github.com/varialus/godfly@v0.0.0-20130904042352-1934f9f095ab/src/pkg/image/png/writer.go (about) 1 // Copyright 2009 The Go Authors. All rights reserved. 2 // Use of this source code is governed by a BSD-style 3 // license that can be found in the LICENSE file. 4 5 package png 6 7 import ( 8 "bufio" 9 "compress/zlib" 10 "hash/crc32" 11 "image" 12 "image/color" 13 "io" 14 "strconv" 15 ) 16 17 type encoder struct { 18 w io.Writer 19 m image.Image 20 cb int 21 err error 22 header [8]byte 23 footer [4]byte 24 tmp [4 * 256]byte 25 } 26 27 // Big-endian. 28 func writeUint32(b []uint8, u uint32) { 29 b[0] = uint8(u >> 24) 30 b[1] = uint8(u >> 16) 31 b[2] = uint8(u >> 8) 32 b[3] = uint8(u >> 0) 33 } 34 35 type opaquer interface { 36 Opaque() bool 37 } 38 39 // Returns whether or not the image is fully opaque. 40 func opaque(m image.Image) bool { 41 if o, ok := m.(opaquer); ok { 42 return o.Opaque() 43 } 44 b := m.Bounds() 45 for y := b.Min.Y; y < b.Max.Y; y++ { 46 for x := b.Min.X; x < b.Max.X; x++ { 47 _, _, _, a := m.At(x, y).RGBA() 48 if a != 0xffff { 49 return false 50 } 51 } 52 } 53 return true 54 } 55 56 // The absolute value of a byte interpreted as a signed int8. 57 func abs8(d uint8) int { 58 if d < 128 { 59 return int(d) 60 } 61 return 256 - int(d) 62 } 63 64 func (e *encoder) writeChunk(b []byte, name string) { 65 if e.err != nil { 66 return 67 } 68 n := uint32(len(b)) 69 if int(n) != len(b) { 70 e.err = UnsupportedError(name + " chunk is too large: " + strconv.Itoa(len(b))) 71 return 72 } 73 writeUint32(e.header[:4], n) 74 e.header[4] = name[0] 75 e.header[5] = name[1] 76 e.header[6] = name[2] 77 e.header[7] = name[3] 78 crc := crc32.NewIEEE() 79 crc.Write(e.header[4:8]) 80 crc.Write(b) 81 writeUint32(e.footer[:4], crc.Sum32()) 82 83 _, e.err = e.w.Write(e.header[:8]) 84 if e.err != nil { 85 return 86 } 87 _, e.err = e.w.Write(b) 88 if e.err != nil { 89 return 90 } 91 _, e.err = e.w.Write(e.footer[:4]) 92 } 93 94 func (e *encoder) writeIHDR() { 95 b := e.m.Bounds() 96 writeUint32(e.tmp[0:4], uint32(b.Dx())) 97 writeUint32(e.tmp[4:8], uint32(b.Dy())) 98 // Set bit depth and color type. 99 switch e.cb { 100 case cbG8: 101 e.tmp[8] = 8 102 e.tmp[9] = ctGrayscale 103 case cbTC8: 104 e.tmp[8] = 8 105 e.tmp[9] = ctTrueColor 106 case cbP8: 107 e.tmp[8] = 8 108 e.tmp[9] = ctPaletted 109 case cbTCA8: 110 e.tmp[8] = 8 111 e.tmp[9] = ctTrueColorAlpha 112 case cbG16: 113 e.tmp[8] = 16 114 e.tmp[9] = ctGrayscale 115 case cbTC16: 116 e.tmp[8] = 16 117 e.tmp[9] = ctTrueColor 118 case cbTCA16: 119 e.tmp[8] = 16 120 e.tmp[9] = ctTrueColorAlpha 121 } 122 e.tmp[10] = 0 // default compression method 123 e.tmp[11] = 0 // default filter method 124 e.tmp[12] = 0 // non-interlaced 125 e.writeChunk(e.tmp[:13], "IHDR") 126 } 127 128 func (e *encoder) writePLTEAndTRNS(p color.Palette) { 129 if len(p) < 1 || len(p) > 256 { 130 e.err = FormatError("bad palette length: " + strconv.Itoa(len(p))) 131 return 132 } 133 last := -1 134 for i, c := range p { 135 c1 := color.NRGBAModel.Convert(c).(color.NRGBA) 136 e.tmp[3*i+0] = c1.R 137 e.tmp[3*i+1] = c1.G 138 e.tmp[3*i+2] = c1.B 139 if c1.A != 0xff { 140 last = i 141 } 142 e.tmp[3*256+i] = c1.A 143 } 144 e.writeChunk(e.tmp[:3*len(p)], "PLTE") 145 if last != -1 { 146 e.writeChunk(e.tmp[3*256:3*256+1+last], "tRNS") 147 } 148 } 149 150 // An encoder is an io.Writer that satisfies writes by writing PNG IDAT chunks, 151 // including an 8-byte header and 4-byte CRC checksum per Write call. Such calls 152 // should be relatively infrequent, since writeIDATs uses a bufio.Writer. 153 // 154 // This method should only be called from writeIDATs (via writeImage). 155 // No other code should treat an encoder as an io.Writer. 156 func (e *encoder) Write(b []byte) (int, error) { 157 e.writeChunk(b, "IDAT") 158 if e.err != nil { 159 return 0, e.err 160 } 161 return len(b), nil 162 } 163 164 // Chooses the filter to use for encoding the current row, and applies it. 165 // The return value is the index of the filter and also of the row in cr that has had it applied. 166 func filter(cr *[nFilter][]byte, pr []byte, bpp int) int { 167 // We try all five filter types, and pick the one that minimizes the sum of absolute differences. 168 // This is the same heuristic that libpng uses, although the filters are attempted in order of 169 // estimated most likely to be minimal (ftUp, ftPaeth, ftNone, ftSub, ftAverage), rather than 170 // in their enumeration order (ftNone, ftSub, ftUp, ftAverage, ftPaeth). 171 cdat0 := cr[0][1:] 172 cdat1 := cr[1][1:] 173 cdat2 := cr[2][1:] 174 cdat3 := cr[3][1:] 175 cdat4 := cr[4][1:] 176 pdat := pr[1:] 177 n := len(cdat0) 178 179 // The up filter. 180 sum := 0 181 for i := 0; i < n; i++ { 182 cdat2[i] = cdat0[i] - pdat[i] 183 sum += abs8(cdat2[i]) 184 } 185 best := sum 186 filter := ftUp 187 188 // The Paeth filter. 189 sum = 0 190 for i := 0; i < bpp; i++ { 191 cdat4[i] = cdat0[i] - paeth(0, pdat[i], 0) 192 sum += abs8(cdat4[i]) 193 } 194 for i := bpp; i < n; i++ { 195 cdat4[i] = cdat0[i] - paeth(cdat0[i-bpp], pdat[i], pdat[i-bpp]) 196 sum += abs8(cdat4[i]) 197 if sum >= best { 198 break 199 } 200 } 201 if sum < best { 202 best = sum 203 filter = ftPaeth 204 } 205 206 // The none filter. 207 sum = 0 208 for i := 0; i < n; i++ { 209 sum += abs8(cdat0[i]) 210 if sum >= best { 211 break 212 } 213 } 214 if sum < best { 215 best = sum 216 filter = ftNone 217 } 218 219 // The sub filter. 220 sum = 0 221 for i := 0; i < bpp; i++ { 222 cdat1[i] = cdat0[i] 223 sum += abs8(cdat1[i]) 224 } 225 for i := bpp; i < n; i++ { 226 cdat1[i] = cdat0[i] - cdat0[i-bpp] 227 sum += abs8(cdat1[i]) 228 if sum >= best { 229 break 230 } 231 } 232 if sum < best { 233 best = sum 234 filter = ftSub 235 } 236 237 // The average filter. 238 sum = 0 239 for i := 0; i < bpp; i++ { 240 cdat3[i] = cdat0[i] - pdat[i]/2 241 sum += abs8(cdat3[i]) 242 } 243 for i := bpp; i < n; i++ { 244 cdat3[i] = cdat0[i] - uint8((int(cdat0[i-bpp])+int(pdat[i]))/2) 245 sum += abs8(cdat3[i]) 246 if sum >= best { 247 break 248 } 249 } 250 if sum < best { 251 best = sum 252 filter = ftAverage 253 } 254 255 return filter 256 } 257 258 func writeImage(w io.Writer, m image.Image, cb int) error { 259 zw := zlib.NewWriter(w) 260 defer zw.Close() 261 262 bpp := 0 // Bytes per pixel. 263 264 switch cb { 265 case cbG8: 266 bpp = 1 267 case cbTC8: 268 bpp = 3 269 case cbP8: 270 bpp = 1 271 case cbTCA8: 272 bpp = 4 273 case cbTC16: 274 bpp = 6 275 case cbTCA16: 276 bpp = 8 277 case cbG16: 278 bpp = 2 279 } 280 // cr[*] and pr are the bytes for the current and previous row. 281 // cr[0] is unfiltered (or equivalently, filtered with the ftNone filter). 282 // cr[ft], for non-zero filter types ft, are buffers for transforming cr[0] under the 283 // other PNG filter types. These buffers are allocated once and re-used for each row. 284 // The +1 is for the per-row filter type, which is at cr[*][0]. 285 b := m.Bounds() 286 var cr [nFilter][]uint8 287 for i := range cr { 288 cr[i] = make([]uint8, 1+bpp*b.Dx()) 289 cr[i][0] = uint8(i) 290 } 291 pr := make([]uint8, 1+bpp*b.Dx()) 292 293 gray, _ := m.(*image.Gray) 294 rgba, _ := m.(*image.RGBA) 295 paletted, _ := m.(*image.Paletted) 296 nrgba, _ := m.(*image.NRGBA) 297 298 for y := b.Min.Y; y < b.Max.Y; y++ { 299 // Convert from colors to bytes. 300 i := 1 301 switch cb { 302 case cbG8: 303 if gray != nil { 304 offset := (y - b.Min.Y) * gray.Stride 305 copy(cr[0][1:], gray.Pix[offset:offset+b.Dx()]) 306 } else { 307 for x := b.Min.X; x < b.Max.X; x++ { 308 c := color.GrayModel.Convert(m.At(x, y)).(color.Gray) 309 cr[0][i] = c.Y 310 i++ 311 } 312 } 313 case cbTC8: 314 // We have previously verified that the alpha value is fully opaque. 315 cr0 := cr[0] 316 stride, pix := 0, []byte(nil) 317 if rgba != nil { 318 stride, pix = rgba.Stride, rgba.Pix 319 } else if nrgba != nil { 320 stride, pix = nrgba.Stride, nrgba.Pix 321 } 322 if stride != 0 { 323 j0 := (y - b.Min.Y) * stride 324 j1 := j0 + b.Dx()*4 325 for j := j0; j < j1; j += 4 { 326 cr0[i+0] = pix[j+0] 327 cr0[i+1] = pix[j+1] 328 cr0[i+2] = pix[j+2] 329 i += 3 330 } 331 } else { 332 for x := b.Min.X; x < b.Max.X; x++ { 333 r, g, b, _ := m.At(x, y).RGBA() 334 cr0[i+0] = uint8(r >> 8) 335 cr0[i+1] = uint8(g >> 8) 336 cr0[i+2] = uint8(b >> 8) 337 i += 3 338 } 339 } 340 case cbP8: 341 if paletted != nil { 342 offset := (y - b.Min.Y) * paletted.Stride 343 copy(cr[0][1:], paletted.Pix[offset:offset+b.Dx()]) 344 } else { 345 pi := m.(image.PalettedImage) 346 for x := b.Min.X; x < b.Max.X; x++ { 347 cr[0][i] = pi.ColorIndexAt(x, y) 348 i += 1 349 } 350 } 351 case cbTCA8: 352 if nrgba != nil { 353 offset := (y - b.Min.Y) * nrgba.Stride 354 copy(cr[0][1:], nrgba.Pix[offset:offset+b.Dx()*4]) 355 } else { 356 // Convert from image.Image (which is alpha-premultiplied) to PNG's non-alpha-premultiplied. 357 for x := b.Min.X; x < b.Max.X; x++ { 358 c := color.NRGBAModel.Convert(m.At(x, y)).(color.NRGBA) 359 cr[0][i+0] = c.R 360 cr[0][i+1] = c.G 361 cr[0][i+2] = c.B 362 cr[0][i+3] = c.A 363 i += 4 364 } 365 } 366 case cbG16: 367 for x := b.Min.X; x < b.Max.X; x++ { 368 c := color.Gray16Model.Convert(m.At(x, y)).(color.Gray16) 369 cr[0][i+0] = uint8(c.Y >> 8) 370 cr[0][i+1] = uint8(c.Y) 371 i += 2 372 } 373 case cbTC16: 374 // We have previously verified that the alpha value is fully opaque. 375 for x := b.Min.X; x < b.Max.X; x++ { 376 r, g, b, _ := m.At(x, y).RGBA() 377 cr[0][i+0] = uint8(r >> 8) 378 cr[0][i+1] = uint8(r) 379 cr[0][i+2] = uint8(g >> 8) 380 cr[0][i+3] = uint8(g) 381 cr[0][i+4] = uint8(b >> 8) 382 cr[0][i+5] = uint8(b) 383 i += 6 384 } 385 case cbTCA16: 386 // Convert from image.Image (which is alpha-premultiplied) to PNG's non-alpha-premultiplied. 387 for x := b.Min.X; x < b.Max.X; x++ { 388 c := color.NRGBA64Model.Convert(m.At(x, y)).(color.NRGBA64) 389 cr[0][i+0] = uint8(c.R >> 8) 390 cr[0][i+1] = uint8(c.R) 391 cr[0][i+2] = uint8(c.G >> 8) 392 cr[0][i+3] = uint8(c.G) 393 cr[0][i+4] = uint8(c.B >> 8) 394 cr[0][i+5] = uint8(c.B) 395 cr[0][i+6] = uint8(c.A >> 8) 396 cr[0][i+7] = uint8(c.A) 397 i += 8 398 } 399 } 400 401 // Apply the filter. 402 f := filter(&cr, pr, bpp) 403 404 // Write the compressed bytes. 405 if _, err := zw.Write(cr[f]); err != nil { 406 return err 407 } 408 409 // The current row for y is the previous row for y+1. 410 pr, cr[0] = cr[0], pr 411 } 412 return nil 413 } 414 415 // Write the actual image data to one or more IDAT chunks. 416 func (e *encoder) writeIDATs() { 417 if e.err != nil { 418 return 419 } 420 var bw *bufio.Writer 421 bw = bufio.NewWriterSize(e, 1<<15) 422 e.err = writeImage(bw, e.m, e.cb) 423 if e.err != nil { 424 return 425 } 426 e.err = bw.Flush() 427 } 428 429 func (e *encoder) writeIEND() { e.writeChunk(nil, "IEND") } 430 431 // Encode writes the Image m to w in PNG format. Any Image may be encoded, but 432 // images that are not image.NRGBA might be encoded lossily. 433 func Encode(w io.Writer, m image.Image) error { 434 // Obviously, negative widths and heights are invalid. Furthermore, the PNG 435 // spec section 11.2.2 says that zero is invalid. Excessively large images are 436 // also rejected. 437 mw, mh := int64(m.Bounds().Dx()), int64(m.Bounds().Dy()) 438 if mw <= 0 || mh <= 0 || mw >= 1<<32 || mh >= 1<<32 { 439 return FormatError("invalid image size: " + strconv.FormatInt(mw, 10) + "x" + strconv.FormatInt(mh, 10)) 440 } 441 442 var e encoder 443 e.w = w 444 e.m = m 445 446 var pal color.Palette 447 // cbP8 encoding needs PalettedImage's ColorIndexAt method. 448 if _, ok := m.(image.PalettedImage); ok { 449 pal, _ = m.ColorModel().(color.Palette) 450 } 451 if pal != nil { 452 e.cb = cbP8 453 } else { 454 switch m.ColorModel() { 455 case color.GrayModel: 456 e.cb = cbG8 457 case color.Gray16Model: 458 e.cb = cbG16 459 case color.RGBAModel, color.NRGBAModel, color.AlphaModel: 460 if opaque(m) { 461 e.cb = cbTC8 462 } else { 463 e.cb = cbTCA8 464 } 465 default: 466 if opaque(m) { 467 e.cb = cbTC16 468 } else { 469 e.cb = cbTCA16 470 } 471 } 472 } 473 474 _, e.err = io.WriteString(w, pngHeader) 475 e.writeIHDR() 476 if pal != nil { 477 e.writePLTEAndTRNS(pal) 478 } 479 e.writeIDATs() 480 e.writeIEND() 481 return e.err 482 }