
  2016  	naddr(reg1, a, 1);
  2017  	a->type = D_OREG;
  2018  	a->reg = reg->val.u.reg;
  2019  	a->offset = 0;
  2020  	goto yes;
  2021  
  2022  oindex_const:
  2023  	// index is constant
  2024  	// can check statically and
  2025  	// can multiply by width statically
  2026  
  2027  	regalloc(reg, types[tptr], N);
  2028  	if(o & OPtrto) {
  2029  		cgen(l, reg);
  2030  		cgen_checknil(reg);
  2031  	} else
  2032  		agen(l, reg);
  2033  
  2034  	v = mpgetfix(r->val.u.xval);
  2035  	if(o & ODynam) {
  2036  		if(!debug['B'] && !n->bounded) {
  2037  			n1 = *reg;
  2038  			n1.op = OINDREG;
  2039  			n1.type = types[tptr];
  2040  			n1.xoffset = Array_nel;
  2041  			nodconst(&n2, types[TUINT32], v);
  2042  			regalloc(&n3, types[TUINT32], N);
  2043  			cgen(&n2, &n3);
  2044  			regalloc(&n4, n1.type, N);
  2045  			cgen(&n1, &n4);
  2046  			gcmp(optoas(OCMP, types[TUINT32]), &n4, &n3);
  2047  			regfree(&n4);
  2048  			regfree(&n3);
  2049  			p1 = gbranch(optoas(OGT, types[TUINT32]), T, +1);
  2050  			ginscall(panicindex, 0);
  2051  			patch(p1, pc);
  2052  		}
  2053  
  2054  		n1 = *reg;
  2055  		n1.op = OINDREG;
  2056  		n1.type = types[tptr];
  2057  		n1.xoffset = Array_array;
  2058  		gmove(&n1, reg);
  2059  	}
  2060  
  2061  	n2 = *reg;
  2062  	n2.op = OINDREG;
  2063  	n2.xoffset = v * (*w);
  2064  	a->type = D_NONE;
  2065  	a->name = D_NONE;
  2066  	naddr(&n2, a, 1);
  2067  	goto yes;
  2068  
  2069  yes:
  2070  	return 1;
  2071  
  2072  no:
  2073  	sudoclean();
  2074  	return 0;
  2075  }