github.com/varialus/godfly@v0.0.0-20130904042352-1934f9f095ab/src/pkg/encoding/json/encode.go (about)

     1  // Copyright 2010 The Go Authors.  All rights reserved.
     2  // Use of this source code is governed by a BSD-style
     3  // license that can be found in the LICENSE file.
     4  
     5  // Package json implements encoding and decoding of JSON objects as defined in
     6  // RFC 4627. The mapping between JSON objects and Go values is described
     7  // in the documentation for the Marshal and Unmarshal functions.
     8  //
     9  // See "JSON and Go" for an introduction to this package:
    10  // http://golang.org/doc/articles/json_and_go.html
    11  package json
    12  
    13  import (
    14  	"bytes"
    15  	"encoding"
    16  	"encoding/base64"
    17  	"math"
    18  	"reflect"
    19  	"runtime"
    20  	"sort"
    21  	"strconv"
    22  	"strings"
    23  	"sync"
    24  	"unicode"
    25  	"unicode/utf8"
    26  )
    27  
    28  // Marshal returns the JSON encoding of v.
    29  //
    30  // Marshal traverses the value v recursively.
    31  // If an encountered value implements the Marshaler interface
    32  // and is not a nil pointer, Marshal calls its MarshalJSON method
    33  // to produce JSON.  The nil pointer exception is not strictly necessary
    34  // but mimics a similar, necessary exception in the behavior of
    35  // UnmarshalJSON.
    36  //
    37  // Otherwise, Marshal uses the following type-dependent default encodings:
    38  //
    39  // Boolean values encode as JSON booleans.
    40  //
    41  // Floating point, integer, and Number values encode as JSON numbers.
    42  //
    43  // String values encode as JSON strings. InvalidUTF8Error will be returned
    44  // if an invalid UTF-8 sequence is encountered.
    45  // The angle brackets "<" and ">" are escaped to "\u003c" and "\u003e"
    46  // to keep some browsers from misinterpreting JSON output as HTML.
    47  //
    48  // Array and slice values encode as JSON arrays, except that
    49  // []byte encodes as a base64-encoded string, and a nil slice
    50  // encodes as the null JSON object.
    51  //
    52  // Struct values encode as JSON objects. Each exported struct field
    53  // becomes a member of the object unless
    54  //   - the field's tag is "-", or
    55  //   - the field is empty and its tag specifies the "omitempty" option.
    56  // The empty values are false, 0, any
    57  // nil pointer or interface value, and any array, slice, map, or string of
    58  // length zero. The object's default key string is the struct field name
    59  // but can be specified in the struct field's tag value. The "json" key in
    60  // the struct field's tag value is the key name, followed by an optional comma
    61  // and options. Examples:
    62  //
    63  //   // Field is ignored by this package.
    64  //   Field int `json:"-"`
    65  //
    66  //   // Field appears in JSON as key "myName".
    67  //   Field int `json:"myName"`
    68  //
    69  //   // Field appears in JSON as key "myName" and
    70  //   // the field is omitted from the object if its value is empty,
    71  //   // as defined above.
    72  //   Field int `json:"myName,omitempty"`
    73  //
    74  //   // Field appears in JSON as key "Field" (the default), but
    75  //   // the field is skipped if empty.
    76  //   // Note the leading comma.
    77  //   Field int `json:",omitempty"`
    78  //
    79  // The "string" option signals that a field is stored as JSON inside a
    80  // JSON-encoded string. It applies only to fields of string, floating point,
    81  // or integer types. This extra level of encoding is sometimes used when
    82  // communicating with JavaScript programs:
    83  //
    84  //    Int64String int64 `json:",string"`
    85  //
    86  // The key name will be used if it's a non-empty string consisting of
    87  // only Unicode letters, digits, dollar signs, percent signs, hyphens,
    88  // underscores and slashes.
    89  //
    90  // Anonymous struct fields are usually marshaled as if their inner exported fields
    91  // were fields in the outer struct, subject to the usual Go visibility rules amended
    92  // as described in the next paragraph.
    93  // An anonymous struct field with a name given in its JSON tag is treated as
    94  // having that name, rather than being anonymous.
    95  //
    96  // The Go visibility rules for struct fields are amended for JSON when
    97  // deciding which field to marshal or unmarshal. If there are
    98  // multiple fields at the same level, and that level is the least
    99  // nested (and would therefore be the nesting level selected by the
   100  // usual Go rules), the following extra rules apply:
   101  //
   102  // 1) Of those fields, if any are JSON-tagged, only tagged fields are considered,
   103  // even if there are multiple untagged fields that would otherwise conflict.
   104  // 2) If there is exactly one field (tagged or not according to the first rule), that is selected.
   105  // 3) Otherwise there are multiple fields, and all are ignored; no error occurs.
   106  //
   107  // Handling of anonymous struct fields is new in Go 1.1.
   108  // Prior to Go 1.1, anonymous struct fields were ignored. To force ignoring of
   109  // an anonymous struct field in both current and earlier versions, give the field
   110  // a JSON tag of "-".
   111  //
   112  // Map values encode as JSON objects.
   113  // The map's key type must be string; the object keys are used directly
   114  // as map keys.
   115  //
   116  // Pointer values encode as the value pointed to.
   117  // A nil pointer encodes as the null JSON object.
   118  //
   119  // Interface values encode as the value contained in the interface.
   120  // A nil interface value encodes as the null JSON object.
   121  //
   122  // Channel, complex, and function values cannot be encoded in JSON.
   123  // Attempting to encode such a value causes Marshal to return
   124  // an UnsupportedTypeError.
   125  //
   126  // JSON cannot represent cyclic data structures and Marshal does not
   127  // handle them.  Passing cyclic structures to Marshal will result in
   128  // an infinite recursion.
   129  //
   130  func Marshal(v interface{}) ([]byte, error) {
   131  	e := &encodeState{}
   132  	err := e.marshal(v)
   133  	if err != nil {
   134  		return nil, err
   135  	}
   136  	return e.Bytes(), nil
   137  }
   138  
   139  // MarshalIndent is like Marshal but applies Indent to format the output.
   140  func MarshalIndent(v interface{}, prefix, indent string) ([]byte, error) {
   141  	b, err := Marshal(v)
   142  	if err != nil {
   143  		return nil, err
   144  	}
   145  	var buf bytes.Buffer
   146  	err = Indent(&buf, b, prefix, indent)
   147  	if err != nil {
   148  		return nil, err
   149  	}
   150  	return buf.Bytes(), nil
   151  }
   152  
   153  // HTMLEscape appends to dst the JSON-encoded src with <, >, &, U+2028 and U+2029
   154  // characters inside string literals changed to \u003c, \u003e, \u0026, \u2028, \u2029
   155  // so that the JSON will be safe to embed inside HTML <script> tags.
   156  // For historical reasons, web browsers don't honor standard HTML
   157  // escaping within <script> tags, so an alternative JSON encoding must
   158  // be used.
   159  func HTMLEscape(dst *bytes.Buffer, src []byte) {
   160  	// The characters can only appear in string literals,
   161  	// so just scan the string one byte at a time.
   162  	start := 0
   163  	for i, c := range src {
   164  		if c == '<' || c == '>' || c == '&' {
   165  			if start < i {
   166  				dst.Write(src[start:i])
   167  			}
   168  			dst.WriteString(`\u00`)
   169  			dst.WriteByte(hex[c>>4])
   170  			dst.WriteByte(hex[c&0xF])
   171  			start = i + 1
   172  		}
   173  		// Convert U+2028 and U+2029 (E2 80 A8 and E2 80 A9).
   174  		if c == 0xE2 && i+2 < len(src) && src[i+1] == 0x80 && src[i+2]&^1 == 0xA8 {
   175  			if start < i {
   176  				dst.Write(src[start:i])
   177  			}
   178  			dst.WriteString(`\u202`)
   179  			dst.WriteByte(hex[src[i+2]&0xF])
   180  			start = i + 3
   181  		}
   182  	}
   183  	if start < len(src) {
   184  		dst.Write(src[start:])
   185  	}
   186  }
   187  
   188  // Marshaler is the interface implemented by objects that
   189  // can marshal themselves into valid JSON.
   190  type Marshaler interface {
   191  	MarshalJSON() ([]byte, error)
   192  }
   193  
   194  // An UnsupportedTypeError is returned by Marshal when attempting
   195  // to encode an unsupported value type.
   196  type UnsupportedTypeError struct {
   197  	Type reflect.Type
   198  }
   199  
   200  func (e *UnsupportedTypeError) Error() string {
   201  	return "json: unsupported type: " + e.Type.String()
   202  }
   203  
   204  type UnsupportedValueError struct {
   205  	Value reflect.Value
   206  	Str   string
   207  }
   208  
   209  func (e *UnsupportedValueError) Error() string {
   210  	return "json: unsupported value: " + e.Str
   211  }
   212  
   213  // Before Go 1.2, an InvalidUTF8Error was returned by Marshal when
   214  // attempting to encode a string value with invalid UTF-8 sequences.
   215  // As of Go 1.2, Marshal instead coerces the string to valid UTF-8 by
   216  // replacing invalid bytes with the Unicode replacement rune U+FFFD.
   217  // This error is no longer generated but is kept for backwards compatibility
   218  // with programs that might mention it.
   219  type InvalidUTF8Error struct {
   220  	S string // the whole string value that caused the error
   221  }
   222  
   223  func (e *InvalidUTF8Error) Error() string {
   224  	return "json: invalid UTF-8 in string: " + strconv.Quote(e.S)
   225  }
   226  
   227  type MarshalerError struct {
   228  	Type reflect.Type
   229  	Err  error
   230  }
   231  
   232  func (e *MarshalerError) Error() string {
   233  	return "json: error calling MarshalJSON for type " + e.Type.String() + ": " + e.Err.Error()
   234  }
   235  
   236  var hex = "0123456789abcdef"
   237  
   238  // An encodeState encodes JSON into a bytes.Buffer.
   239  type encodeState struct {
   240  	bytes.Buffer // accumulated output
   241  	scratch      [64]byte
   242  }
   243  
   244  // TODO(bradfitz): use a sync.Cache here
   245  var encodeStatePool = make(chan *encodeState, 8)
   246  
   247  func newEncodeState() *encodeState {
   248  	select {
   249  	case e := <-encodeStatePool:
   250  		e.Reset()
   251  		return e
   252  	default:
   253  		return new(encodeState)
   254  	}
   255  }
   256  
   257  func putEncodeState(e *encodeState) {
   258  	select {
   259  	case encodeStatePool <- e:
   260  	default:
   261  	}
   262  }
   263  
   264  func (e *encodeState) marshal(v interface{}) (err error) {
   265  	defer func() {
   266  		if r := recover(); r != nil {
   267  			if _, ok := r.(runtime.Error); ok {
   268  				panic(r)
   269  			}
   270  			if s, ok := r.(string); ok {
   271  				panic(s)
   272  			}
   273  			err = r.(error)
   274  		}
   275  	}()
   276  	e.reflectValue(reflect.ValueOf(v))
   277  	return nil
   278  }
   279  
   280  func (e *encodeState) error(err error) {
   281  	panic(err)
   282  }
   283  
   284  var byteSliceType = reflect.TypeOf([]byte(nil))
   285  
   286  func isEmptyValue(v reflect.Value) bool {
   287  	switch v.Kind() {
   288  	case reflect.Array, reflect.Map, reflect.Slice, reflect.String:
   289  		return v.Len() == 0
   290  	case reflect.Bool:
   291  		return !v.Bool()
   292  	case reflect.Int, reflect.Int8, reflect.Int16, reflect.Int32, reflect.Int64:
   293  		return v.Int() == 0
   294  	case reflect.Uint, reflect.Uint8, reflect.Uint16, reflect.Uint32, reflect.Uint64, reflect.Uintptr:
   295  		return v.Uint() == 0
   296  	case reflect.Float32, reflect.Float64:
   297  		return v.Float() == 0
   298  	case reflect.Interface, reflect.Ptr:
   299  		return v.IsNil()
   300  	}
   301  	return false
   302  }
   303  
   304  func (e *encodeState) reflectValue(v reflect.Value) {
   305  	valueEncoder(v)(e, v, false)
   306  }
   307  
   308  type encoderFunc func(e *encodeState, v reflect.Value, _ bool)
   309  
   310  var encoderCache struct {
   311  	sync.RWMutex
   312  	m map[reflect.Type]encoderFunc
   313  }
   314  
   315  func valueEncoder(v reflect.Value) encoderFunc {
   316  	if !v.IsValid() {
   317  		return invalidValueEncoder
   318  	}
   319  	t := v.Type()
   320  	return typeEncoder(t, v)
   321  }
   322  
   323  func typeEncoder(t reflect.Type, vx reflect.Value) encoderFunc {
   324  	encoderCache.RLock()
   325  	f := encoderCache.m[t]
   326  	encoderCache.RUnlock()
   327  	if f != nil {
   328  		return f
   329  	}
   330  
   331  	// To deal with recursive types, populate the map with an
   332  	// indirect func before we build it. This type waits on the
   333  	// real func (f) to be ready and then calls it.  This indirect
   334  	// func is only used for recursive types.
   335  	encoderCache.Lock()
   336  	if encoderCache.m == nil {
   337  		encoderCache.m = make(map[reflect.Type]encoderFunc)
   338  	}
   339  	var wg sync.WaitGroup
   340  	wg.Add(1)
   341  	encoderCache.m[t] = func(e *encodeState, v reflect.Value, quoted bool) {
   342  		wg.Wait()
   343  		f(e, v, quoted)
   344  	}
   345  	encoderCache.Unlock()
   346  
   347  	// Compute fields without lock.
   348  	// Might duplicate effort but won't hold other computations back.
   349  	f = newTypeEncoder(t, vx)
   350  	wg.Done()
   351  	encoderCache.Lock()
   352  	encoderCache.m[t] = f
   353  	encoderCache.Unlock()
   354  	return f
   355  }
   356  
   357  // newTypeEncoder constructs an encoderFunc for a type.
   358  // The provided vx is an example value of type t. It's the first seen
   359  // value of that type and should not be used to encode. It may be
   360  // zero.
   361  func newTypeEncoder(t reflect.Type, vx reflect.Value) encoderFunc {
   362  	if !vx.IsValid() {
   363  		vx = reflect.New(t).Elem()
   364  	}
   365  
   366  	_, ok := vx.Interface().(Marshaler)
   367  	if ok {
   368  		return marshalerEncoder
   369  	}
   370  	if vx.Kind() != reflect.Ptr && vx.CanAddr() {
   371  		_, ok = vx.Addr().Interface().(Marshaler)
   372  		if ok {
   373  			return addrMarshalerEncoder
   374  		}
   375  	}
   376  
   377  	_, ok = vx.Interface().(encoding.TextMarshaler)
   378  	if ok {
   379  		return textMarshalerEncoder
   380  	}
   381  	if vx.Kind() != reflect.Ptr && vx.CanAddr() {
   382  		_, ok = vx.Addr().Interface().(encoding.TextMarshaler)
   383  		if ok {
   384  			return addrTextMarshalerEncoder
   385  		}
   386  	}
   387  
   388  	switch vx.Kind() {
   389  	case reflect.Bool:
   390  		return boolEncoder
   391  	case reflect.Int, reflect.Int8, reflect.Int16, reflect.Int32, reflect.Int64:
   392  		return intEncoder
   393  	case reflect.Uint, reflect.Uint8, reflect.Uint16, reflect.Uint32, reflect.Uint64, reflect.Uintptr:
   394  		return uintEncoder
   395  	case reflect.Float32:
   396  		return float32Encoder
   397  	case reflect.Float64:
   398  		return float64Encoder
   399  	case reflect.String:
   400  		return stringEncoder
   401  	case reflect.Interface:
   402  		return interfaceEncoder
   403  	case reflect.Struct:
   404  		return newStructEncoder(t, vx)
   405  	case reflect.Map:
   406  		return newMapEncoder(t, vx)
   407  	case reflect.Slice:
   408  		return newSliceEncoder(t, vx)
   409  	case reflect.Array:
   410  		return newArrayEncoder(t, vx)
   411  	case reflect.Ptr:
   412  		return newPtrEncoder(t, vx)
   413  	default:
   414  		return unsupportedTypeEncoder
   415  	}
   416  }
   417  
   418  func invalidValueEncoder(e *encodeState, v reflect.Value, quoted bool) {
   419  	e.WriteString("null")
   420  }
   421  
   422  func marshalerEncoder(e *encodeState, v reflect.Value, quoted bool) {
   423  	if v.Kind() == reflect.Ptr && v.IsNil() {
   424  		e.WriteString("null")
   425  		return
   426  	}
   427  	m := v.Interface().(Marshaler)
   428  	b, err := m.MarshalJSON()
   429  	if err == nil {
   430  		// copy JSON into buffer, checking validity.
   431  		err = compact(&e.Buffer, b, true)
   432  	}
   433  	if err != nil {
   434  		e.error(&MarshalerError{v.Type(), err})
   435  	}
   436  }
   437  
   438  func addrMarshalerEncoder(e *encodeState, v reflect.Value, quoted bool) {
   439  	va := v.Addr()
   440  	if va.IsNil() {
   441  		e.WriteString("null")
   442  		return
   443  	}
   444  	m := va.Interface().(Marshaler)
   445  	b, err := m.MarshalJSON()
   446  	if err == nil {
   447  		// copy JSON into buffer, checking validity.
   448  		err = compact(&e.Buffer, b, true)
   449  	}
   450  	if err != nil {
   451  		e.error(&MarshalerError{v.Type(), err})
   452  	}
   453  }
   454  
   455  func textMarshalerEncoder(e *encodeState, v reflect.Value, quoted bool) {
   456  	if v.Kind() == reflect.Ptr && v.IsNil() {
   457  		e.WriteString("null")
   458  		return
   459  	}
   460  	m := v.Interface().(encoding.TextMarshaler)
   461  	b, err := m.MarshalText()
   462  	if err == nil {
   463  		_, err = e.stringBytes(b)
   464  	}
   465  	if err != nil {
   466  		e.error(&MarshalerError{v.Type(), err})
   467  	}
   468  }
   469  
   470  func addrTextMarshalerEncoder(e *encodeState, v reflect.Value, quoted bool) {
   471  	va := v.Addr()
   472  	if va.IsNil() {
   473  		e.WriteString("null")
   474  		return
   475  	}
   476  	m := va.Interface().(encoding.TextMarshaler)
   477  	b, err := m.MarshalText()
   478  	if err == nil {
   479  		_, err = e.stringBytes(b)
   480  	}
   481  	if err != nil {
   482  		e.error(&MarshalerError{v.Type(), err})
   483  	}
   484  }
   485  
   486  func boolEncoder(e *encodeState, v reflect.Value, quoted bool) {
   487  	if quoted {
   488  		e.WriteByte('"')
   489  	}
   490  	if v.Bool() {
   491  		e.WriteString("true")
   492  	} else {
   493  		e.WriteString("false")
   494  	}
   495  	if quoted {
   496  		e.WriteByte('"')
   497  	}
   498  }
   499  
   500  func intEncoder(e *encodeState, v reflect.Value, quoted bool) {
   501  	b := strconv.AppendInt(e.scratch[:0], v.Int(), 10)
   502  	if quoted {
   503  		e.WriteByte('"')
   504  	}
   505  	e.Write(b)
   506  	if quoted {
   507  		e.WriteByte('"')
   508  	}
   509  }
   510  
   511  func uintEncoder(e *encodeState, v reflect.Value, quoted bool) {
   512  	b := strconv.AppendUint(e.scratch[:0], v.Uint(), 10)
   513  	if quoted {
   514  		e.WriteByte('"')
   515  	}
   516  	e.Write(b)
   517  	if quoted {
   518  		e.WriteByte('"')
   519  	}
   520  }
   521  
   522  type floatEncoder int // number of bits
   523  
   524  func (bits floatEncoder) encode(e *encodeState, v reflect.Value, quoted bool) {
   525  	f := v.Float()
   526  	if math.IsInf(f, 0) || math.IsNaN(f) {
   527  		e.error(&UnsupportedValueError{v, strconv.FormatFloat(f, 'g', -1, int(bits))})
   528  	}
   529  	b := strconv.AppendFloat(e.scratch[:0], f, 'g', -1, int(bits))
   530  	if quoted {
   531  		e.WriteByte('"')
   532  	}
   533  	e.Write(b)
   534  	if quoted {
   535  		e.WriteByte('"')
   536  	}
   537  }
   538  
   539  var (
   540  	float32Encoder = (floatEncoder(32)).encode
   541  	float64Encoder = (floatEncoder(64)).encode
   542  )
   543  
   544  func stringEncoder(e *encodeState, v reflect.Value, quoted bool) {
   545  	if v.Type() == numberType {
   546  		numStr := v.String()
   547  		if numStr == "" {
   548  			numStr = "0" // Number's zero-val
   549  		}
   550  		e.WriteString(numStr)
   551  		return
   552  	}
   553  	if quoted {
   554  		sb, err := Marshal(v.String())
   555  		if err != nil {
   556  			e.error(err)
   557  		}
   558  		e.string(string(sb))
   559  	} else {
   560  		e.string(v.String())
   561  	}
   562  }
   563  
   564  func interfaceEncoder(e *encodeState, v reflect.Value, quoted bool) {
   565  	if v.IsNil() {
   566  		e.WriteString("null")
   567  		return
   568  	}
   569  	e.reflectValue(v.Elem())
   570  }
   571  
   572  func unsupportedTypeEncoder(e *encodeState, v reflect.Value, quoted bool) {
   573  	e.error(&UnsupportedTypeError{v.Type()})
   574  }
   575  
   576  type structEncoder struct {
   577  	fields    []field
   578  	fieldEncs []encoderFunc
   579  }
   580  
   581  func (se *structEncoder) encode(e *encodeState, v reflect.Value, quoted bool) {
   582  	e.WriteByte('{')
   583  	first := true
   584  	for i, f := range se.fields {
   585  		fv := fieldByIndex(v, f.index)
   586  		if !fv.IsValid() || f.omitEmpty && isEmptyValue(fv) {
   587  			continue
   588  		}
   589  		if first {
   590  			first = false
   591  		} else {
   592  			e.WriteByte(',')
   593  		}
   594  		e.string(f.name)
   595  		e.WriteByte(':')
   596  		if tenc := se.fieldEncs[i]; tenc != nil {
   597  			tenc(e, fv, f.quoted)
   598  		} else {
   599  			// Slower path.
   600  			e.reflectValue(fv)
   601  		}
   602  	}
   603  	e.WriteByte('}')
   604  }
   605  
   606  func newStructEncoder(t reflect.Type, vx reflect.Value) encoderFunc {
   607  	fields := cachedTypeFields(t)
   608  	se := &structEncoder{
   609  		fields:    fields,
   610  		fieldEncs: make([]encoderFunc, len(fields)),
   611  	}
   612  	for i, f := range fields {
   613  		vxf := fieldByIndex(vx, f.index)
   614  		if vxf.IsValid() {
   615  			se.fieldEncs[i] = typeEncoder(vxf.Type(), vxf)
   616  		}
   617  	}
   618  	return se.encode
   619  }
   620  
   621  type mapEncoder struct {
   622  	elemEnc encoderFunc
   623  }
   624  
   625  func (me *mapEncoder) encode(e *encodeState, v reflect.Value, _ bool) {
   626  	if v.IsNil() {
   627  		e.WriteString("null")
   628  		return
   629  	}
   630  	e.WriteByte('{')
   631  	var sv stringValues = v.MapKeys()
   632  	sort.Sort(sv)
   633  	for i, k := range sv {
   634  		if i > 0 {
   635  			e.WriteByte(',')
   636  		}
   637  		e.string(k.String())
   638  		e.WriteByte(':')
   639  		me.elemEnc(e, v.MapIndex(k), false)
   640  	}
   641  	e.WriteByte('}')
   642  }
   643  
   644  func newMapEncoder(t reflect.Type, vx reflect.Value) encoderFunc {
   645  	if t.Key().Kind() != reflect.String {
   646  		return unsupportedTypeEncoder
   647  	}
   648  	me := &mapEncoder{typeEncoder(vx.Type().Elem(), reflect.Value{})}
   649  	return me.encode
   650  }
   651  
   652  func encodeByteSlice(e *encodeState, v reflect.Value, _ bool) {
   653  	if v.IsNil() {
   654  		e.WriteString("null")
   655  		return
   656  	}
   657  	s := v.Bytes()
   658  	e.WriteByte('"')
   659  	if len(s) < 1024 {
   660  		// for small buffers, using Encode directly is much faster.
   661  		dst := make([]byte, base64.StdEncoding.EncodedLen(len(s)))
   662  		base64.StdEncoding.Encode(dst, s)
   663  		e.Write(dst)
   664  	} else {
   665  		// for large buffers, avoid unnecessary extra temporary
   666  		// buffer space.
   667  		enc := base64.NewEncoder(base64.StdEncoding, e)
   668  		enc.Write(s)
   669  		enc.Close()
   670  	}
   671  	e.WriteByte('"')
   672  }
   673  
   674  // sliceEncoder just wraps an arrayEncoder, checking to make sure the value isn't nil.
   675  type sliceEncoder struct {
   676  	arrayEnc encoderFunc
   677  }
   678  
   679  func (se *sliceEncoder) encode(e *encodeState, v reflect.Value, _ bool) {
   680  	if v.IsNil() {
   681  		e.WriteString("null")
   682  		return
   683  	}
   684  	se.arrayEnc(e, v, false)
   685  }
   686  
   687  func newSliceEncoder(t reflect.Type, vx reflect.Value) encoderFunc {
   688  	// Byte slices get special treatment; arrays don't.
   689  	if vx.Type().Elem().Kind() == reflect.Uint8 {
   690  		return encodeByteSlice
   691  	}
   692  	enc := &sliceEncoder{newArrayEncoder(t, vx)}
   693  	return enc.encode
   694  }
   695  
   696  type arrayEncoder struct {
   697  	elemEnc encoderFunc
   698  }
   699  
   700  func (ae *arrayEncoder) encode(e *encodeState, v reflect.Value, _ bool) {
   701  	e.WriteByte('[')
   702  	n := v.Len()
   703  	for i := 0; i < n; i++ {
   704  		if i > 0 {
   705  			e.WriteByte(',')
   706  		}
   707  		ae.elemEnc(e, v.Index(i), false)
   708  	}
   709  	e.WriteByte(']')
   710  }
   711  
   712  func newArrayEncoder(t reflect.Type, vx reflect.Value) encoderFunc {
   713  	enc := &arrayEncoder{typeEncoder(t.Elem(), reflect.Value{})}
   714  	return enc.encode
   715  }
   716  
   717  type ptrEncoder struct {
   718  	elemEnc encoderFunc
   719  }
   720  
   721  func (pe *ptrEncoder) encode(e *encodeState, v reflect.Value, _ bool) {
   722  	if v.IsNil() {
   723  		e.WriteString("null")
   724  		return
   725  	}
   726  	pe.elemEnc(e, v.Elem(), false)
   727  }
   728  
   729  func newPtrEncoder(t reflect.Type, vx reflect.Value) encoderFunc {
   730  	enc := &ptrEncoder{typeEncoder(t.Elem(), reflect.Value{})}
   731  	return enc.encode
   732  }
   733  
   734  func isValidTag(s string) bool {
   735  	if s == "" {
   736  		return false
   737  	}
   738  	for _, c := range s {
   739  		switch {
   740  		case strings.ContainsRune("!#$%&()*+-./:<=>?@[]^_{|}~ ", c):
   741  			// Backslash and quote chars are reserved, but
   742  			// otherwise any punctuation chars are allowed
   743  			// in a tag name.
   744  		default:
   745  			if !unicode.IsLetter(c) && !unicode.IsDigit(c) {
   746  				return false
   747  			}
   748  		}
   749  	}
   750  	return true
   751  }
   752  
   753  func fieldByIndex(v reflect.Value, index []int) reflect.Value {
   754  	for _, i := range index {
   755  		if v.Kind() == reflect.Ptr {
   756  			if v.IsNil() {
   757  				return reflect.Value{}
   758  			}
   759  			v = v.Elem()
   760  		}
   761  		v = v.Field(i)
   762  	}
   763  	return v
   764  }
   765  
   766  // stringValues is a slice of reflect.Value holding *reflect.StringValue.
   767  // It implements the methods to sort by string.
   768  type stringValues []reflect.Value
   769  
   770  func (sv stringValues) Len() int           { return len(sv) }
   771  func (sv stringValues) Swap(i, j int)      { sv[i], sv[j] = sv[j], sv[i] }
   772  func (sv stringValues) Less(i, j int) bool { return sv.get(i) < sv.get(j) }
   773  func (sv stringValues) get(i int) string   { return sv[i].String() }
   774  
   775  // NOTE: keep in sync with stringBytes below.
   776  func (e *encodeState) string(s string) (int, error) {
   777  	len0 := e.Len()
   778  	e.WriteByte('"')
   779  	start := 0
   780  	for i := 0; i < len(s); {
   781  		if b := s[i]; b < utf8.RuneSelf {
   782  			if 0x20 <= b && b != '\\' && b != '"' && b != '<' && b != '>' && b != '&' {
   783  				i++
   784  				continue
   785  			}
   786  			if start < i {
   787  				e.WriteString(s[start:i])
   788  			}
   789  			switch b {
   790  			case '\\', '"':
   791  				e.WriteByte('\\')
   792  				e.WriteByte(b)
   793  			case '\n':
   794  				e.WriteByte('\\')
   795  				e.WriteByte('n')
   796  			case '\r':
   797  				e.WriteByte('\\')
   798  				e.WriteByte('r')
   799  			default:
   800  				// This encodes bytes < 0x20 except for \n and \r,
   801  				// as well as < and >. The latter are escaped because they
   802  				// can lead to security holes when user-controlled strings
   803  				// are rendered into JSON and served to some browsers.
   804  				e.WriteString(`\u00`)
   805  				e.WriteByte(hex[b>>4])
   806  				e.WriteByte(hex[b&0xF])
   807  			}
   808  			i++
   809  			start = i
   810  			continue
   811  		}
   812  		c, size := utf8.DecodeRuneInString(s[i:])
   813  		if c == utf8.RuneError && size == 1 {
   814  			if start < i {
   815  				e.WriteString(s[start:i])
   816  			}
   817  			e.WriteString(`\ufffd`)
   818  			i += size
   819  			start = i
   820  			continue
   821  		}
   822  		// U+2028 is LINE SEPARATOR.
   823  		// U+2029 is PARAGRAPH SEPARATOR.
   824  		// They are both technically valid characters in JSON strings,
   825  		// but don't work in JSONP, which has to be evaluated as JavaScript,
   826  		// and can lead to security holes there. It is valid JSON to
   827  		// escape them, so we do so unconditionally.
   828  		// See http://timelessrepo.com/json-isnt-a-javascript-subset for discussion.
   829  		if c == '\u2028' || c == '\u2029' {
   830  			if start < i {
   831  				e.WriteString(s[start:i])
   832  			}
   833  			e.WriteString(`\u202`)
   834  			e.WriteByte(hex[c&0xF])
   835  			i += size
   836  			start = i
   837  			continue
   838  		}
   839  		i += size
   840  	}
   841  	if start < len(s) {
   842  		e.WriteString(s[start:])
   843  	}
   844  	e.WriteByte('"')
   845  	return e.Len() - len0, nil
   846  }
   847  
   848  // NOTE: keep in sync with string above.
   849  func (e *encodeState) stringBytes(s []byte) (int, error) {
   850  	len0 := e.Len()
   851  	e.WriteByte('"')
   852  	start := 0
   853  	for i := 0; i < len(s); {
   854  		if b := s[i]; b < utf8.RuneSelf {
   855  			if 0x20 <= b && b != '\\' && b != '"' && b != '<' && b != '>' && b != '&' {
   856  				i++
   857  				continue
   858  			}
   859  			if start < i {
   860  				e.Write(s[start:i])
   861  			}
   862  			switch b {
   863  			case '\\', '"':
   864  				e.WriteByte('\\')
   865  				e.WriteByte(b)
   866  			case '\n':
   867  				e.WriteByte('\\')
   868  				e.WriteByte('n')
   869  			case '\r':
   870  				e.WriteByte('\\')
   871  				e.WriteByte('r')
   872  			default:
   873  				// This encodes bytes < 0x20 except for \n and \r,
   874  				// as well as < and >. The latter are escaped because they
   875  				// can lead to security holes when user-controlled strings
   876  				// are rendered into JSON and served to some browsers.
   877  				e.WriteString(`\u00`)
   878  				e.WriteByte(hex[b>>4])
   879  				e.WriteByte(hex[b&0xF])
   880  			}
   881  			i++
   882  			start = i
   883  			continue
   884  		}
   885  		c, size := utf8.DecodeRune(s[i:])
   886  		if c == utf8.RuneError && size == 1 {
   887  			if start < i {
   888  				e.Write(s[start:i])
   889  			}
   890  			e.WriteString(`\ufffd`)
   891  			i += size
   892  			start = i
   893  			continue
   894  		}
   895  		// U+2028 is LINE SEPARATOR.
   896  		// U+2029 is PARAGRAPH SEPARATOR.
   897  		// They are both technically valid characters in JSON strings,
   898  		// but don't work in JSONP, which has to be evaluated as JavaScript,
   899  		// and can lead to security holes there. It is valid JSON to
   900  		// escape them, so we do so unconditionally.
   901  		// See http://timelessrepo.com/json-isnt-a-javascript-subset for discussion.
   902  		if c == '\u2028' || c == '\u2029' {
   903  			if start < i {
   904  				e.Write(s[start:i])
   905  			}
   906  			e.WriteString(`\u202`)
   907  			e.WriteByte(hex[c&0xF])
   908  			i += size
   909  			start = i
   910  			continue
   911  		}
   912  		i += size
   913  	}
   914  	if start < len(s) {
   915  		e.Write(s[start:])
   916  	}
   917  	e.WriteByte('"')
   918  	return e.Len() - len0, nil
   919  }
   920  
   921  // A field represents a single field found in a struct.
   922  type field struct {
   923  	name      string
   924  	tag       bool
   925  	index     []int
   926  	typ       reflect.Type
   927  	omitEmpty bool
   928  	quoted    bool
   929  }
   930  
   931  // byName sorts field by name, breaking ties with depth,
   932  // then breaking ties with "name came from json tag", then
   933  // breaking ties with index sequence.
   934  type byName []field
   935  
   936  func (x byName) Len() int { return len(x) }
   937  
   938  func (x byName) Swap(i, j int) { x[i], x[j] = x[j], x[i] }
   939  
   940  func (x byName) Less(i, j int) bool {
   941  	if x[i].name != x[j].name {
   942  		return x[i].name < x[j].name
   943  	}
   944  	if len(x[i].index) != len(x[j].index) {
   945  		return len(x[i].index) < len(x[j].index)
   946  	}
   947  	if x[i].tag != x[j].tag {
   948  		return x[i].tag
   949  	}
   950  	return byIndex(x).Less(i, j)
   951  }
   952  
   953  // byIndex sorts field by index sequence.
   954  type byIndex []field
   955  
   956  func (x byIndex) Len() int { return len(x) }
   957  
   958  func (x byIndex) Swap(i, j int) { x[i], x[j] = x[j], x[i] }
   959  
   960  func (x byIndex) Less(i, j int) bool {
   961  	for k, xik := range x[i].index {
   962  		if k >= len(x[j].index) {
   963  			return false
   964  		}
   965  		if xik != x[j].index[k] {
   966  			return xik < x[j].index[k]
   967  		}
   968  	}
   969  	return len(x[i].index) < len(x[j].index)
   970  }
   971  
   972  // typeFields returns a list of fields that JSON should recognize for the given type.
   973  // The algorithm is breadth-first search over the set of structs to include - the top struct
   974  // and then any reachable anonymous structs.
   975  func typeFields(t reflect.Type) []field {
   976  	// Anonymous fields to explore at the current level and the next.
   977  	current := []field{}
   978  	next := []field{{typ: t}}
   979  
   980  	// Count of queued names for current level and the next.
   981  	count := map[reflect.Type]int{}
   982  	nextCount := map[reflect.Type]int{}
   983  
   984  	// Types already visited at an earlier level.
   985  	visited := map[reflect.Type]bool{}
   986  
   987  	// Fields found.
   988  	var fields []field
   989  
   990  	for len(next) > 0 {
   991  		current, next = next, current[:0]
   992  		count, nextCount = nextCount, map[reflect.Type]int{}
   993  
   994  		for _, f := range current {
   995  			if visited[f.typ] {
   996  				continue
   997  			}
   998  			visited[f.typ] = true
   999  
  1000  			// Scan f.typ for fields to include.
  1001  			for i := 0; i < f.typ.NumField(); i++ {
  1002  				sf := f.typ.Field(i)
  1003  				if sf.PkgPath != "" { // unexported
  1004  					continue
  1005  				}
  1006  				tag := sf.Tag.Get("json")
  1007  				if tag == "-" {
  1008  					continue
  1009  				}
  1010  				name, opts := parseTag(tag)
  1011  				if !isValidTag(name) {
  1012  					name = ""
  1013  				}
  1014  				index := make([]int, len(f.index)+1)
  1015  				copy(index, f.index)
  1016  				index[len(f.index)] = i
  1017  
  1018  				ft := sf.Type
  1019  				if ft.Name() == "" && ft.Kind() == reflect.Ptr {
  1020  					// Follow pointer.
  1021  					ft = ft.Elem()
  1022  				}
  1023  
  1024  				// Record found field and index sequence.
  1025  				if name != "" || !sf.Anonymous || ft.Kind() != reflect.Struct {
  1026  					tagged := name != ""
  1027  					if name == "" {
  1028  						name = sf.Name
  1029  					}
  1030  					fields = append(fields, field{name, tagged, index, ft,
  1031  						opts.Contains("omitempty"), opts.Contains("string")})
  1032  					if count[f.typ] > 1 {
  1033  						// If there were multiple instances, add a second,
  1034  						// so that the annihilation code will see a duplicate.
  1035  						// It only cares about the distinction between 1 or 2,
  1036  						// so don't bother generating any more copies.
  1037  						fields = append(fields, fields[len(fields)-1])
  1038  					}
  1039  					continue
  1040  				}
  1041  
  1042  				// Record new anonymous struct to explore in next round.
  1043  				nextCount[ft]++
  1044  				if nextCount[ft] == 1 {
  1045  					next = append(next, field{name: ft.Name(), index: index, typ: ft})
  1046  				}
  1047  			}
  1048  		}
  1049  	}
  1050  
  1051  	sort.Sort(byName(fields))
  1052  
  1053  	// Delete all fields that are hidden by the Go rules for embedded fields,
  1054  	// except that fields with JSON tags are promoted.
  1055  
  1056  	// The fields are sorted in primary order of name, secondary order
  1057  	// of field index length. Loop over names; for each name, delete
  1058  	// hidden fields by choosing the one dominant field that survives.
  1059  	out := fields[:0]
  1060  	for advance, i := 0, 0; i < len(fields); i += advance {
  1061  		// One iteration per name.
  1062  		// Find the sequence of fields with the name of this first field.
  1063  		fi := fields[i]
  1064  		name := fi.name
  1065  		for advance = 1; i+advance < len(fields); advance++ {
  1066  			fj := fields[i+advance]
  1067  			if fj.name != name {
  1068  				break
  1069  			}
  1070  		}
  1071  		if advance == 1 { // Only one field with this name
  1072  			out = append(out, fi)
  1073  			continue
  1074  		}
  1075  		dominant, ok := dominantField(fields[i : i+advance])
  1076  		if ok {
  1077  			out = append(out, dominant)
  1078  		}
  1079  	}
  1080  
  1081  	fields = out
  1082  	sort.Sort(byIndex(fields))
  1083  
  1084  	return fields
  1085  }
  1086  
  1087  // dominantField looks through the fields, all of which are known to
  1088  // have the same name, to find the single field that dominates the
  1089  // others using Go's embedding rules, modified by the presence of
  1090  // JSON tags. If there are multiple top-level fields, the boolean
  1091  // will be false: This condition is an error in Go and we skip all
  1092  // the fields.
  1093  func dominantField(fields []field) (field, bool) {
  1094  	// The fields are sorted in increasing index-length order. The winner
  1095  	// must therefore be one with the shortest index length. Drop all
  1096  	// longer entries, which is easy: just truncate the slice.
  1097  	length := len(fields[0].index)
  1098  	tagged := -1 // Index of first tagged field.
  1099  	for i, f := range fields {
  1100  		if len(f.index) > length {
  1101  			fields = fields[:i]
  1102  			break
  1103  		}
  1104  		if f.tag {
  1105  			if tagged >= 0 {
  1106  				// Multiple tagged fields at the same level: conflict.
  1107  				// Return no field.
  1108  				return field{}, false
  1109  			}
  1110  			tagged = i
  1111  		}
  1112  	}
  1113  	if tagged >= 0 {
  1114  		return fields[tagged], true
  1115  	}
  1116  	// All remaining fields have the same length. If there's more than one,
  1117  	// we have a conflict (two fields named "X" at the same level) and we
  1118  	// return no field.
  1119  	if len(fields) > 1 {
  1120  		return field{}, false
  1121  	}
  1122  	return fields[0], true
  1123  }
  1124  
  1125  var fieldCache struct {
  1126  	sync.RWMutex
  1127  	m map[reflect.Type][]field
  1128  }
  1129  
  1130  // cachedTypeFields is like typeFields but uses a cache to avoid repeated work.
  1131  func cachedTypeFields(t reflect.Type) []field {
  1132  	fieldCache.RLock()
  1133  	f := fieldCache.m[t]
  1134  	fieldCache.RUnlock()
  1135  	if f != nil {
  1136  		return f
  1137  	}
  1138  
  1139  	// Compute fields without lock.
  1140  	// Might duplicate effort but won't hold other computations back.
  1141  	f = typeFields(t)
  1142  	if f == nil {
  1143  		f = []field{}
  1144  	}
  1145  
  1146  	fieldCache.Lock()
  1147  	if fieldCache.m == nil {
  1148  		fieldCache.m = map[reflect.Type][]field{}
  1149  	}
  1150  	fieldCache.m[t] = f
  1151  	fieldCache.Unlock()
  1152  	return f
  1153  }