github.com/varialus/godfly@v0.0.0-20130904042352-1934f9f095ab/src/pkg/math/big/int.go (about)

     1  // Copyright 2009 The Go Authors. All rights reserved.
     2  // Use of this source code is governed by a BSD-style
     3  // license that can be found in the LICENSE file.
     4  
     5  // This file implements signed multi-precision integers.
     6  
     7  package big
     8  
     9  import (
    10  	"errors"
    11  	"fmt"
    12  	"io"
    13  	"math/rand"
    14  	"strings"
    15  )
    16  
    17  // An Int represents a signed multi-precision integer.
    18  // The zero value for an Int represents the value 0.
    19  type Int struct {
    20  	neg bool // sign
    21  	abs nat  // absolute value of the integer
    22  }
    23  
    24  var intOne = &Int{false, natOne}
    25  
    26  // Sign returns:
    27  //
    28  //	-1 if x <  0
    29  //	 0 if x == 0
    30  //	+1 if x >  0
    31  //
    32  func (x *Int) Sign() int {
    33  	if len(x.abs) == 0 {
    34  		return 0
    35  	}
    36  	if x.neg {
    37  		return -1
    38  	}
    39  	return 1
    40  }
    41  
    42  // SetInt64 sets z to x and returns z.
    43  func (z *Int) SetInt64(x int64) *Int {
    44  	neg := false
    45  	if x < 0 {
    46  		neg = true
    47  		x = -x
    48  	}
    49  	z.abs = z.abs.setUint64(uint64(x))
    50  	z.neg = neg
    51  	return z
    52  }
    53  
    54  // SetUint64 sets z to x and returns z.
    55  func (z *Int) SetUint64(x uint64) *Int {
    56  	z.abs = z.abs.setUint64(x)
    57  	z.neg = false
    58  	return z
    59  }
    60  
    61  // NewInt allocates and returns a new Int set to x.
    62  func NewInt(x int64) *Int {
    63  	return new(Int).SetInt64(x)
    64  }
    65  
    66  // Set sets z to x and returns z.
    67  func (z *Int) Set(x *Int) *Int {
    68  	if z != x {
    69  		z.abs = z.abs.set(x.abs)
    70  		z.neg = x.neg
    71  	}
    72  	return z
    73  }
    74  
    75  // Bits provides raw (unchecked but fast) access to x by returning its
    76  // absolute value as a little-endian Word slice. The result and x share
    77  // the same underlying array.
    78  // Bits is intended to support implementation of missing low-level Int
    79  // functionality outside this package; it should be avoided otherwise.
    80  func (x *Int) Bits() []Word {
    81  	return x.abs
    82  }
    83  
    84  // SetBits provides raw (unchecked but fast) access to z by setting its
    85  // value to abs, interpreted as a little-endian Word slice, and returning
    86  // z. The result and abs share the same underlying array.
    87  // SetBits is intended to support implementation of missing low-level Int
    88  // functionality outside this package; it should be avoided otherwise.
    89  func (z *Int) SetBits(abs []Word) *Int {
    90  	z.abs = nat(abs).norm()
    91  	z.neg = false
    92  	return z
    93  }
    94  
    95  // Abs sets z to |x| (the absolute value of x) and returns z.
    96  func (z *Int) Abs(x *Int) *Int {
    97  	z.Set(x)
    98  	z.neg = false
    99  	return z
   100  }
   101  
   102  // Neg sets z to -x and returns z.
   103  func (z *Int) Neg(x *Int) *Int {
   104  	z.Set(x)
   105  	z.neg = len(z.abs) > 0 && !z.neg // 0 has no sign
   106  	return z
   107  }
   108  
   109  // Add sets z to the sum x+y and returns z.
   110  func (z *Int) Add(x, y *Int) *Int {
   111  	neg := x.neg
   112  	if x.neg == y.neg {
   113  		// x + y == x + y
   114  		// (-x) + (-y) == -(x + y)
   115  		z.abs = z.abs.add(x.abs, y.abs)
   116  	} else {
   117  		// x + (-y) == x - y == -(y - x)
   118  		// (-x) + y == y - x == -(x - y)
   119  		if x.abs.cmp(y.abs) >= 0 {
   120  			z.abs = z.abs.sub(x.abs, y.abs)
   121  		} else {
   122  			neg = !neg
   123  			z.abs = z.abs.sub(y.abs, x.abs)
   124  		}
   125  	}
   126  	z.neg = len(z.abs) > 0 && neg // 0 has no sign
   127  	return z
   128  }
   129  
   130  // Sub sets z to the difference x-y and returns z.
   131  func (z *Int) Sub(x, y *Int) *Int {
   132  	neg := x.neg
   133  	if x.neg != y.neg {
   134  		// x - (-y) == x + y
   135  		// (-x) - y == -(x + y)
   136  		z.abs = z.abs.add(x.abs, y.abs)
   137  	} else {
   138  		// x - y == x - y == -(y - x)
   139  		// (-x) - (-y) == y - x == -(x - y)
   140  		if x.abs.cmp(y.abs) >= 0 {
   141  			z.abs = z.abs.sub(x.abs, y.abs)
   142  		} else {
   143  			neg = !neg
   144  			z.abs = z.abs.sub(y.abs, x.abs)
   145  		}
   146  	}
   147  	z.neg = len(z.abs) > 0 && neg // 0 has no sign
   148  	return z
   149  }
   150  
   151  // Mul sets z to the product x*y and returns z.
   152  func (z *Int) Mul(x, y *Int) *Int {
   153  	// x * y == x * y
   154  	// x * (-y) == -(x * y)
   155  	// (-x) * y == -(x * y)
   156  	// (-x) * (-y) == x * y
   157  	z.abs = z.abs.mul(x.abs, y.abs)
   158  	z.neg = len(z.abs) > 0 && x.neg != y.neg // 0 has no sign
   159  	return z
   160  }
   161  
   162  // MulRange sets z to the product of all integers
   163  // in the range [a, b] inclusively and returns z.
   164  // If a > b (empty range), the result is 1.
   165  func (z *Int) MulRange(a, b int64) *Int {
   166  	switch {
   167  	case a > b:
   168  		return z.SetInt64(1) // empty range
   169  	case a <= 0 && b >= 0:
   170  		return z.SetInt64(0) // range includes 0
   171  	}
   172  	// a <= b && (b < 0 || a > 0)
   173  
   174  	neg := false
   175  	if a < 0 {
   176  		neg = (b-a)&1 == 0
   177  		a, b = -b, -a
   178  	}
   179  
   180  	z.abs = z.abs.mulRange(uint64(a), uint64(b))
   181  	z.neg = neg
   182  	return z
   183  }
   184  
   185  // Binomial sets z to the binomial coefficient of (n, k) and returns z.
   186  func (z *Int) Binomial(n, k int64) *Int {
   187  	var a, b Int
   188  	a.MulRange(n-k+1, n)
   189  	b.MulRange(1, k)
   190  	return z.Quo(&a, &b)
   191  }
   192  
   193  // Quo sets z to the quotient x/y for y != 0 and returns z.
   194  // If y == 0, a division-by-zero run-time panic occurs.
   195  // Quo implements truncated division (like Go); see QuoRem for more details.
   196  func (z *Int) Quo(x, y *Int) *Int {
   197  	z.abs, _ = z.abs.div(nil, x.abs, y.abs)
   198  	z.neg = len(z.abs) > 0 && x.neg != y.neg // 0 has no sign
   199  	return z
   200  }
   201  
   202  // Rem sets z to the remainder x%y for y != 0 and returns z.
   203  // If y == 0, a division-by-zero run-time panic occurs.
   204  // Rem implements truncated modulus (like Go); see QuoRem for more details.
   205  func (z *Int) Rem(x, y *Int) *Int {
   206  	_, z.abs = nat(nil).div(z.abs, x.abs, y.abs)
   207  	z.neg = len(z.abs) > 0 && x.neg // 0 has no sign
   208  	return z
   209  }
   210  
   211  // QuoRem sets z to the quotient x/y and r to the remainder x%y
   212  // and returns the pair (z, r) for y != 0.
   213  // If y == 0, a division-by-zero run-time panic occurs.
   214  //
   215  // QuoRem implements T-division and modulus (like Go):
   216  //
   217  //	q = x/y      with the result truncated to zero
   218  //	r = x - y*q
   219  //
   220  // (See Daan Leijen, ``Division and Modulus for Computer Scientists''.)
   221  // See DivMod for Euclidean division and modulus (unlike Go).
   222  //
   223  func (z *Int) QuoRem(x, y, r *Int) (*Int, *Int) {
   224  	z.abs, r.abs = z.abs.div(r.abs, x.abs, y.abs)
   225  	z.neg, r.neg = len(z.abs) > 0 && x.neg != y.neg, len(r.abs) > 0 && x.neg // 0 has no sign
   226  	return z, r
   227  }
   228  
   229  // Div sets z to the quotient x/y for y != 0 and returns z.
   230  // If y == 0, a division-by-zero run-time panic occurs.
   231  // Div implements Euclidean division (unlike Go); see DivMod for more details.
   232  func (z *Int) Div(x, y *Int) *Int {
   233  	y_neg := y.neg // z may be an alias for y
   234  	var r Int
   235  	z.QuoRem(x, y, &r)
   236  	if r.neg {
   237  		if y_neg {
   238  			z.Add(z, intOne)
   239  		} else {
   240  			z.Sub(z, intOne)
   241  		}
   242  	}
   243  	return z
   244  }
   245  
   246  // Mod sets z to the modulus x%y for y != 0 and returns z.
   247  // If y == 0, a division-by-zero run-time panic occurs.
   248  // Mod implements Euclidean modulus (unlike Go); see DivMod for more details.
   249  func (z *Int) Mod(x, y *Int) *Int {
   250  	y0 := y // save y
   251  	if z == y || alias(z.abs, y.abs) {
   252  		y0 = new(Int).Set(y)
   253  	}
   254  	var q Int
   255  	q.QuoRem(x, y, z)
   256  	if z.neg {
   257  		if y0.neg {
   258  			z.Sub(z, y0)
   259  		} else {
   260  			z.Add(z, y0)
   261  		}
   262  	}
   263  	return z
   264  }
   265  
   266  // DivMod sets z to the quotient x div y and m to the modulus x mod y
   267  // and returns the pair (z, m) for y != 0.
   268  // If y == 0, a division-by-zero run-time panic occurs.
   269  //
   270  // DivMod implements Euclidean division and modulus (unlike Go):
   271  //
   272  //	q = x div y  such that
   273  //	m = x - y*q  with 0 <= m < |q|
   274  //
   275  // (See Raymond T. Boute, ``The Euclidean definition of the functions
   276  // div and mod''. ACM Transactions on Programming Languages and
   277  // Systems (TOPLAS), 14(2):127-144, New York, NY, USA, 4/1992.
   278  // ACM press.)
   279  // See QuoRem for T-division and modulus (like Go).
   280  //
   281  func (z *Int) DivMod(x, y, m *Int) (*Int, *Int) {
   282  	y0 := y // save y
   283  	if z == y || alias(z.abs, y.abs) {
   284  		y0 = new(Int).Set(y)
   285  	}
   286  	z.QuoRem(x, y, m)
   287  	if m.neg {
   288  		if y0.neg {
   289  			z.Add(z, intOne)
   290  			m.Sub(m, y0)
   291  		} else {
   292  			z.Sub(z, intOne)
   293  			m.Add(m, y0)
   294  		}
   295  	}
   296  	return z, m
   297  }
   298  
   299  // Cmp compares x and y and returns:
   300  //
   301  //   -1 if x <  y
   302  //    0 if x == y
   303  //   +1 if x >  y
   304  //
   305  func (x *Int) Cmp(y *Int) (r int) {
   306  	// x cmp y == x cmp y
   307  	// x cmp (-y) == x
   308  	// (-x) cmp y == y
   309  	// (-x) cmp (-y) == -(x cmp y)
   310  	switch {
   311  	case x.neg == y.neg:
   312  		r = x.abs.cmp(y.abs)
   313  		if x.neg {
   314  			r = -r
   315  		}
   316  	case x.neg:
   317  		r = -1
   318  	default:
   319  		r = 1
   320  	}
   321  	return
   322  }
   323  
   324  func (x *Int) String() string {
   325  	switch {
   326  	case x == nil:
   327  		return "<nil>"
   328  	case x.neg:
   329  		return "-" + x.abs.decimalString()
   330  	}
   331  	return x.abs.decimalString()
   332  }
   333  
   334  func charset(ch rune) string {
   335  	switch ch {
   336  	case 'b':
   337  		return lowercaseDigits[0:2]
   338  	case 'o':
   339  		return lowercaseDigits[0:8]
   340  	case 'd', 's', 'v':
   341  		return lowercaseDigits[0:10]
   342  	case 'x':
   343  		return lowercaseDigits[0:16]
   344  	case 'X':
   345  		return uppercaseDigits[0:16]
   346  	}
   347  	return "" // unknown format
   348  }
   349  
   350  // write count copies of text to s
   351  func writeMultiple(s fmt.State, text string, count int) {
   352  	if len(text) > 0 {
   353  		b := []byte(text)
   354  		for ; count > 0; count-- {
   355  			s.Write(b)
   356  		}
   357  	}
   358  }
   359  
   360  // Format is a support routine for fmt.Formatter. It accepts
   361  // the formats 'b' (binary), 'o' (octal), 'd' (decimal), 'x'
   362  // (lowercase hexadecimal), and 'X' (uppercase hexadecimal).
   363  // Also supported are the full suite of package fmt's format
   364  // verbs for integral types, including '+', '-', and ' '
   365  // for sign control, '#' for leading zero in octal and for
   366  // hexadecimal, a leading "0x" or "0X" for "%#x" and "%#X"
   367  // respectively, specification of minimum digits precision,
   368  // output field width, space or zero padding, and left or
   369  // right justification.
   370  //
   371  func (x *Int) Format(s fmt.State, ch rune) {
   372  	cs := charset(ch)
   373  
   374  	// special cases
   375  	switch {
   376  	case cs == "":
   377  		// unknown format
   378  		fmt.Fprintf(s, "%%!%c(big.Int=%s)", ch, x.String())
   379  		return
   380  	case x == nil:
   381  		fmt.Fprint(s, "<nil>")
   382  		return
   383  	}
   384  
   385  	// determine sign character
   386  	sign := ""
   387  	switch {
   388  	case x.neg:
   389  		sign = "-"
   390  	case s.Flag('+'): // supersedes ' ' when both specified
   391  		sign = "+"
   392  	case s.Flag(' '):
   393  		sign = " "
   394  	}
   395  
   396  	// determine prefix characters for indicating output base
   397  	prefix := ""
   398  	if s.Flag('#') {
   399  		switch ch {
   400  		case 'o': // octal
   401  			prefix = "0"
   402  		case 'x': // hexadecimal
   403  			prefix = "0x"
   404  		case 'X':
   405  			prefix = "0X"
   406  		}
   407  	}
   408  
   409  	// determine digits with base set by len(cs) and digit characters from cs
   410  	digits := x.abs.string(cs)
   411  
   412  	// number of characters for the three classes of number padding
   413  	var left int   // space characters to left of digits for right justification ("%8d")
   414  	var zeroes int // zero characters (actually cs[0]) as left-most digits ("%.8d")
   415  	var right int  // space characters to right of digits for left justification ("%-8d")
   416  
   417  	// determine number padding from precision: the least number of digits to output
   418  	precision, precisionSet := s.Precision()
   419  	if precisionSet {
   420  		switch {
   421  		case len(digits) < precision:
   422  			zeroes = precision - len(digits) // count of zero padding
   423  		case digits == "0" && precision == 0:
   424  			return // print nothing if zero value (x == 0) and zero precision ("." or ".0")
   425  		}
   426  	}
   427  
   428  	// determine field pad from width: the least number of characters to output
   429  	length := len(sign) + len(prefix) + zeroes + len(digits)
   430  	if width, widthSet := s.Width(); widthSet && length < width { // pad as specified
   431  		switch d := width - length; {
   432  		case s.Flag('-'):
   433  			// pad on the right with spaces; supersedes '0' when both specified
   434  			right = d
   435  		case s.Flag('0') && !precisionSet:
   436  			// pad with zeroes unless precision also specified
   437  			zeroes = d
   438  		default:
   439  			// pad on the left with spaces
   440  			left = d
   441  		}
   442  	}
   443  
   444  	// print number as [left pad][sign][prefix][zero pad][digits][right pad]
   445  	writeMultiple(s, " ", left)
   446  	writeMultiple(s, sign, 1)
   447  	writeMultiple(s, prefix, 1)
   448  	writeMultiple(s, "0", zeroes)
   449  	writeMultiple(s, digits, 1)
   450  	writeMultiple(s, " ", right)
   451  }
   452  
   453  // scan sets z to the integer value corresponding to the longest possible prefix
   454  // read from r representing a signed integer number in a given conversion base.
   455  // It returns z, the actual conversion base used, and an error, if any. In the
   456  // error case, the value of z is undefined but the returned value is nil. The
   457  // syntax follows the syntax of integer literals in Go.
   458  //
   459  // The base argument must be 0 or a value from 2 through MaxBase. If the base
   460  // is 0, the string prefix determines the actual conversion base. A prefix of
   461  // ``0x'' or ``0X'' selects base 16; the ``0'' prefix selects base 8, and a
   462  // ``0b'' or ``0B'' prefix selects base 2. Otherwise the selected base is 10.
   463  //
   464  func (z *Int) scan(r io.RuneScanner, base int) (*Int, int, error) {
   465  	// determine sign
   466  	ch, _, err := r.ReadRune()
   467  	if err != nil {
   468  		return nil, 0, err
   469  	}
   470  	neg := false
   471  	switch ch {
   472  	case '-':
   473  		neg = true
   474  	case '+': // nothing to do
   475  	default:
   476  		r.UnreadRune()
   477  	}
   478  
   479  	// determine mantissa
   480  	z.abs, base, err = z.abs.scan(r, base)
   481  	if err != nil {
   482  		return nil, base, err
   483  	}
   484  	z.neg = len(z.abs) > 0 && neg // 0 has no sign
   485  
   486  	return z, base, nil
   487  }
   488  
   489  // Scan is a support routine for fmt.Scanner; it sets z to the value of
   490  // the scanned number. It accepts the formats 'b' (binary), 'o' (octal),
   491  // 'd' (decimal), 'x' (lowercase hexadecimal), and 'X' (uppercase hexadecimal).
   492  func (z *Int) Scan(s fmt.ScanState, ch rune) error {
   493  	s.SkipSpace() // skip leading space characters
   494  	base := 0
   495  	switch ch {
   496  	case 'b':
   497  		base = 2
   498  	case 'o':
   499  		base = 8
   500  	case 'd':
   501  		base = 10
   502  	case 'x', 'X':
   503  		base = 16
   504  	case 's', 'v':
   505  		// let scan determine the base
   506  	default:
   507  		return errors.New("Int.Scan: invalid verb")
   508  	}
   509  	_, _, err := z.scan(s, base)
   510  	return err
   511  }
   512  
   513  // Int64 returns the int64 representation of x.
   514  // If x cannot be represented in an int64, the result is undefined.
   515  func (x *Int) Int64() int64 {
   516  	v := int64(x.Uint64())
   517  	if x.neg {
   518  		v = -v
   519  	}
   520  	return v
   521  }
   522  
   523  // Uint64 returns the uint64 representation of x.
   524  // If x cannot be represented in a uint64, the result is undefined.
   525  func (x *Int) Uint64() uint64 {
   526  	if len(x.abs) == 0 {
   527  		return 0
   528  	}
   529  	v := uint64(x.abs[0])
   530  	if _W == 32 && len(x.abs) > 1 {
   531  		v |= uint64(x.abs[1]) << 32
   532  	}
   533  	return v
   534  }
   535  
   536  // SetString sets z to the value of s, interpreted in the given base,
   537  // and returns z and a boolean indicating success. If SetString fails,
   538  // the value of z is undefined but the returned value is nil.
   539  //
   540  // The base argument must be 0 or a value from 2 through MaxBase. If the base
   541  // is 0, the string prefix determines the actual conversion base. A prefix of
   542  // ``0x'' or ``0X'' selects base 16; the ``0'' prefix selects base 8, and a
   543  // ``0b'' or ``0B'' prefix selects base 2. Otherwise the selected base is 10.
   544  //
   545  func (z *Int) SetString(s string, base int) (*Int, bool) {
   546  	r := strings.NewReader(s)
   547  	_, _, err := z.scan(r, base)
   548  	if err != nil {
   549  		return nil, false
   550  	}
   551  	_, _, err = r.ReadRune()
   552  	if err != io.EOF {
   553  		return nil, false
   554  	}
   555  	return z, true // err == io.EOF => scan consumed all of s
   556  }
   557  
   558  // SetBytes interprets buf as the bytes of a big-endian unsigned
   559  // integer, sets z to that value, and returns z.
   560  func (z *Int) SetBytes(buf []byte) *Int {
   561  	z.abs = z.abs.setBytes(buf)
   562  	z.neg = false
   563  	return z
   564  }
   565  
   566  // Bytes returns the absolute value of z as a big-endian byte slice.
   567  func (x *Int) Bytes() []byte {
   568  	buf := make([]byte, len(x.abs)*_S)
   569  	return buf[x.abs.bytes(buf):]
   570  }
   571  
   572  // BitLen returns the length of the absolute value of z in bits.
   573  // The bit length of 0 is 0.
   574  func (x *Int) BitLen() int {
   575  	return x.abs.bitLen()
   576  }
   577  
   578  // Exp sets z = x**y mod |m| (i.e. the sign of m is ignored), and returns z.
   579  // If y <= 0, the result is 1; if m == nil or m == 0, z = x**y.
   580  // See Knuth, volume 2, section 4.6.3.
   581  func (z *Int) Exp(x, y, m *Int) *Int {
   582  	if y.neg || len(y.abs) == 0 {
   583  		return z.SetInt64(1)
   584  	}
   585  	// y > 0
   586  
   587  	var mWords nat
   588  	if m != nil {
   589  		mWords = m.abs // m.abs may be nil for m == 0
   590  	}
   591  
   592  	z.abs = z.abs.expNN(x.abs, y.abs, mWords)
   593  	z.neg = len(z.abs) > 0 && x.neg && y.abs[0]&1 == 1 // 0 has no sign
   594  	return z
   595  }
   596  
   597  // GCD sets z to the greatest common divisor of a and b, which both must
   598  // be > 0, and returns z.
   599  // If x and y are not nil, GCD sets x and y such that z = a*x + b*y.
   600  // If either a or b is <= 0, GCD sets z = x = y = 0.
   601  func (z *Int) GCD(x, y, a, b *Int) *Int {
   602  	if a.Sign() <= 0 || b.Sign() <= 0 {
   603  		z.SetInt64(0)
   604  		if x != nil {
   605  			x.SetInt64(0)
   606  		}
   607  		if y != nil {
   608  			y.SetInt64(0)
   609  		}
   610  		return z
   611  	}
   612  	if x == nil && y == nil {
   613  		return z.binaryGCD(a, b)
   614  	}
   615  
   616  	A := new(Int).Set(a)
   617  	B := new(Int).Set(b)
   618  
   619  	X := new(Int)
   620  	Y := new(Int).SetInt64(1)
   621  
   622  	lastX := new(Int).SetInt64(1)
   623  	lastY := new(Int)
   624  
   625  	q := new(Int)
   626  	temp := new(Int)
   627  
   628  	for len(B.abs) > 0 {
   629  		r := new(Int)
   630  		q, r = q.QuoRem(A, B, r)
   631  
   632  		A, B = B, r
   633  
   634  		temp.Set(X)
   635  		X.Mul(X, q)
   636  		X.neg = !X.neg
   637  		X.Add(X, lastX)
   638  		lastX.Set(temp)
   639  
   640  		temp.Set(Y)
   641  		Y.Mul(Y, q)
   642  		Y.neg = !Y.neg
   643  		Y.Add(Y, lastY)
   644  		lastY.Set(temp)
   645  	}
   646  
   647  	if x != nil {
   648  		*x = *lastX
   649  	}
   650  
   651  	if y != nil {
   652  		*y = *lastY
   653  	}
   654  
   655  	*z = *A
   656  	return z
   657  }
   658  
   659  // binaryGCD sets z to the greatest common divisor of a and b, which both must
   660  // be > 0, and returns z.
   661  // See Knuth, The Art of Computer Programming, Vol. 2, Section 4.5.2, Algorithm B.
   662  func (z *Int) binaryGCD(a, b *Int) *Int {
   663  	u := z
   664  	v := new(Int)
   665  
   666  	// use one Euclidean iteration to ensure that u and v are approx. the same size
   667  	switch {
   668  	case len(a.abs) > len(b.abs):
   669  		u.Set(b)
   670  		v.Rem(a, b)
   671  	case len(a.abs) < len(b.abs):
   672  		u.Set(a)
   673  		v.Rem(b, a)
   674  	default:
   675  		u.Set(a)
   676  		v.Set(b)
   677  	}
   678  
   679  	// v might be 0 now
   680  	if len(v.abs) == 0 {
   681  		return u
   682  	}
   683  	// u > 0 && v > 0
   684  
   685  	// determine largest k such that u = u' << k, v = v' << k
   686  	k := u.abs.trailingZeroBits()
   687  	if vk := v.abs.trailingZeroBits(); vk < k {
   688  		k = vk
   689  	}
   690  	u.Rsh(u, k)
   691  	v.Rsh(v, k)
   692  
   693  	// determine t (we know that u > 0)
   694  	t := new(Int)
   695  	if u.abs[0]&1 != 0 {
   696  		// u is odd
   697  		t.Neg(v)
   698  	} else {
   699  		t.Set(u)
   700  	}
   701  
   702  	for len(t.abs) > 0 {
   703  		// reduce t
   704  		t.Rsh(t, t.abs.trailingZeroBits())
   705  		if t.neg {
   706  			v, t = t, v
   707  			v.neg = len(v.abs) > 0 && !v.neg // 0 has no sign
   708  		} else {
   709  			u, t = t, u
   710  		}
   711  		t.Sub(u, v)
   712  	}
   713  
   714  	return z.Lsh(u, k)
   715  }
   716  
   717  // ProbablyPrime performs n Miller-Rabin tests to check whether x is prime.
   718  // If it returns true, x is prime with probability 1 - 1/4^n.
   719  // If it returns false, x is not prime.
   720  func (x *Int) ProbablyPrime(n int) bool {
   721  	return !x.neg && x.abs.probablyPrime(n)
   722  }
   723  
   724  // Rand sets z to a pseudo-random number in [0, n) and returns z.
   725  func (z *Int) Rand(rnd *rand.Rand, n *Int) *Int {
   726  	z.neg = false
   727  	if n.neg == true || len(n.abs) == 0 {
   728  		z.abs = nil
   729  		return z
   730  	}
   731  	z.abs = z.abs.random(rnd, n.abs, n.abs.bitLen())
   732  	return z
   733  }
   734  
   735  // ModInverse sets z to the multiplicative inverse of g in the group ℤ/pℤ (where
   736  // p is a prime) and returns z.
   737  func (z *Int) ModInverse(g, p *Int) *Int {
   738  	var d Int
   739  	d.GCD(z, nil, g, p)
   740  	// x and y are such that g*x + p*y = d. Since p is prime, d = 1. Taking
   741  	// that modulo p results in g*x = 1, therefore x is the inverse element.
   742  	if z.neg {
   743  		z.Add(z, p)
   744  	}
   745  	return z
   746  }
   747  
   748  // Lsh sets z = x << n and returns z.
   749  func (z *Int) Lsh(x *Int, n uint) *Int {
   750  	z.abs = z.abs.shl(x.abs, n)
   751  	z.neg = x.neg
   752  	return z
   753  }
   754  
   755  // Rsh sets z = x >> n and returns z.
   756  func (z *Int) Rsh(x *Int, n uint) *Int {
   757  	if x.neg {
   758  		// (-x) >> s == ^(x-1) >> s == ^((x-1) >> s) == -(((x-1) >> s) + 1)
   759  		t := z.abs.sub(x.abs, natOne) // no underflow because |x| > 0
   760  		t = t.shr(t, n)
   761  		z.abs = t.add(t, natOne)
   762  		z.neg = true // z cannot be zero if x is negative
   763  		return z
   764  	}
   765  
   766  	z.abs = z.abs.shr(x.abs, n)
   767  	z.neg = false
   768  	return z
   769  }
   770  
   771  // Bit returns the value of the i'th bit of x. That is, it
   772  // returns (x>>i)&1. The bit index i must be >= 0.
   773  func (x *Int) Bit(i int) uint {
   774  	if i == 0 {
   775  		// optimization for common case: odd/even test of x
   776  		if len(x.abs) > 0 {
   777  			return uint(x.abs[0] & 1) // bit 0 is same for -x
   778  		}
   779  		return 0
   780  	}
   781  	if i < 0 {
   782  		panic("negative bit index")
   783  	}
   784  	if x.neg {
   785  		t := nat(nil).sub(x.abs, natOne)
   786  		return t.bit(uint(i)) ^ 1
   787  	}
   788  
   789  	return x.abs.bit(uint(i))
   790  }
   791  
   792  // SetBit sets z to x, with x's i'th bit set to b (0 or 1).
   793  // That is, if b is 1 SetBit sets z = x | (1 << i);
   794  // if b is 0 SetBit sets z = x &^ (1 << i). If b is not 0 or 1,
   795  // SetBit will panic.
   796  func (z *Int) SetBit(x *Int, i int, b uint) *Int {
   797  	if i < 0 {
   798  		panic("negative bit index")
   799  	}
   800  	if x.neg {
   801  		t := z.abs.sub(x.abs, natOne)
   802  		t = t.setBit(t, uint(i), b^1)
   803  		z.abs = t.add(t, natOne)
   804  		z.neg = len(z.abs) > 0
   805  		return z
   806  	}
   807  	z.abs = z.abs.setBit(x.abs, uint(i), b)
   808  	z.neg = false
   809  	return z
   810  }
   811  
   812  // And sets z = x & y and returns z.
   813  func (z *Int) And(x, y *Int) *Int {
   814  	if x.neg == y.neg {
   815  		if x.neg {
   816  			// (-x) & (-y) == ^(x-1) & ^(y-1) == ^((x-1) | (y-1)) == -(((x-1) | (y-1)) + 1)
   817  			x1 := nat(nil).sub(x.abs, natOne)
   818  			y1 := nat(nil).sub(y.abs, natOne)
   819  			z.abs = z.abs.add(z.abs.or(x1, y1), natOne)
   820  			z.neg = true // z cannot be zero if x and y are negative
   821  			return z
   822  		}
   823  
   824  		// x & y == x & y
   825  		z.abs = z.abs.and(x.abs, y.abs)
   826  		z.neg = false
   827  		return z
   828  	}
   829  
   830  	// x.neg != y.neg
   831  	if x.neg {
   832  		x, y = y, x // & is symmetric
   833  	}
   834  
   835  	// x & (-y) == x & ^(y-1) == x &^ (y-1)
   836  	y1 := nat(nil).sub(y.abs, natOne)
   837  	z.abs = z.abs.andNot(x.abs, y1)
   838  	z.neg = false
   839  	return z
   840  }
   841  
   842  // AndNot sets z = x &^ y and returns z.
   843  func (z *Int) AndNot(x, y *Int) *Int {
   844  	if x.neg == y.neg {
   845  		if x.neg {
   846  			// (-x) &^ (-y) == ^(x-1) &^ ^(y-1) == ^(x-1) & (y-1) == (y-1) &^ (x-1)
   847  			x1 := nat(nil).sub(x.abs, natOne)
   848  			y1 := nat(nil).sub(y.abs, natOne)
   849  			z.abs = z.abs.andNot(y1, x1)
   850  			z.neg = false
   851  			return z
   852  		}
   853  
   854  		// x &^ y == x &^ y
   855  		z.abs = z.abs.andNot(x.abs, y.abs)
   856  		z.neg = false
   857  		return z
   858  	}
   859  
   860  	if x.neg {
   861  		// (-x) &^ y == ^(x-1) &^ y == ^(x-1) & ^y == ^((x-1) | y) == -(((x-1) | y) + 1)
   862  		x1 := nat(nil).sub(x.abs, natOne)
   863  		z.abs = z.abs.add(z.abs.or(x1, y.abs), natOne)
   864  		z.neg = true // z cannot be zero if x is negative and y is positive
   865  		return z
   866  	}
   867  
   868  	// x &^ (-y) == x &^ ^(y-1) == x & (y-1)
   869  	y1 := nat(nil).add(y.abs, natOne)
   870  	z.abs = z.abs.and(x.abs, y1)
   871  	z.neg = false
   872  	return z
   873  }
   874  
   875  // Or sets z = x | y and returns z.
   876  func (z *Int) Or(x, y *Int) *Int {
   877  	if x.neg == y.neg {
   878  		if x.neg {
   879  			// (-x) | (-y) == ^(x-1) | ^(y-1) == ^((x-1) & (y-1)) == -(((x-1) & (y-1)) + 1)
   880  			x1 := nat(nil).sub(x.abs, natOne)
   881  			y1 := nat(nil).sub(y.abs, natOne)
   882  			z.abs = z.abs.add(z.abs.and(x1, y1), natOne)
   883  			z.neg = true // z cannot be zero if x and y are negative
   884  			return z
   885  		}
   886  
   887  		// x | y == x | y
   888  		z.abs = z.abs.or(x.abs, y.abs)
   889  		z.neg = false
   890  		return z
   891  	}
   892  
   893  	// x.neg != y.neg
   894  	if x.neg {
   895  		x, y = y, x // | is symmetric
   896  	}
   897  
   898  	// x | (-y) == x | ^(y-1) == ^((y-1) &^ x) == -(^((y-1) &^ x) + 1)
   899  	y1 := nat(nil).sub(y.abs, natOne)
   900  	z.abs = z.abs.add(z.abs.andNot(y1, x.abs), natOne)
   901  	z.neg = true // z cannot be zero if one of x or y is negative
   902  	return z
   903  }
   904  
   905  // Xor sets z = x ^ y and returns z.
   906  func (z *Int) Xor(x, y *Int) *Int {
   907  	if x.neg == y.neg {
   908  		if x.neg {
   909  			// (-x) ^ (-y) == ^(x-1) ^ ^(y-1) == (x-1) ^ (y-1)
   910  			x1 := nat(nil).sub(x.abs, natOne)
   911  			y1 := nat(nil).sub(y.abs, natOne)
   912  			z.abs = z.abs.xor(x1, y1)
   913  			z.neg = false
   914  			return z
   915  		}
   916  
   917  		// x ^ y == x ^ y
   918  		z.abs = z.abs.xor(x.abs, y.abs)
   919  		z.neg = false
   920  		return z
   921  	}
   922  
   923  	// x.neg != y.neg
   924  	if x.neg {
   925  		x, y = y, x // ^ is symmetric
   926  	}
   927  
   928  	// x ^ (-y) == x ^ ^(y-1) == ^(x ^ (y-1)) == -((x ^ (y-1)) + 1)
   929  	y1 := nat(nil).sub(y.abs, natOne)
   930  	z.abs = z.abs.add(z.abs.xor(x.abs, y1), natOne)
   931  	z.neg = true // z cannot be zero if only one of x or y is negative
   932  	return z
   933  }
   934  
   935  // Not sets z = ^x and returns z.
   936  func (z *Int) Not(x *Int) *Int {
   937  	if x.neg {
   938  		// ^(-x) == ^(^(x-1)) == x-1
   939  		z.abs = z.abs.sub(x.abs, natOne)
   940  		z.neg = false
   941  		return z
   942  	}
   943  
   944  	// ^x == -x-1 == -(x+1)
   945  	z.abs = z.abs.add(x.abs, natOne)
   946  	z.neg = true // z cannot be zero if x is positive
   947  	return z
   948  }
   949  
   950  // Gob codec version. Permits backward-compatible changes to the encoding.
   951  const intGobVersion byte = 1
   952  
   953  // GobEncode implements the gob.GobEncoder interface.
   954  func (x *Int) GobEncode() ([]byte, error) {
   955  	if x == nil {
   956  		return nil, nil
   957  	}
   958  	buf := make([]byte, 1+len(x.abs)*_S) // extra byte for version and sign bit
   959  	i := x.abs.bytes(buf) - 1            // i >= 0
   960  	b := intGobVersion << 1              // make space for sign bit
   961  	if x.neg {
   962  		b |= 1
   963  	}
   964  	buf[i] = b
   965  	return buf[i:], nil
   966  }
   967  
   968  // GobDecode implements the gob.GobDecoder interface.
   969  func (z *Int) GobDecode(buf []byte) error {
   970  	if len(buf) == 0 {
   971  		// Other side sent a nil or default value.
   972  		*z = Int{}
   973  		return nil
   974  	}
   975  	b := buf[0]
   976  	if b>>1 != intGobVersion {
   977  		return errors.New(fmt.Sprintf("Int.GobDecode: encoding version %d not supported", b>>1))
   978  	}
   979  	z.neg = b&1 != 0
   980  	z.abs = z.abs.setBytes(buf[1:])
   981  	return nil
   982  }
   983  
   984  // MarshalJSON implements the json.Marshaler interface.
   985  func (x *Int) MarshalJSON() ([]byte, error) {
   986  	// TODO(gri): get rid of the []byte/string conversions
   987  	return []byte(x.String()), nil
   988  }
   989  
   990  // UnmarshalJSON implements the json.Unmarshaler interface.
   991  func (z *Int) UnmarshalJSON(x []byte) error {
   992  	// TODO(gri): get rid of the []byte/string conversions
   993  	_, ok := z.SetString(string(x), 0)
   994  	if !ok {
   995  		return fmt.Errorf("math/big: cannot unmarshal %s into a *big.Int", x)
   996  	}
   997  	return nil
   998  }