github.com/varialus/godfly@v0.0.0-20130904042352-1934f9f095ab/src/pkg/encoding/base32/base32.go (about) 1 // Copyright 2011 The Go Authors. All rights reserved. 2 // Use of this source code is governed by a BSD-style 3 // license that can be found in the LICENSE file. 4 5 // Package base32 implements base32 encoding as specified by RFC 4648. 6 package base32 7 8 import ( 9 "bytes" 10 "io" 11 "strconv" 12 "strings" 13 ) 14 15 /* 16 * Encodings 17 */ 18 19 // An Encoding is a radix 32 encoding/decoding scheme, defined by a 20 // 32-character alphabet. The most common is the "base32" encoding 21 // introduced for SASL GSSAPI and standardized in RFC 4648. 22 // The alternate "base32hex" encoding is used in DNSSEC. 23 type Encoding struct { 24 encode string 25 decodeMap [256]byte 26 } 27 28 const encodeStd = "ABCDEFGHIJKLMNOPQRSTUVWXYZ234567" 29 const encodeHex = "0123456789ABCDEFGHIJKLMNOPQRSTUV" 30 31 // NewEncoding returns a new Encoding defined by the given alphabet, 32 // which must be a 32-byte string. 33 func NewEncoding(encoder string) *Encoding { 34 e := new(Encoding) 35 e.encode = encoder 36 for i := 0; i < len(e.decodeMap); i++ { 37 e.decodeMap[i] = 0xFF 38 } 39 for i := 0; i < len(encoder); i++ { 40 e.decodeMap[encoder[i]] = byte(i) 41 } 42 return e 43 } 44 45 // StdEncoding is the standard base32 encoding, as defined in 46 // RFC 4648. 47 var StdEncoding = NewEncoding(encodeStd) 48 49 // HexEncoding is the ``Extended Hex Alphabet'' defined in RFC 4648. 50 // It is typically used in DNS. 51 var HexEncoding = NewEncoding(encodeHex) 52 53 var removeNewlinesMapper = func(r rune) rune { 54 if r == '\r' || r == '\n' { 55 return -1 56 } 57 return r 58 } 59 60 /* 61 * Encoder 62 */ 63 64 // Encode encodes src using the encoding enc, writing 65 // EncodedLen(len(src)) bytes to dst. 66 // 67 // The encoding pads the output to a multiple of 8 bytes, 68 // so Encode is not appropriate for use on individual blocks 69 // of a large data stream. Use NewEncoder() instead. 70 func (enc *Encoding) Encode(dst, src []byte) { 71 if len(src) == 0 { 72 return 73 } 74 75 for len(src) > 0 { 76 dst[0] = 0 77 dst[1] = 0 78 dst[2] = 0 79 dst[3] = 0 80 dst[4] = 0 81 dst[5] = 0 82 dst[6] = 0 83 dst[7] = 0 84 85 // Unpack 8x 5-bit source blocks into a 5 byte 86 // destination quantum 87 switch len(src) { 88 default: 89 dst[7] |= src[4] & 0x1F 90 dst[6] |= src[4] >> 5 91 fallthrough 92 case 4: 93 dst[6] |= (src[3] << 3) & 0x1F 94 dst[5] |= (src[3] >> 2) & 0x1F 95 dst[4] |= src[3] >> 7 96 fallthrough 97 case 3: 98 dst[4] |= (src[2] << 1) & 0x1F 99 dst[3] |= (src[2] >> 4) & 0x1F 100 fallthrough 101 case 2: 102 dst[3] |= (src[1] << 4) & 0x1F 103 dst[2] |= (src[1] >> 1) & 0x1F 104 dst[1] |= (src[1] >> 6) & 0x1F 105 fallthrough 106 case 1: 107 dst[1] |= (src[0] << 2) & 0x1F 108 dst[0] |= src[0] >> 3 109 } 110 111 // Encode 5-bit blocks using the base32 alphabet 112 for j := 0; j < 8; j++ { 113 dst[j] = enc.encode[dst[j]] 114 } 115 116 // Pad the final quantum 117 if len(src) < 5 { 118 dst[7] = '=' 119 if len(src) < 4 { 120 dst[6] = '=' 121 dst[5] = '=' 122 if len(src) < 3 { 123 dst[4] = '=' 124 if len(src) < 2 { 125 dst[3] = '=' 126 dst[2] = '=' 127 } 128 } 129 } 130 break 131 } 132 src = src[5:] 133 dst = dst[8:] 134 } 135 } 136 137 // EncodeToString returns the base32 encoding of src. 138 func (enc *Encoding) EncodeToString(src []byte) string { 139 buf := make([]byte, enc.EncodedLen(len(src))) 140 enc.Encode(buf, src) 141 return string(buf) 142 } 143 144 type encoder struct { 145 err error 146 enc *Encoding 147 w io.Writer 148 buf [5]byte // buffered data waiting to be encoded 149 nbuf int // number of bytes in buf 150 out [1024]byte // output buffer 151 } 152 153 func (e *encoder) Write(p []byte) (n int, err error) { 154 if e.err != nil { 155 return 0, e.err 156 } 157 158 // Leading fringe. 159 if e.nbuf > 0 { 160 var i int 161 for i = 0; i < len(p) && e.nbuf < 5; i++ { 162 e.buf[e.nbuf] = p[i] 163 e.nbuf++ 164 } 165 n += i 166 p = p[i:] 167 if e.nbuf < 5 { 168 return 169 } 170 e.enc.Encode(e.out[0:], e.buf[0:]) 171 if _, e.err = e.w.Write(e.out[0:8]); e.err != nil { 172 return n, e.err 173 } 174 e.nbuf = 0 175 } 176 177 // Large interior chunks. 178 for len(p) >= 5 { 179 nn := len(e.out) / 8 * 5 180 if nn > len(p) { 181 nn = len(p) 182 } 183 nn -= nn % 5 184 if nn > 0 { 185 e.enc.Encode(e.out[0:], p[0:nn]) 186 if _, e.err = e.w.Write(e.out[0 : nn/5*8]); e.err != nil { 187 return n, e.err 188 } 189 } 190 n += nn 191 p = p[nn:] 192 } 193 194 // Trailing fringe. 195 for i := 0; i < len(p); i++ { 196 e.buf[i] = p[i] 197 } 198 e.nbuf = len(p) 199 n += len(p) 200 return 201 } 202 203 // Close flushes any pending output from the encoder. 204 // It is an error to call Write after calling Close. 205 func (e *encoder) Close() error { 206 // If there's anything left in the buffer, flush it out 207 if e.err == nil && e.nbuf > 0 { 208 e.enc.Encode(e.out[0:], e.buf[0:e.nbuf]) 209 e.nbuf = 0 210 _, e.err = e.w.Write(e.out[0:8]) 211 } 212 return e.err 213 } 214 215 // NewEncoder returns a new base32 stream encoder. Data written to 216 // the returned writer will be encoded using enc and then written to w. 217 // Base32 encodings operate in 5-byte blocks; when finished 218 // writing, the caller must Close the returned encoder to flush any 219 // partially written blocks. 220 func NewEncoder(enc *Encoding, w io.Writer) io.WriteCloser { 221 return &encoder{enc: enc, w: w} 222 } 223 224 // EncodedLen returns the length in bytes of the base32 encoding 225 // of an input buffer of length n. 226 func (enc *Encoding) EncodedLen(n int) int { return (n + 4) / 5 * 8 } 227 228 /* 229 * Decoder 230 */ 231 232 type CorruptInputError int64 233 234 func (e CorruptInputError) Error() string { 235 return "illegal base32 data at input byte " + strconv.FormatInt(int64(e), 10) 236 } 237 238 // decode is like Decode but returns an additional 'end' value, which 239 // indicates if end-of-message padding was encountered and thus any 240 // additional data is an error. This method assumes that src has been 241 // stripped of all supported whitespace ('\r' and '\n'). 242 func (enc *Encoding) decode(dst, src []byte) (n int, end bool, err error) { 243 olen := len(src) 244 for len(src) > 0 && !end { 245 // Decode quantum using the base32 alphabet 246 var dbuf [8]byte 247 dlen := 8 248 249 for j := 0; j < 8; { 250 if len(src) == 0 { 251 return n, false, CorruptInputError(olen - len(src) - j) 252 } 253 in := src[0] 254 src = src[1:] 255 if in == '=' && j >= 2 && len(src) < 8 { 256 // We've reached the end and there's padding 257 if len(src)+j < 8-1 { 258 // not enough padding 259 return n, false, CorruptInputError(olen) 260 } 261 for k := 0; k < 8-1-j; k++ { 262 if len(src) > k && src[k] != '=' { 263 // incorrect padding 264 return n, false, CorruptInputError(olen - len(src) + k - 1) 265 } 266 } 267 dlen, end = j, true 268 // 7, 5 and 2 are not valid padding lengths, and so 1, 3 and 6 are not 269 // valid dlen values. See RFC 4648 Section 6 "Base 32 Encoding" listing 270 // the five valid padding lengths, and Section 9 "Illustrations and 271 // Examples" for an illustration for how the the 1st, 3rd and 6th base32 272 // src bytes do not yield enough information to decode a dst byte. 273 if dlen == 1 || dlen == 3 || dlen == 6 { 274 return n, false, CorruptInputError(olen - len(src) - 1) 275 } 276 break 277 } 278 dbuf[j] = enc.decodeMap[in] 279 if dbuf[j] == 0xFF { 280 return n, false, CorruptInputError(olen - len(src) - 1) 281 } 282 j++ 283 } 284 285 // Pack 8x 5-bit source blocks into 5 byte destination 286 // quantum 287 switch dlen { 288 case 8: 289 dst[4] = dbuf[6]<<5 | dbuf[7] 290 fallthrough 291 case 7: 292 dst[3] = dbuf[4]<<7 | dbuf[5]<<2 | dbuf[6]>>3 293 fallthrough 294 case 5: 295 dst[2] = dbuf[3]<<4 | dbuf[4]>>1 296 fallthrough 297 case 4: 298 dst[1] = dbuf[1]<<6 | dbuf[2]<<1 | dbuf[3]>>4 299 fallthrough 300 case 2: 301 dst[0] = dbuf[0]<<3 | dbuf[1]>>2 302 } 303 dst = dst[5:] 304 switch dlen { 305 case 2: 306 n += 1 307 case 4: 308 n += 2 309 case 5: 310 n += 3 311 case 7: 312 n += 4 313 case 8: 314 n += 5 315 } 316 } 317 return n, end, nil 318 } 319 320 // Decode decodes src using the encoding enc. It writes at most 321 // DecodedLen(len(src)) bytes to dst and returns the number of bytes 322 // written. If src contains invalid base32 data, it will return the 323 // number of bytes successfully written and CorruptInputError. 324 // New line characters (\r and \n) are ignored. 325 func (enc *Encoding) Decode(dst, src []byte) (n int, err error) { 326 src = bytes.Map(removeNewlinesMapper, src) 327 n, _, err = enc.decode(dst, src) 328 return 329 } 330 331 // DecodeString returns the bytes represented by the base32 string s. 332 func (enc *Encoding) DecodeString(s string) ([]byte, error) { 333 s = strings.Map(removeNewlinesMapper, s) 334 dbuf := make([]byte, enc.DecodedLen(len(s))) 335 n, err := enc.Decode(dbuf, []byte(s)) 336 return dbuf[:n], err 337 } 338 339 type decoder struct { 340 err error 341 enc *Encoding 342 r io.Reader 343 end bool // saw end of message 344 buf [1024]byte // leftover input 345 nbuf int 346 out []byte // leftover decoded output 347 outbuf [1024 / 8 * 5]byte 348 } 349 350 func (d *decoder) Read(p []byte) (n int, err error) { 351 if d.err != nil { 352 return 0, d.err 353 } 354 355 // Use leftover decoded output from last read. 356 if len(d.out) > 0 { 357 n = copy(p, d.out) 358 d.out = d.out[n:] 359 return n, nil 360 } 361 362 // Read a chunk. 363 nn := len(p) / 5 * 8 364 if nn < 8 { 365 nn = 8 366 } 367 if nn > len(d.buf) { 368 nn = len(d.buf) 369 } 370 nn, d.err = io.ReadAtLeast(d.r, d.buf[d.nbuf:nn], 8-d.nbuf) 371 d.nbuf += nn 372 if d.nbuf < 8 { 373 return 0, d.err 374 } 375 376 // Decode chunk into p, or d.out and then p if p is too small. 377 nr := d.nbuf / 8 * 8 378 nw := d.nbuf / 8 * 5 379 if nw > len(p) { 380 nw, d.end, d.err = d.enc.decode(d.outbuf[0:], d.buf[0:nr]) 381 d.out = d.outbuf[0:nw] 382 n = copy(p, d.out) 383 d.out = d.out[n:] 384 } else { 385 n, d.end, d.err = d.enc.decode(p, d.buf[0:nr]) 386 } 387 d.nbuf -= nr 388 for i := 0; i < d.nbuf; i++ { 389 d.buf[i] = d.buf[i+nr] 390 } 391 392 if d.err == nil { 393 d.err = err 394 } 395 return n, d.err 396 } 397 398 type newlineFilteringReader struct { 399 wrapped io.Reader 400 } 401 402 func (r *newlineFilteringReader) Read(p []byte) (int, error) { 403 n, err := r.wrapped.Read(p) 404 for n > 0 { 405 offset := 0 406 for i, b := range p[0:n] { 407 if b != '\r' && b != '\n' { 408 if i != offset { 409 p[offset] = b 410 } 411 offset++ 412 } 413 } 414 if offset > 0 { 415 return offset, err 416 } 417 // Previous buffer entirely whitespace, read again 418 n, err = r.wrapped.Read(p) 419 } 420 return n, err 421 } 422 423 // NewDecoder constructs a new base32 stream decoder. 424 func NewDecoder(enc *Encoding, r io.Reader) io.Reader { 425 return &decoder{enc: enc, r: &newlineFilteringReader{r}} 426 } 427 428 // DecodedLen returns the maximum length in bytes of the decoded data 429 // corresponding to n bytes of base32-encoded data. 430 func (enc *Encoding) DecodedLen(n int) int { return n / 8 * 5 }