github.com/varialus/godfly@v0.0.0-20130904042352-1934f9f095ab/src/pkg/math/big/arith.go (about)

     1  // Copyright 2009 The Go Authors. All rights reserved.
     2  // Use of this source code is governed by a BSD-style
     3  // license that can be found in the LICENSE file.
     4  
     5  // This file provides Go implementations of elementary multi-precision
     6  // arithmetic operations on word vectors. Needed for platforms without
     7  // assembly implementations of these routines.
     8  
     9  package big
    10  
    11  // A Word represents a single digit of a multi-precision unsigned integer.
    12  type Word uintptr
    13  
    14  const (
    15  	// Compute the size _S of a Word in bytes.
    16  	_m    = ^Word(0)
    17  	_logS = _m>>8&1 + _m>>16&1 + _m>>32&1
    18  	_S    = 1 << _logS
    19  
    20  	_W = _S << 3 // word size in bits
    21  	_B = 1 << _W // digit base
    22  	_M = _B - 1  // digit mask
    23  
    24  	_W2 = _W / 2   // half word size in bits
    25  	_B2 = 1 << _W2 // half digit base
    26  	_M2 = _B2 - 1  // half digit mask
    27  )
    28  
    29  // ----------------------------------------------------------------------------
    30  // Elementary operations on words
    31  //
    32  // These operations are used by the vector operations below.
    33  
    34  // z1<<_W + z0 = x+y+c, with c == 0 or 1
    35  func addWW_g(x, y, c Word) (z1, z0 Word) {
    36  	yc := y + c
    37  	z0 = x + yc
    38  	if z0 < x || yc < y {
    39  		z1 = 1
    40  	}
    41  	return
    42  }
    43  
    44  // z1<<_W + z0 = x-y-c, with c == 0 or 1
    45  func subWW_g(x, y, c Word) (z1, z0 Word) {
    46  	yc := y + c
    47  	z0 = x - yc
    48  	if z0 > x || yc < y {
    49  		z1 = 1
    50  	}
    51  	return
    52  }
    53  
    54  // z1<<_W + z0 = x*y
    55  // Adapted from Warren, Hacker's Delight, p. 132.
    56  func mulWW_g(x, y Word) (z1, z0 Word) {
    57  	x0 := x & _M2
    58  	x1 := x >> _W2
    59  	y0 := y & _M2
    60  	y1 := y >> _W2
    61  	w0 := x0 * y0
    62  	t := x1*y0 + w0>>_W2
    63  	w1 := t & _M2
    64  	w2 := t >> _W2
    65  	w1 += x0 * y1
    66  	z1 = x1*y1 + w2 + w1>>_W2
    67  	z0 = x * y
    68  	return
    69  }
    70  
    71  // z1<<_W + z0 = x*y + c
    72  func mulAddWWW_g(x, y, c Word) (z1, z0 Word) {
    73  	z1, zz0 := mulWW(x, y)
    74  	if z0 = zz0 + c; z0 < zz0 {
    75  		z1++
    76  	}
    77  	return
    78  }
    79  
    80  // Length of x in bits.
    81  func bitLen_g(x Word) (n int) {
    82  	for ; x >= 0x8000; x >>= 16 {
    83  		n += 16
    84  	}
    85  	if x >= 0x80 {
    86  		x >>= 8
    87  		n += 8
    88  	}
    89  	if x >= 0x8 {
    90  		x >>= 4
    91  		n += 4
    92  	}
    93  	if x >= 0x2 {
    94  		x >>= 2
    95  		n += 2
    96  	}
    97  	if x >= 0x1 {
    98  		n++
    99  	}
   100  	return
   101  }
   102  
   103  // log2 computes the integer binary logarithm of x.
   104  // The result is the integer n for which 2^n <= x < 2^(n+1).
   105  // If x == 0, the result is -1.
   106  func log2(x Word) int {
   107  	return bitLen(x) - 1
   108  }
   109  
   110  // Number of leading zeros in x.
   111  func leadingZeros(x Word) uint {
   112  	return uint(_W - bitLen(x))
   113  }
   114  
   115  // q = (u1<<_W + u0 - r)/y
   116  // Adapted from Warren, Hacker's Delight, p. 152.
   117  func divWW_g(u1, u0, v Word) (q, r Word) {
   118  	if u1 >= v {
   119  		return 1<<_W - 1, 1<<_W - 1
   120  	}
   121  
   122  	s := leadingZeros(v)
   123  	v <<= s
   124  
   125  	vn1 := v >> _W2
   126  	vn0 := v & _M2
   127  	un32 := u1<<s | u0>>(_W-s)
   128  	un10 := u0 << s
   129  	un1 := un10 >> _W2
   130  	un0 := un10 & _M2
   131  	q1 := un32 / vn1
   132  	rhat := un32 - q1*vn1
   133  
   134  again1:
   135  	if q1 >= _B2 || q1*vn0 > _B2*rhat+un1 {
   136  		q1--
   137  		rhat += vn1
   138  		if rhat < _B2 {
   139  			goto again1
   140  		}
   141  	}
   142  
   143  	un21 := un32*_B2 + un1 - q1*v
   144  	q0 := un21 / vn1
   145  	rhat = un21 - q0*vn1
   146  
   147  again2:
   148  	if q0 >= _B2 || q0*vn0 > _B2*rhat+un0 {
   149  		q0--
   150  		rhat += vn1
   151  		if rhat < _B2 {
   152  			goto again2
   153  		}
   154  	}
   155  
   156  	return q1*_B2 + q0, (un21*_B2 + un0 - q0*v) >> s
   157  }
   158  
   159  func addVV_g(z, x, y []Word) (c Word) {
   160  	for i := range z {
   161  		c, z[i] = addWW_g(x[i], y[i], c)
   162  	}
   163  	return
   164  }
   165  
   166  func subVV_g(z, x, y []Word) (c Word) {
   167  	for i := range z {
   168  		c, z[i] = subWW_g(x[i], y[i], c)
   169  	}
   170  	return
   171  }
   172  
   173  func addVW_g(z, x []Word, y Word) (c Word) {
   174  	c = y
   175  	for i := range z {
   176  		c, z[i] = addWW_g(x[i], c, 0)
   177  	}
   178  	return
   179  }
   180  
   181  func subVW_g(z, x []Word, y Word) (c Word) {
   182  	c = y
   183  	for i := range z {
   184  		c, z[i] = subWW_g(x[i], c, 0)
   185  	}
   186  	return
   187  }
   188  
   189  func shlVU_g(z, x []Word, s uint) (c Word) {
   190  	if n := len(z); n > 0 {
   191  		ŝ := _W - s
   192  		w1 := x[n-1]
   193  		c = w1 >> ŝ
   194  		for i := n - 1; i > 0; i-- {
   195  			w := w1
   196  			w1 = x[i-1]
   197  			z[i] = w<<s | w1>>ŝ
   198  		}
   199  		z[0] = w1 << s
   200  	}
   201  	return
   202  }
   203  
   204  func shrVU_g(z, x []Word, s uint) (c Word) {
   205  	if n := len(z); n > 0 {
   206  		ŝ := _W - s
   207  		w1 := x[0]
   208  		c = w1 << ŝ
   209  		for i := 0; i < n-1; i++ {
   210  			w := w1
   211  			w1 = x[i+1]
   212  			z[i] = w>>s | w1<<ŝ
   213  		}
   214  		z[n-1] = w1 >> s
   215  	}
   216  	return
   217  }
   218  
   219  func mulAddVWW_g(z, x []Word, y, r Word) (c Word) {
   220  	c = r
   221  	for i := range z {
   222  		c, z[i] = mulAddWWW_g(x[i], y, c)
   223  	}
   224  	return
   225  }
   226  
   227  func addMulVVW_g(z, x []Word, y Word) (c Word) {
   228  	for i := range z {
   229  		z1, z0 := mulAddWWW_g(x[i], y, z[i])
   230  		c, z[i] = addWW_g(z0, c, 0)
   231  		c += z1
   232  	}
   233  	return
   234  }
   235  
   236  func divWVW_g(z []Word, xn Word, x []Word, y Word) (r Word) {
   237  	r = xn
   238  	for i := len(z) - 1; i >= 0; i-- {
   239  		z[i], r = divWW_g(r, x[i], y)
   240  	}
   241  	return
   242  }