github.com/varialus/godfly@v0.0.0-20130904042352-1934f9f095ab/src/pkg/crypto/tls/key_agreement.go (about)

     1  // Copyright 2010 The Go Authors. All rights reserved.
     2  // Use of this source code is governed by a BSD-style
     3  // license that can be found in the LICENSE file.
     4  
     5  package tls
     6  
     7  import (
     8  	"crypto"
     9  	"crypto/ecdsa"
    10  	"crypto/elliptic"
    11  	"crypto/md5"
    12  	"crypto/rsa"
    13  	"crypto/sha1"
    14  	"crypto/sha256"
    15  	"crypto/x509"
    16  	"encoding/asn1"
    17  	"errors"
    18  	"io"
    19  	"math/big"
    20  )
    21  
    22  // rsaKeyAgreement implements the standard TLS key agreement where the client
    23  // encrypts the pre-master secret to the server's public key.
    24  type rsaKeyAgreement struct{}
    25  
    26  func (ka rsaKeyAgreement) generateServerKeyExchange(config *Config, cert *Certificate, clientHello *clientHelloMsg, hello *serverHelloMsg) (*serverKeyExchangeMsg, error) {
    27  	return nil, nil
    28  }
    29  
    30  func (ka rsaKeyAgreement) processClientKeyExchange(config *Config, cert *Certificate, ckx *clientKeyExchangeMsg, version uint16) ([]byte, error) {
    31  	preMasterSecret := make([]byte, 48)
    32  	_, err := io.ReadFull(config.rand(), preMasterSecret[2:])
    33  	if err != nil {
    34  		return nil, err
    35  	}
    36  
    37  	if len(ckx.ciphertext) < 2 {
    38  		return nil, errors.New("bad ClientKeyExchange")
    39  	}
    40  
    41  	ciphertext := ckx.ciphertext
    42  	if version != VersionSSL30 {
    43  		ciphertextLen := int(ckx.ciphertext[0])<<8 | int(ckx.ciphertext[1])
    44  		if ciphertextLen != len(ckx.ciphertext)-2 {
    45  			return nil, errors.New("bad ClientKeyExchange")
    46  		}
    47  		ciphertext = ckx.ciphertext[2:]
    48  	}
    49  
    50  	err = rsa.DecryptPKCS1v15SessionKey(config.rand(), cert.PrivateKey.(*rsa.PrivateKey), ciphertext, preMasterSecret)
    51  	if err != nil {
    52  		return nil, err
    53  	}
    54  	// We don't check the version number in the premaster secret.  For one,
    55  	// by checking it, we would leak information about the validity of the
    56  	// encrypted pre-master secret. Secondly, it provides only a small
    57  	// benefit against a downgrade attack and some implementations send the
    58  	// wrong version anyway. See the discussion at the end of section
    59  	// 7.4.7.1 of RFC 4346.
    60  	return preMasterSecret, nil
    61  }
    62  
    63  func (ka rsaKeyAgreement) processServerKeyExchange(config *Config, clientHello *clientHelloMsg, serverHello *serverHelloMsg, cert *x509.Certificate, skx *serverKeyExchangeMsg) error {
    64  	return errors.New("unexpected ServerKeyExchange")
    65  }
    66  
    67  func (ka rsaKeyAgreement) generateClientKeyExchange(config *Config, clientHello *clientHelloMsg, cert *x509.Certificate) ([]byte, *clientKeyExchangeMsg, error) {
    68  	preMasterSecret := make([]byte, 48)
    69  	preMasterSecret[0] = byte(clientHello.vers >> 8)
    70  	preMasterSecret[1] = byte(clientHello.vers)
    71  	_, err := io.ReadFull(config.rand(), preMasterSecret[2:])
    72  	if err != nil {
    73  		return nil, nil, err
    74  	}
    75  
    76  	encrypted, err := rsa.EncryptPKCS1v15(config.rand(), cert.PublicKey.(*rsa.PublicKey), preMasterSecret)
    77  	if err != nil {
    78  		return nil, nil, err
    79  	}
    80  	ckx := new(clientKeyExchangeMsg)
    81  	ckx.ciphertext = make([]byte, len(encrypted)+2)
    82  	ckx.ciphertext[0] = byte(len(encrypted) >> 8)
    83  	ckx.ciphertext[1] = byte(len(encrypted))
    84  	copy(ckx.ciphertext[2:], encrypted)
    85  	return preMasterSecret, ckx, nil
    86  }
    87  
    88  // sha1Hash calculates a SHA1 hash over the given byte slices.
    89  func sha1Hash(slices [][]byte) []byte {
    90  	hsha1 := sha1.New()
    91  	for _, slice := range slices {
    92  		hsha1.Write(slice)
    93  	}
    94  	return hsha1.Sum(nil)
    95  }
    96  
    97  // md5SHA1Hash implements TLS 1.0's hybrid hash function which consists of the
    98  // concatenation of an MD5 and SHA1 hash.
    99  func md5SHA1Hash(slices [][]byte) []byte {
   100  	md5sha1 := make([]byte, md5.Size+sha1.Size)
   101  	hmd5 := md5.New()
   102  	for _, slice := range slices {
   103  		hmd5.Write(slice)
   104  	}
   105  	copy(md5sha1, hmd5.Sum(nil))
   106  	copy(md5sha1[md5.Size:], sha1Hash(slices))
   107  	return md5sha1
   108  }
   109  
   110  // sha256Hash implements TLS 1.2's hash function.
   111  func sha256Hash(slices [][]byte) []byte {
   112  	h := sha256.New()
   113  	for _, slice := range slices {
   114  		h.Write(slice)
   115  	}
   116  	return h.Sum(nil)
   117  }
   118  
   119  // hashForServerKeyExchange hashes the given slices and returns their digest
   120  // and the identifier of the hash function used.
   121  func hashForServerKeyExchange(sigType uint8, version uint16, slices ...[]byte) ([]byte, crypto.Hash) {
   122  	if version >= VersionTLS12 {
   123  		return sha256Hash(slices), crypto.SHA256
   124  	}
   125  	if sigType == signatureECDSA {
   126  		return sha1Hash(slices), crypto.SHA1
   127  	}
   128  	return md5SHA1Hash(slices), crypto.MD5SHA1
   129  }
   130  
   131  // ecdheRSAKeyAgreement implements a TLS key agreement where the server
   132  // generates a ephemeral EC public/private key pair and signs it. The
   133  // pre-master secret is then calculated using ECDH. The signature may
   134  // either be ECDSA or RSA.
   135  type ecdheKeyAgreement struct {
   136  	version    uint16
   137  	sigType    uint8
   138  	privateKey []byte
   139  	curve      elliptic.Curve
   140  	x, y       *big.Int
   141  }
   142  
   143  func (ka *ecdheKeyAgreement) generateServerKeyExchange(config *Config, cert *Certificate, clientHello *clientHelloMsg, hello *serverHelloMsg) (*serverKeyExchangeMsg, error) {
   144  	var curveid uint16
   145  
   146  Curve:
   147  	for _, c := range clientHello.supportedCurves {
   148  		switch c {
   149  		case curveP256:
   150  			ka.curve = elliptic.P256()
   151  			curveid = c
   152  			break Curve
   153  		case curveP384:
   154  			ka.curve = elliptic.P384()
   155  			curveid = c
   156  			break Curve
   157  		case curveP521:
   158  			ka.curve = elliptic.P521()
   159  			curveid = c
   160  			break Curve
   161  		}
   162  	}
   163  
   164  	if curveid == 0 {
   165  		return nil, errors.New("tls: no supported elliptic curves offered")
   166  	}
   167  
   168  	var x, y *big.Int
   169  	var err error
   170  	ka.privateKey, x, y, err = elliptic.GenerateKey(ka.curve, config.rand())
   171  	if err != nil {
   172  		return nil, err
   173  	}
   174  	ecdhePublic := elliptic.Marshal(ka.curve, x, y)
   175  
   176  	// http://tools.ietf.org/html/rfc4492#section-5.4
   177  	serverECDHParams := make([]byte, 1+2+1+len(ecdhePublic))
   178  	serverECDHParams[0] = 3 // named curve
   179  	serverECDHParams[1] = byte(curveid >> 8)
   180  	serverECDHParams[2] = byte(curveid)
   181  	serverECDHParams[3] = byte(len(ecdhePublic))
   182  	copy(serverECDHParams[4:], ecdhePublic)
   183  
   184  	digest, hashFunc := hashForServerKeyExchange(ka.sigType, ka.version, clientHello.random, hello.random, serverECDHParams)
   185  	var sig []byte
   186  	switch ka.sigType {
   187  	case signatureECDSA:
   188  		privKey, ok := cert.PrivateKey.(*ecdsa.PrivateKey)
   189  		if !ok {
   190  			return nil, errors.New("ECDHE ECDSA requires an ECDSA server private key")
   191  		}
   192  		r, s, err := ecdsa.Sign(config.rand(), privKey, digest)
   193  		if err != nil {
   194  			return nil, errors.New("failed to sign ECDHE parameters: " + err.Error())
   195  		}
   196  		sig, err = asn1.Marshal(ecdsaSignature{r, s})
   197  	case signatureRSA:
   198  		privKey, ok := cert.PrivateKey.(*rsa.PrivateKey)
   199  		if !ok {
   200  			return nil, errors.New("ECDHE RSA requires a RSA server private key")
   201  		}
   202  		sig, err = rsa.SignPKCS1v15(config.rand(), privKey, hashFunc, digest)
   203  		if err != nil {
   204  			return nil, errors.New("failed to sign ECDHE parameters: " + err.Error())
   205  		}
   206  	default:
   207  		return nil, errors.New("unknown ECDHE signature algorithm")
   208  	}
   209  
   210  	skx := new(serverKeyExchangeMsg)
   211  	sigAndHashLen := 0
   212  	if ka.version >= VersionTLS12 {
   213  		sigAndHashLen = 2
   214  	}
   215  	skx.key = make([]byte, len(serverECDHParams)+sigAndHashLen+2+len(sig))
   216  	copy(skx.key, serverECDHParams)
   217  	k := skx.key[len(serverECDHParams):]
   218  	if ka.version >= VersionTLS12 {
   219  		k[0] = hashSHA256
   220  		k[1] = ka.sigType
   221  		k = k[2:]
   222  	}
   223  	k[0] = byte(len(sig) >> 8)
   224  	k[1] = byte(len(sig))
   225  	copy(k[2:], sig)
   226  
   227  	return skx, nil
   228  }
   229  
   230  func (ka *ecdheKeyAgreement) processClientKeyExchange(config *Config, cert *Certificate, ckx *clientKeyExchangeMsg, version uint16) ([]byte, error) {
   231  	if len(ckx.ciphertext) == 0 || int(ckx.ciphertext[0]) != len(ckx.ciphertext)-1 {
   232  		return nil, errors.New("bad ClientKeyExchange")
   233  	}
   234  	x, y := elliptic.Unmarshal(ka.curve, ckx.ciphertext[1:])
   235  	if x == nil {
   236  		return nil, errors.New("bad ClientKeyExchange")
   237  	}
   238  	x, _ = ka.curve.ScalarMult(x, y, ka.privateKey)
   239  	preMasterSecret := make([]byte, (ka.curve.Params().BitSize+7)>>3)
   240  	xBytes := x.Bytes()
   241  	copy(preMasterSecret[len(preMasterSecret)-len(xBytes):], xBytes)
   242  
   243  	return preMasterSecret, nil
   244  }
   245  
   246  var errServerKeyExchange = errors.New("invalid ServerKeyExchange")
   247  
   248  func (ka *ecdheKeyAgreement) processServerKeyExchange(config *Config, clientHello *clientHelloMsg, serverHello *serverHelloMsg, cert *x509.Certificate, skx *serverKeyExchangeMsg) error {
   249  	if len(skx.key) < 4 {
   250  		return errServerKeyExchange
   251  	}
   252  	if skx.key[0] != 3 { // named curve
   253  		return errors.New("server selected unsupported curve")
   254  	}
   255  	curveid := uint16(skx.key[1])<<8 | uint16(skx.key[2])
   256  
   257  	switch curveid {
   258  	case curveP256:
   259  		ka.curve = elliptic.P256()
   260  	case curveP384:
   261  		ka.curve = elliptic.P384()
   262  	case curveP521:
   263  		ka.curve = elliptic.P521()
   264  	default:
   265  		return errors.New("server selected unsupported curve")
   266  	}
   267  
   268  	publicLen := int(skx.key[3])
   269  	if publicLen+4 > len(skx.key) {
   270  		return errServerKeyExchange
   271  	}
   272  	ka.x, ka.y = elliptic.Unmarshal(ka.curve, skx.key[4:4+publicLen])
   273  	if ka.x == nil {
   274  		return errServerKeyExchange
   275  	}
   276  	serverECDHParams := skx.key[:4+publicLen]
   277  
   278  	sig := skx.key[4+publicLen:]
   279  	if len(sig) < 2 {
   280  		return errServerKeyExchange
   281  	}
   282  	if ka.version >= VersionTLS12 {
   283  		// ignore SignatureAndHashAlgorithm
   284  		sig = sig[2:]
   285  		if len(sig) < 2 {
   286  			return errServerKeyExchange
   287  		}
   288  	}
   289  	sigLen := int(sig[0])<<8 | int(sig[1])
   290  	if sigLen+2 != len(sig) {
   291  		return errServerKeyExchange
   292  	}
   293  	sig = sig[2:]
   294  
   295  	digest, hashFunc := hashForServerKeyExchange(ka.sigType, ka.version, clientHello.random, serverHello.random, serverECDHParams)
   296  	switch ka.sigType {
   297  	case signatureECDSA:
   298  		pubKey, ok := cert.PublicKey.(*ecdsa.PublicKey)
   299  		if !ok {
   300  			return errors.New("ECDHE ECDSA requires a ECDSA server public key")
   301  		}
   302  		ecdsaSig := new(ecdsaSignature)
   303  		if _, err := asn1.Unmarshal(sig, ecdsaSig); err != nil {
   304  			return err
   305  		}
   306  		if ecdsaSig.R.Sign() <= 0 || ecdsaSig.S.Sign() <= 0 {
   307  			return errors.New("ECDSA signature contained zero or negative values")
   308  		}
   309  		if !ecdsa.Verify(pubKey, digest, ecdsaSig.R, ecdsaSig.S) {
   310  			return errors.New("ECDSA verification failure")
   311  		}
   312  	case signatureRSA:
   313  		pubKey, ok := cert.PublicKey.(*rsa.PublicKey)
   314  		if !ok {
   315  			return errors.New("ECDHE RSA requires a RSA server public key")
   316  		}
   317  		if err := rsa.VerifyPKCS1v15(pubKey, hashFunc, digest, sig); err != nil {
   318  			return err
   319  		}
   320  	default:
   321  		return errors.New("unknown ECDHE signature algorithm")
   322  	}
   323  
   324  	return nil
   325  }
   326  
   327  func (ka *ecdheKeyAgreement) generateClientKeyExchange(config *Config, clientHello *clientHelloMsg, cert *x509.Certificate) ([]byte, *clientKeyExchangeMsg, error) {
   328  	if ka.curve == nil {
   329  		return nil, nil, errors.New("missing ServerKeyExchange message")
   330  	}
   331  	priv, mx, my, err := elliptic.GenerateKey(ka.curve, config.rand())
   332  	if err != nil {
   333  		return nil, nil, err
   334  	}
   335  	x, _ := ka.curve.ScalarMult(ka.x, ka.y, priv)
   336  	preMasterSecret := make([]byte, (ka.curve.Params().BitSize+7)>>3)
   337  	xBytes := x.Bytes()
   338  	copy(preMasterSecret[len(preMasterSecret)-len(xBytes):], xBytes)
   339  
   340  	serialized := elliptic.Marshal(ka.curve, mx, my)
   341  
   342  	ckx := new(clientKeyExchangeMsg)
   343  	ckx.ciphertext = make([]byte, 1+len(serialized))
   344  	ckx.ciphertext[0] = byte(len(serialized))
   345  	copy(ckx.ciphertext[1:], serialized)
   346  
   347  	return preMasterSecret, ckx, nil
   348  }