github.com/varialus/godfly@v0.0.0-20130904042352-1934f9f095ab/src/pkg/net/http/server.go (about)

     1  // Copyright 2009 The Go Authors. All rights reserved.
     2  // Use of this source code is governed by a BSD-style
     3  // license that can be found in the LICENSE file.
     4  
     5  // HTTP server.  See RFC 2616.
     6  
     7  package http
     8  
     9  import (
    10  	"bufio"
    11  	"crypto/tls"
    12  	"errors"
    13  	"fmt"
    14  	"io"
    15  	"io/ioutil"
    16  	"log"
    17  	"net"
    18  	"net/url"
    19  	"os"
    20  	"path"
    21  	"runtime"
    22  	"strconv"
    23  	"strings"
    24  	"sync"
    25  	"time"
    26  )
    27  
    28  // Errors introduced by the HTTP server.
    29  var (
    30  	ErrWriteAfterFlush = errors.New("Conn.Write called after Flush")
    31  	ErrBodyNotAllowed  = errors.New("http: request method or response status code does not allow body")
    32  	ErrHijacked        = errors.New("Conn has been hijacked")
    33  	ErrContentLength   = errors.New("Conn.Write wrote more than the declared Content-Length")
    34  )
    35  
    36  // Objects implementing the Handler interface can be
    37  // registered to serve a particular path or subtree
    38  // in the HTTP server.
    39  //
    40  // ServeHTTP should write reply headers and data to the ResponseWriter
    41  // and then return.  Returning signals that the request is finished
    42  // and that the HTTP server can move on to the next request on
    43  // the connection.
    44  type Handler interface {
    45  	ServeHTTP(ResponseWriter, *Request)
    46  }
    47  
    48  // A ResponseWriter interface is used by an HTTP handler to
    49  // construct an HTTP response.
    50  type ResponseWriter interface {
    51  	// Header returns the header map that will be sent by WriteHeader.
    52  	// Changing the header after a call to WriteHeader (or Write) has
    53  	// no effect.
    54  	Header() Header
    55  
    56  	// Write writes the data to the connection as part of an HTTP reply.
    57  	// If WriteHeader has not yet been called, Write calls WriteHeader(http.StatusOK)
    58  	// before writing the data.  If the Header does not contain a
    59  	// Content-Type line, Write adds a Content-Type set to the result of passing
    60  	// the initial 512 bytes of written data to DetectContentType.
    61  	Write([]byte) (int, error)
    62  
    63  	// WriteHeader sends an HTTP response header with status code.
    64  	// If WriteHeader is not called explicitly, the first call to Write
    65  	// will trigger an implicit WriteHeader(http.StatusOK).
    66  	// Thus explicit calls to WriteHeader are mainly used to
    67  	// send error codes.
    68  	WriteHeader(int)
    69  }
    70  
    71  // The Flusher interface is implemented by ResponseWriters that allow
    72  // an HTTP handler to flush buffered data to the client.
    73  //
    74  // Note that even for ResponseWriters that support Flush,
    75  // if the client is connected through an HTTP proxy,
    76  // the buffered data may not reach the client until the response
    77  // completes.
    78  type Flusher interface {
    79  	// Flush sends any buffered data to the client.
    80  	Flush()
    81  }
    82  
    83  // The Hijacker interface is implemented by ResponseWriters that allow
    84  // an HTTP handler to take over the connection.
    85  type Hijacker interface {
    86  	// Hijack lets the caller take over the connection.
    87  	// After a call to Hijack(), the HTTP server library
    88  	// will not do anything else with the connection.
    89  	// It becomes the caller's responsibility to manage
    90  	// and close the connection.
    91  	Hijack() (net.Conn, *bufio.ReadWriter, error)
    92  }
    93  
    94  // The CloseNotifier interface is implemented by ResponseWriters which
    95  // allow detecting when the underlying connection has gone away.
    96  //
    97  // This mechanism can be used to cancel long operations on the server
    98  // if the client has disconnected before the response is ready.
    99  type CloseNotifier interface {
   100  	// CloseNotify returns a channel that receives a single value
   101  	// when the client connection has gone away.
   102  	CloseNotify() <-chan bool
   103  }
   104  
   105  // A conn represents the server side of an HTTP connection.
   106  type conn struct {
   107  	remoteAddr string               // network address of remote side
   108  	server     *Server              // the Server on which the connection arrived
   109  	rwc        net.Conn             // i/o connection
   110  	sr         liveSwitchReader     // where the LimitReader reads from; usually the rwc
   111  	lr         *io.LimitedReader    // io.LimitReader(sr)
   112  	buf        *bufio.ReadWriter    // buffered(lr,rwc), reading from bufio->limitReader->sr->rwc
   113  	tlsState   *tls.ConnectionState // or nil when not using TLS
   114  
   115  	mu           sync.Mutex // guards the following
   116  	clientGone   bool       // if client has disconnected mid-request
   117  	closeNotifyc chan bool  // made lazily
   118  	hijackedv    bool       // connection has been hijacked by handler
   119  }
   120  
   121  func (c *conn) hijacked() bool {
   122  	c.mu.Lock()
   123  	defer c.mu.Unlock()
   124  	return c.hijackedv
   125  }
   126  
   127  func (c *conn) hijack() (rwc net.Conn, buf *bufio.ReadWriter, err error) {
   128  	c.mu.Lock()
   129  	defer c.mu.Unlock()
   130  	if c.hijackedv {
   131  		return nil, nil, ErrHijacked
   132  	}
   133  	if c.closeNotifyc != nil {
   134  		return nil, nil, errors.New("http: Hijack is incompatible with use of CloseNotifier")
   135  	}
   136  	c.hijackedv = true
   137  	rwc = c.rwc
   138  	buf = c.buf
   139  	c.rwc = nil
   140  	c.buf = nil
   141  	return
   142  }
   143  
   144  func (c *conn) closeNotify() <-chan bool {
   145  	c.mu.Lock()
   146  	defer c.mu.Unlock()
   147  	if c.closeNotifyc == nil {
   148  		c.closeNotifyc = make(chan bool, 1)
   149  		if c.hijackedv {
   150  			// to obey the function signature, even though
   151  			// it'll never receive a value.
   152  			return c.closeNotifyc
   153  		}
   154  		pr, pw := io.Pipe()
   155  
   156  		readSource := c.sr.r
   157  		c.sr.Lock()
   158  		c.sr.r = pr
   159  		c.sr.Unlock()
   160  		go func() {
   161  			_, err := io.Copy(pw, readSource)
   162  			if err == nil {
   163  				err = io.EOF
   164  			}
   165  			pw.CloseWithError(err)
   166  			c.noteClientGone()
   167  		}()
   168  	}
   169  	return c.closeNotifyc
   170  }
   171  
   172  func (c *conn) noteClientGone() {
   173  	c.mu.Lock()
   174  	defer c.mu.Unlock()
   175  	if c.closeNotifyc != nil && !c.clientGone {
   176  		c.closeNotifyc <- true
   177  	}
   178  	c.clientGone = true
   179  }
   180  
   181  // A switchReader can have its Reader changed at runtime.
   182  // It's not safe for concurrent Reads and switches.
   183  type switchReader struct {
   184  	io.Reader
   185  }
   186  
   187  // A switchWriter can have its Writer changed at runtime.
   188  // It's not safe for concurrent Writes and switches.
   189  type switchWriter struct {
   190  	io.Writer
   191  }
   192  
   193  // A liveSwitchReader is a switchReader that's safe for concurrent
   194  // reads and switches, if its mutex is held.
   195  type liveSwitchReader struct {
   196  	sync.Mutex
   197  	r io.Reader
   198  }
   199  
   200  func (sr *liveSwitchReader) Read(p []byte) (n int, err error) {
   201  	sr.Lock()
   202  	r := sr.r
   203  	sr.Unlock()
   204  	return r.Read(p)
   205  }
   206  
   207  // This should be >= 512 bytes for DetectContentType,
   208  // but otherwise it's somewhat arbitrary.
   209  const bufferBeforeChunkingSize = 2048
   210  
   211  // chunkWriter writes to a response's conn buffer, and is the writer
   212  // wrapped by the response.bufw buffered writer.
   213  //
   214  // chunkWriter also is responsible for finalizing the Header, including
   215  // conditionally setting the Content-Type and setting a Content-Length
   216  // in cases where the handler's final output is smaller than the buffer
   217  // size. It also conditionally adds chunk headers, when in chunking mode.
   218  //
   219  // See the comment above (*response).Write for the entire write flow.
   220  type chunkWriter struct {
   221  	res *response
   222  
   223  	// header is either nil or a deep clone of res.handlerHeader
   224  	// at the time of res.WriteHeader, if res.WriteHeader is
   225  	// called and extra buffering is being done to calculate
   226  	// Content-Type and/or Content-Length.
   227  	header Header
   228  
   229  	// wroteHeader tells whether the header's been written to "the
   230  	// wire" (or rather: w.conn.buf). this is unlike
   231  	// (*response).wroteHeader, which tells only whether it was
   232  	// logically written.
   233  	wroteHeader bool
   234  
   235  	// set by the writeHeader method:
   236  	chunking bool // using chunked transfer encoding for reply body
   237  }
   238  
   239  var (
   240  	crlf       = []byte("\r\n")
   241  	colonSpace = []byte(": ")
   242  )
   243  
   244  func (cw *chunkWriter) Write(p []byte) (n int, err error) {
   245  	if !cw.wroteHeader {
   246  		cw.writeHeader(p)
   247  	}
   248  	if cw.res.req.Method == "HEAD" {
   249  		// Eat writes.
   250  		return len(p), nil
   251  	}
   252  	if cw.chunking {
   253  		_, err = fmt.Fprintf(cw.res.conn.buf, "%x\r\n", len(p))
   254  		if err != nil {
   255  			cw.res.conn.rwc.Close()
   256  			return
   257  		}
   258  	}
   259  	n, err = cw.res.conn.buf.Write(p)
   260  	if cw.chunking && err == nil {
   261  		_, err = cw.res.conn.buf.Write(crlf)
   262  	}
   263  	if err != nil {
   264  		cw.res.conn.rwc.Close()
   265  	}
   266  	return
   267  }
   268  
   269  func (cw *chunkWriter) flush() {
   270  	if !cw.wroteHeader {
   271  		cw.writeHeader(nil)
   272  	}
   273  	cw.res.conn.buf.Flush()
   274  }
   275  
   276  func (cw *chunkWriter) close() {
   277  	if !cw.wroteHeader {
   278  		cw.writeHeader(nil)
   279  	}
   280  	if cw.chunking {
   281  		// zero EOF chunk, trailer key/value pairs (currently
   282  		// unsupported in Go's server), followed by a blank
   283  		// line.
   284  		cw.res.conn.buf.WriteString("0\r\n\r\n")
   285  	}
   286  }
   287  
   288  // A response represents the server side of an HTTP response.
   289  type response struct {
   290  	conn          *conn
   291  	req           *Request // request for this response
   292  	wroteHeader   bool     // reply header has been (logically) written
   293  	wroteContinue bool     // 100 Continue response was written
   294  
   295  	w  *bufio.Writer // buffers output in chunks to chunkWriter
   296  	cw chunkWriter
   297  	sw *switchWriter // of the bufio.Writer, for return to putBufioWriter
   298  
   299  	// handlerHeader is the Header that Handlers get access to,
   300  	// which may be retained and mutated even after WriteHeader.
   301  	// handlerHeader is copied into cw.header at WriteHeader
   302  	// time, and privately mutated thereafter.
   303  	handlerHeader Header
   304  	calledHeader  bool // handler accessed handlerHeader via Header
   305  
   306  	written       int64 // number of bytes written in body
   307  	contentLength int64 // explicitly-declared Content-Length; or -1
   308  	status        int   // status code passed to WriteHeader
   309  
   310  	// close connection after this reply.  set on request and
   311  	// updated after response from handler if there's a
   312  	// "Connection: keep-alive" response header and a
   313  	// Content-Length.
   314  	closeAfterReply bool
   315  
   316  	// requestBodyLimitHit is set by requestTooLarge when
   317  	// maxBytesReader hits its max size. It is checked in
   318  	// WriteHeader, to make sure we don't consume the
   319  	// remaining request body to try to advance to the next HTTP
   320  	// request. Instead, when this is set, we stop reading
   321  	// subsequent requests on this connection and stop reading
   322  	// input from it.
   323  	requestBodyLimitHit bool
   324  
   325  	handlerDone bool // set true when the handler exits
   326  
   327  	// Buffers for Date and Content-Length
   328  	dateBuf [len(TimeFormat)]byte
   329  	clenBuf [10]byte
   330  }
   331  
   332  // requestTooLarge is called by maxBytesReader when too much input has
   333  // been read from the client.
   334  func (w *response) requestTooLarge() {
   335  	w.closeAfterReply = true
   336  	w.requestBodyLimitHit = true
   337  	if !w.wroteHeader {
   338  		w.Header().Set("Connection", "close")
   339  	}
   340  }
   341  
   342  // needsSniff reports whether a Content-Type still needs to be sniffed.
   343  func (w *response) needsSniff() bool {
   344  	return !w.cw.wroteHeader && w.handlerHeader.Get("Content-Type") == "" && w.written < sniffLen
   345  }
   346  
   347  // writerOnly hides an io.Writer value's optional ReadFrom method
   348  // from io.Copy.
   349  type writerOnly struct {
   350  	io.Writer
   351  }
   352  
   353  func srcIsRegularFile(src io.Reader) (isRegular bool, err error) {
   354  	switch v := src.(type) {
   355  	case *os.File:
   356  		fi, err := v.Stat()
   357  		if err != nil {
   358  			return false, err
   359  		}
   360  		return fi.Mode().IsRegular(), nil
   361  	case *io.LimitedReader:
   362  		return srcIsRegularFile(v.R)
   363  	default:
   364  		return
   365  	}
   366  }
   367  
   368  // ReadFrom is here to optimize copying from an *os.File regular file
   369  // to a *net.TCPConn with sendfile.
   370  func (w *response) ReadFrom(src io.Reader) (n int64, err error) {
   371  	// Our underlying w.conn.rwc is usually a *TCPConn (with its
   372  	// own ReadFrom method). If not, or if our src isn't a regular
   373  	// file, just fall back to the normal copy method.
   374  	rf, ok := w.conn.rwc.(io.ReaderFrom)
   375  	regFile, err := srcIsRegularFile(src)
   376  	if err != nil {
   377  		return 0, err
   378  	}
   379  	if !ok || !regFile {
   380  		return io.Copy(writerOnly{w}, src)
   381  	}
   382  
   383  	// sendfile path:
   384  
   385  	if !w.wroteHeader {
   386  		w.WriteHeader(StatusOK)
   387  	}
   388  
   389  	if w.needsSniff() {
   390  		n0, err := io.Copy(writerOnly{w}, io.LimitReader(src, sniffLen))
   391  		n += n0
   392  		if err != nil {
   393  			return n, err
   394  		}
   395  	}
   396  
   397  	w.w.Flush()  // get rid of any previous writes
   398  	w.cw.flush() // make sure Header is written; flush data to rwc
   399  
   400  	// Now that cw has been flushed, its chunking field is guaranteed initialized.
   401  	if !w.cw.chunking && w.bodyAllowed() {
   402  		n0, err := rf.ReadFrom(src)
   403  		n += n0
   404  		w.written += n0
   405  		return n, err
   406  	}
   407  
   408  	n0, err := io.Copy(writerOnly{w}, src)
   409  	n += n0
   410  	return n, err
   411  }
   412  
   413  // noLimit is an effective infinite upper bound for io.LimitedReader
   414  const noLimit int64 = (1 << 63) - 1
   415  
   416  // debugServerConnections controls whether all server connections are wrapped
   417  // with a verbose logging wrapper.
   418  const debugServerConnections = false
   419  
   420  // Create new connection from rwc.
   421  func (srv *Server) newConn(rwc net.Conn) (c *conn, err error) {
   422  	c = new(conn)
   423  	c.remoteAddr = rwc.RemoteAddr().String()
   424  	c.server = srv
   425  	c.rwc = rwc
   426  	if debugServerConnections {
   427  		c.rwc = newLoggingConn("server", c.rwc)
   428  	}
   429  	c.sr = liveSwitchReader{r: c.rwc}
   430  	c.lr = io.LimitReader(&c.sr, noLimit).(*io.LimitedReader)
   431  	br := newBufioReader(c.lr)
   432  	bw := newBufioWriterSize(c.rwc, 4<<10)
   433  	c.buf = bufio.NewReadWriter(br, bw)
   434  	return c, nil
   435  }
   436  
   437  // TODO: use a sync.Cache instead
   438  var (
   439  	bufioReaderCache   = make(chan *bufio.Reader, 4)
   440  	bufioWriterCache2k = make(chan *bufio.Writer, 4)
   441  	bufioWriterCache4k = make(chan *bufio.Writer, 4)
   442  )
   443  
   444  func bufioWriterCache(size int) chan *bufio.Writer {
   445  	switch size {
   446  	case 2 << 10:
   447  		return bufioWriterCache2k
   448  	case 4 << 10:
   449  		return bufioWriterCache4k
   450  	}
   451  	return nil
   452  }
   453  
   454  func newBufioReader(r io.Reader) *bufio.Reader {
   455  	select {
   456  	case p := <-bufioReaderCache:
   457  		p.Reset(r)
   458  		return p
   459  	default:
   460  		return bufio.NewReader(r)
   461  	}
   462  }
   463  
   464  func putBufioReader(br *bufio.Reader) {
   465  	br.Reset(nil)
   466  	select {
   467  	case bufioReaderCache <- br:
   468  	default:
   469  	}
   470  }
   471  
   472  func newBufioWriterSize(w io.Writer, size int) *bufio.Writer {
   473  	select {
   474  	case p := <-bufioWriterCache(size):
   475  		p.Reset(w)
   476  		return p
   477  	default:
   478  		return bufio.NewWriterSize(w, size)
   479  	}
   480  }
   481  
   482  func putBufioWriter(bw *bufio.Writer) {
   483  	bw.Reset(nil)
   484  	select {
   485  	case bufioWriterCache(bw.Available()) <- bw:
   486  	default:
   487  	}
   488  }
   489  
   490  // DefaultMaxHeaderBytes is the maximum permitted size of the headers
   491  // in an HTTP request.
   492  // This can be overridden by setting Server.MaxHeaderBytes.
   493  const DefaultMaxHeaderBytes = 1 << 20 // 1 MB
   494  
   495  func (srv *Server) maxHeaderBytes() int {
   496  	if srv.MaxHeaderBytes > 0 {
   497  		return srv.MaxHeaderBytes
   498  	}
   499  	return DefaultMaxHeaderBytes
   500  }
   501  
   502  // wrapper around io.ReaderCloser which on first read, sends an
   503  // HTTP/1.1 100 Continue header
   504  type expectContinueReader struct {
   505  	resp       *response
   506  	readCloser io.ReadCloser
   507  	closed     bool
   508  }
   509  
   510  func (ecr *expectContinueReader) Read(p []byte) (n int, err error) {
   511  	if ecr.closed {
   512  		return 0, ErrBodyReadAfterClose
   513  	}
   514  	if !ecr.resp.wroteContinue && !ecr.resp.conn.hijacked() {
   515  		ecr.resp.wroteContinue = true
   516  		ecr.resp.conn.buf.WriteString("HTTP/1.1 100 Continue\r\n\r\n")
   517  		ecr.resp.conn.buf.Flush()
   518  	}
   519  	return ecr.readCloser.Read(p)
   520  }
   521  
   522  func (ecr *expectContinueReader) Close() error {
   523  	ecr.closed = true
   524  	return ecr.readCloser.Close()
   525  }
   526  
   527  // TimeFormat is the time format to use with
   528  // time.Parse and time.Time.Format when parsing
   529  // or generating times in HTTP headers.
   530  // It is like time.RFC1123 but hard codes GMT as the time zone.
   531  const TimeFormat = "Mon, 02 Jan 2006 15:04:05 GMT"
   532  
   533  // appendTime is a non-allocating version of []byte(time.Now().UTC().Format(TimeFormat))
   534  func appendTime(b []byte, t time.Time) []byte {
   535  	const days = "SunMonTueWedThuFriSat"
   536  	const months = "JanFebMarAprMayJunJulAugSepOctNovDec"
   537  
   538  	yy, mm, dd := t.Date()
   539  	hh, mn, ss := t.Clock()
   540  	day := days[3*t.Weekday():]
   541  	mon := months[3*(mm-1):]
   542  
   543  	return append(b,
   544  		day[0], day[1], day[2], ',', ' ',
   545  		byte('0'+dd/10), byte('0'+dd%10), ' ',
   546  		mon[0], mon[1], mon[2], ' ',
   547  		byte('0'+yy/1000), byte('0'+(yy/100)%10), byte('0'+(yy/10)%10), byte('0'+yy%10), ' ',
   548  		byte('0'+hh/10), byte('0'+hh%10), ':',
   549  		byte('0'+mn/10), byte('0'+mn%10), ':',
   550  		byte('0'+ss/10), byte('0'+ss%10), ' ',
   551  		'G', 'M', 'T')
   552  }
   553  
   554  var errTooLarge = errors.New("http: request too large")
   555  
   556  // Read next request from connection.
   557  func (c *conn) readRequest() (w *response, err error) {
   558  	if c.hijacked() {
   559  		return nil, ErrHijacked
   560  	}
   561  
   562  	if d := c.server.ReadTimeout; d != 0 {
   563  		c.rwc.SetReadDeadline(time.Now().Add(d))
   564  	}
   565  	if d := c.server.WriteTimeout; d != 0 {
   566  		defer func() {
   567  			c.rwc.SetWriteDeadline(time.Now().Add(d))
   568  		}()
   569  	}
   570  
   571  	c.lr.N = int64(c.server.maxHeaderBytes()) + 4096 /* bufio slop */
   572  	var req *Request
   573  	if req, err = ReadRequest(c.buf.Reader); err != nil {
   574  		if c.lr.N == 0 {
   575  			return nil, errTooLarge
   576  		}
   577  		return nil, err
   578  	}
   579  	c.lr.N = noLimit
   580  
   581  	req.RemoteAddr = c.remoteAddr
   582  	req.TLS = c.tlsState
   583  
   584  	w = &response{
   585  		conn:          c,
   586  		req:           req,
   587  		handlerHeader: make(Header),
   588  		contentLength: -1,
   589  	}
   590  	w.cw.res = w
   591  	w.w = newBufioWriterSize(&w.cw, bufferBeforeChunkingSize)
   592  	return w, nil
   593  }
   594  
   595  func (w *response) Header() Header {
   596  	if w.cw.header == nil && w.wroteHeader && !w.cw.wroteHeader {
   597  		// Accessing the header between logically writing it
   598  		// and physically writing it means we need to allocate
   599  		// a clone to snapshot the logically written state.
   600  		w.cw.header = w.handlerHeader.clone()
   601  	}
   602  	w.calledHeader = true
   603  	return w.handlerHeader
   604  }
   605  
   606  // maxPostHandlerReadBytes is the max number of Request.Body bytes not
   607  // consumed by a handler that the server will read from the client
   608  // in order to keep a connection alive.  If there are more bytes than
   609  // this then the server to be paranoid instead sends a "Connection:
   610  // close" response.
   611  //
   612  // This number is approximately what a typical machine's TCP buffer
   613  // size is anyway.  (if we have the bytes on the machine, we might as
   614  // well read them)
   615  const maxPostHandlerReadBytes = 256 << 10
   616  
   617  func (w *response) WriteHeader(code int) {
   618  	if w.conn.hijacked() {
   619  		log.Print("http: response.WriteHeader on hijacked connection")
   620  		return
   621  	}
   622  	if w.wroteHeader {
   623  		log.Print("http: multiple response.WriteHeader calls")
   624  		return
   625  	}
   626  	w.wroteHeader = true
   627  	w.status = code
   628  
   629  	if w.calledHeader && w.cw.header == nil {
   630  		w.cw.header = w.handlerHeader.clone()
   631  	}
   632  
   633  	if cl := w.handlerHeader.get("Content-Length"); cl != "" {
   634  		v, err := strconv.ParseInt(cl, 10, 64)
   635  		if err == nil && v >= 0 {
   636  			w.contentLength = v
   637  		} else {
   638  			log.Printf("http: invalid Content-Length of %q", cl)
   639  			w.handlerHeader.Del("Content-Length")
   640  		}
   641  	}
   642  }
   643  
   644  // extraHeader is the set of headers sometimes added by chunkWriter.writeHeader.
   645  // This type is used to avoid extra allocations from cloning and/or populating
   646  // the response Header map and all its 1-element slices.
   647  type extraHeader struct {
   648  	contentType      string
   649  	connection       string
   650  	transferEncoding string
   651  	date             []byte // written if not nil
   652  	contentLength    []byte // written if not nil
   653  }
   654  
   655  // Sorted the same as extraHeader.Write's loop.
   656  var extraHeaderKeys = [][]byte{
   657  	[]byte("Content-Type"),
   658  	[]byte("Connection"),
   659  	[]byte("Transfer-Encoding"),
   660  }
   661  
   662  var (
   663  	headerContentLength = []byte("Content-Length: ")
   664  	headerDate          = []byte("Date: ")
   665  )
   666  
   667  // Write writes the headers described in h to w.
   668  //
   669  // This method has a value receiver, despite the somewhat large size
   670  // of h, because it prevents an allocation. The escape analysis isn't
   671  // smart enough to realize this function doesn't mutate h.
   672  func (h extraHeader) Write(w *bufio.Writer) {
   673  	if h.date != nil {
   674  		w.Write(headerDate)
   675  		w.Write(h.date)
   676  		w.Write(crlf)
   677  	}
   678  	if h.contentLength != nil {
   679  		w.Write(headerContentLength)
   680  		w.Write(h.contentLength)
   681  		w.Write(crlf)
   682  	}
   683  	for i, v := range []string{h.contentType, h.connection, h.transferEncoding} {
   684  		if v != "" {
   685  			w.Write(extraHeaderKeys[i])
   686  			w.Write(colonSpace)
   687  			w.WriteString(v)
   688  			w.Write(crlf)
   689  		}
   690  	}
   691  }
   692  
   693  // writeHeader finalizes the header sent to the client and writes it
   694  // to cw.res.conn.buf.
   695  //
   696  // p is not written by writeHeader, but is the first chunk of the body
   697  // that will be written.  It is sniffed for a Content-Type if none is
   698  // set explicitly.  It's also used to set the Content-Length, if the
   699  // total body size was small and the handler has already finished
   700  // running.
   701  func (cw *chunkWriter) writeHeader(p []byte) {
   702  	if cw.wroteHeader {
   703  		return
   704  	}
   705  	cw.wroteHeader = true
   706  
   707  	w := cw.res
   708  	isHEAD := w.req.Method == "HEAD"
   709  
   710  	// header is written out to w.conn.buf below. Depending on the
   711  	// state of the handler, we either own the map or not. If we
   712  	// don't own it, the exclude map is created lazily for
   713  	// WriteSubset to remove headers. The setHeader struct holds
   714  	// headers we need to add.
   715  	header := cw.header
   716  	owned := header != nil
   717  	if !owned {
   718  		header = w.handlerHeader
   719  	}
   720  	var excludeHeader map[string]bool
   721  	delHeader := func(key string) {
   722  		if owned {
   723  			header.Del(key)
   724  			return
   725  		}
   726  		if _, ok := header[key]; !ok {
   727  			return
   728  		}
   729  		if excludeHeader == nil {
   730  			excludeHeader = make(map[string]bool)
   731  		}
   732  		excludeHeader[key] = true
   733  	}
   734  	var setHeader extraHeader
   735  
   736  	// If the handler is done but never sent a Content-Length
   737  	// response header and this is our first (and last) write, set
   738  	// it, even to zero. This helps HTTP/1.0 clients keep their
   739  	// "keep-alive" connections alive.
   740  	// Exceptions: 304 responses never get Content-Length, and if
   741  	// it was a HEAD request, we don't know the difference between
   742  	// 0 actual bytes and 0 bytes because the handler noticed it
   743  	// was a HEAD request and chose not to write anything.  So for
   744  	// HEAD, the handler should either write the Content-Length or
   745  	// write non-zero bytes.  If it's actually 0 bytes and the
   746  	// handler never looked at the Request.Method, we just don't
   747  	// send a Content-Length header.
   748  	if w.handlerDone && w.status != StatusNotModified && header.get("Content-Length") == "" && (!isHEAD || len(p) > 0) {
   749  		w.contentLength = int64(len(p))
   750  		setHeader.contentLength = strconv.AppendInt(cw.res.clenBuf[:0], int64(len(p)), 10)
   751  	}
   752  
   753  	// If this was an HTTP/1.0 request with keep-alive and we sent a
   754  	// Content-Length back, we can make this a keep-alive response ...
   755  	if w.req.wantsHttp10KeepAlive() {
   756  		sentLength := header.get("Content-Length") != ""
   757  		if sentLength && header.get("Connection") == "keep-alive" {
   758  			w.closeAfterReply = false
   759  		}
   760  	}
   761  
   762  	// Check for a explicit (and valid) Content-Length header.
   763  	hasCL := w.contentLength != -1
   764  
   765  	if w.req.wantsHttp10KeepAlive() && (isHEAD || hasCL) {
   766  		_, connectionHeaderSet := header["Connection"]
   767  		if !connectionHeaderSet {
   768  			setHeader.connection = "keep-alive"
   769  		}
   770  	} else if !w.req.ProtoAtLeast(1, 1) || w.req.wantsClose() {
   771  		w.closeAfterReply = true
   772  	}
   773  
   774  	if header.get("Connection") == "close" {
   775  		w.closeAfterReply = true
   776  	}
   777  
   778  	// Per RFC 2616, we should consume the request body before
   779  	// replying, if the handler hasn't already done so.  But we
   780  	// don't want to do an unbounded amount of reading here for
   781  	// DoS reasons, so we only try up to a threshold.
   782  	if w.req.ContentLength != 0 && !w.closeAfterReply {
   783  		ecr, isExpecter := w.req.Body.(*expectContinueReader)
   784  		if !isExpecter || ecr.resp.wroteContinue {
   785  			n, _ := io.CopyN(ioutil.Discard, w.req.Body, maxPostHandlerReadBytes+1)
   786  			if n >= maxPostHandlerReadBytes {
   787  				w.requestTooLarge()
   788  				delHeader("Connection")
   789  				setHeader.connection = "close"
   790  			} else {
   791  				w.req.Body.Close()
   792  			}
   793  		}
   794  	}
   795  
   796  	code := w.status
   797  	if code == StatusNotModified {
   798  		// Must not have body.
   799  		// RFC 2616 section 10.3.5: "the response MUST NOT include other entity-headers"
   800  		for _, k := range []string{"Content-Type", "Content-Length", "Transfer-Encoding"} {
   801  			delHeader(k)
   802  		}
   803  	} else {
   804  		// If no content type, apply sniffing algorithm to body.
   805  		_, haveType := header["Content-Type"]
   806  		if !haveType {
   807  			setHeader.contentType = DetectContentType(p)
   808  		}
   809  	}
   810  
   811  	if _, ok := header["Date"]; !ok {
   812  		setHeader.date = appendTime(cw.res.dateBuf[:0], time.Now())
   813  	}
   814  
   815  	te := header.get("Transfer-Encoding")
   816  	hasTE := te != ""
   817  	if hasCL && hasTE && te != "identity" {
   818  		// TODO: return an error if WriteHeader gets a return parameter
   819  		// For now just ignore the Content-Length.
   820  		log.Printf("http: WriteHeader called with both Transfer-Encoding of %q and a Content-Length of %d",
   821  			te, w.contentLength)
   822  		delHeader("Content-Length")
   823  		hasCL = false
   824  	}
   825  
   826  	if w.req.Method == "HEAD" || code == StatusNotModified {
   827  		// do nothing
   828  	} else if code == StatusNoContent {
   829  		delHeader("Transfer-Encoding")
   830  	} else if hasCL {
   831  		delHeader("Transfer-Encoding")
   832  	} else if w.req.ProtoAtLeast(1, 1) {
   833  		// HTTP/1.1 or greater: use chunked transfer encoding
   834  		// to avoid closing the connection at EOF.
   835  		// TODO: this blows away any custom or stacked Transfer-Encoding they
   836  		// might have set.  Deal with that as need arises once we have a valid
   837  		// use case.
   838  		cw.chunking = true
   839  		setHeader.transferEncoding = "chunked"
   840  	} else {
   841  		// HTTP version < 1.1: cannot do chunked transfer
   842  		// encoding and we don't know the Content-Length so
   843  		// signal EOF by closing connection.
   844  		w.closeAfterReply = true
   845  		delHeader("Transfer-Encoding") // in case already set
   846  	}
   847  
   848  	// Cannot use Content-Length with non-identity Transfer-Encoding.
   849  	if cw.chunking {
   850  		delHeader("Content-Length")
   851  	}
   852  	if !w.req.ProtoAtLeast(1, 0) {
   853  		return
   854  	}
   855  
   856  	if w.closeAfterReply && !hasToken(cw.header.get("Connection"), "close") {
   857  		delHeader("Connection")
   858  		if w.req.ProtoAtLeast(1, 1) {
   859  			setHeader.connection = "close"
   860  		}
   861  	}
   862  
   863  	w.conn.buf.WriteString(statusLine(w.req, code))
   864  	cw.header.WriteSubset(w.conn.buf, excludeHeader)
   865  	setHeader.Write(w.conn.buf.Writer)
   866  	w.conn.buf.Write(crlf)
   867  }
   868  
   869  // statusLines is a cache of Status-Line strings, keyed by code (for
   870  // HTTP/1.1) or negative code (for HTTP/1.0). This is faster than a
   871  // map keyed by struct of two fields. This map's max size is bounded
   872  // by 2*len(statusText), two protocol types for each known official
   873  // status code in the statusText map.
   874  var (
   875  	statusMu    sync.RWMutex
   876  	statusLines = make(map[int]string)
   877  )
   878  
   879  // statusLine returns a response Status-Line (RFC 2616 Section 6.1)
   880  // for the given request and response status code.
   881  func statusLine(req *Request, code int) string {
   882  	// Fast path:
   883  	key := code
   884  	proto11 := req.ProtoAtLeast(1, 1)
   885  	if !proto11 {
   886  		key = -key
   887  	}
   888  	statusMu.RLock()
   889  	line, ok := statusLines[key]
   890  	statusMu.RUnlock()
   891  	if ok {
   892  		return line
   893  	}
   894  
   895  	// Slow path:
   896  	proto := "HTTP/1.0"
   897  	if proto11 {
   898  		proto = "HTTP/1.1"
   899  	}
   900  	codestring := strconv.Itoa(code)
   901  	text, ok := statusText[code]
   902  	if !ok {
   903  		text = "status code " + codestring
   904  	}
   905  	line = proto + " " + codestring + " " + text + "\r\n"
   906  	if ok {
   907  		statusMu.Lock()
   908  		defer statusMu.Unlock()
   909  		statusLines[key] = line
   910  	}
   911  	return line
   912  }
   913  
   914  // bodyAllowed returns true if a Write is allowed for this response type.
   915  // It's illegal to call this before the header has been flushed.
   916  func (w *response) bodyAllowed() bool {
   917  	if !w.wroteHeader {
   918  		panic("")
   919  	}
   920  	return w.status != StatusNotModified
   921  }
   922  
   923  // The Life Of A Write is like this:
   924  //
   925  // Handler starts. No header has been sent. The handler can either
   926  // write a header, or just start writing.  Writing before sending a header
   927  // sends an implicitly empty 200 OK header.
   928  //
   929  // If the handler didn't declare a Content-Length up front, we either
   930  // go into chunking mode or, if the handler finishes running before
   931  // the chunking buffer size, we compute a Content-Length and send that
   932  // in the header instead.
   933  //
   934  // Likewise, if the handler didn't set a Content-Type, we sniff that
   935  // from the initial chunk of output.
   936  //
   937  // The Writers are wired together like:
   938  //
   939  // 1. *response (the ResponseWriter) ->
   940  // 2. (*response).w, a *bufio.Writer of bufferBeforeChunkingSize bytes
   941  // 3. chunkWriter.Writer (whose writeHeader finalizes Content-Length/Type)
   942  //    and which writes the chunk headers, if needed.
   943  // 4. conn.buf, a bufio.Writer of default (4kB) bytes
   944  // 5. the rwc, the net.Conn.
   945  //
   946  // TODO(bradfitz): short-circuit some of the buffering when the
   947  // initial header contains both a Content-Type and Content-Length.
   948  // Also short-circuit in (1) when the header's been sent and not in
   949  // chunking mode, writing directly to (4) instead, if (2) has no
   950  // buffered data.  More generally, we could short-circuit from (1) to
   951  // (3) even in chunking mode if the write size from (1) is over some
   952  // threshold and nothing is in (2).  The answer might be mostly making
   953  // bufferBeforeChunkingSize smaller and having bufio's fast-paths deal
   954  // with this instead.
   955  func (w *response) Write(data []byte) (n int, err error) {
   956  	return w.write(len(data), data, "")
   957  }
   958  
   959  func (w *response) WriteString(data string) (n int, err error) {
   960  	return w.write(len(data), nil, data)
   961  }
   962  
   963  // either dataB or dataS is non-zero.
   964  func (w *response) write(lenData int, dataB []byte, dataS string) (n int, err error) {
   965  	if w.conn.hijacked() {
   966  		log.Print("http: response.Write on hijacked connection")
   967  		return 0, ErrHijacked
   968  	}
   969  	if !w.wroteHeader {
   970  		w.WriteHeader(StatusOK)
   971  	}
   972  	if lenData == 0 {
   973  		return 0, nil
   974  	}
   975  	if !w.bodyAllowed() {
   976  		return 0, ErrBodyNotAllowed
   977  	}
   978  
   979  	w.written += int64(lenData) // ignoring errors, for errorKludge
   980  	if w.contentLength != -1 && w.written > w.contentLength {
   981  		return 0, ErrContentLength
   982  	}
   983  	if dataB != nil {
   984  		return w.w.Write(dataB)
   985  	} else {
   986  		return w.w.WriteString(dataS)
   987  	}
   988  }
   989  
   990  func (w *response) finishRequest() {
   991  	w.handlerDone = true
   992  
   993  	if !w.wroteHeader {
   994  		w.WriteHeader(StatusOK)
   995  	}
   996  
   997  	w.w.Flush()
   998  	putBufioWriter(w.w)
   999  	w.cw.close()
  1000  	w.conn.buf.Flush()
  1001  
  1002  	// Close the body, unless we're about to close the whole TCP connection
  1003  	// anyway.
  1004  	if !w.closeAfterReply {
  1005  		w.req.Body.Close()
  1006  	}
  1007  	if w.req.MultipartForm != nil {
  1008  		w.req.MultipartForm.RemoveAll()
  1009  	}
  1010  
  1011  	if w.req.Method != "HEAD" && w.contentLength != -1 && w.bodyAllowed() && w.contentLength != w.written {
  1012  		// Did not write enough. Avoid getting out of sync.
  1013  		w.closeAfterReply = true
  1014  	}
  1015  }
  1016  
  1017  func (w *response) Flush() {
  1018  	if !w.wroteHeader {
  1019  		w.WriteHeader(StatusOK)
  1020  	}
  1021  	w.w.Flush()
  1022  	w.cw.flush()
  1023  }
  1024  
  1025  func (c *conn) finalFlush() {
  1026  	if c.buf != nil {
  1027  		c.buf.Flush()
  1028  
  1029  		// Steal the bufio.Reader (~4KB worth of memory) and its associated
  1030  		// reader for a future connection.
  1031  		putBufioReader(c.buf.Reader)
  1032  
  1033  		// Steal the bufio.Writer (~4KB worth of memory) and its associated
  1034  		// writer for a future connection.
  1035  		putBufioWriter(c.buf.Writer)
  1036  
  1037  		c.buf = nil
  1038  	}
  1039  }
  1040  
  1041  // Close the connection.
  1042  func (c *conn) close() {
  1043  	c.finalFlush()
  1044  	if c.rwc != nil {
  1045  		c.rwc.Close()
  1046  		c.rwc = nil
  1047  	}
  1048  }
  1049  
  1050  // rstAvoidanceDelay is the amount of time we sleep after closing the
  1051  // write side of a TCP connection before closing the entire socket.
  1052  // By sleeping, we increase the chances that the client sees our FIN
  1053  // and processes its final data before they process the subsequent RST
  1054  // from closing a connection with known unread data.
  1055  // This RST seems to occur mostly on BSD systems. (And Windows?)
  1056  // This timeout is somewhat arbitrary (~latency around the planet).
  1057  const rstAvoidanceDelay = 500 * time.Millisecond
  1058  
  1059  // closeWrite flushes any outstanding data and sends a FIN packet (if
  1060  // client is connected via TCP), signalling that we're done.  We then
  1061  // pause for a bit, hoping the client processes it before `any
  1062  // subsequent RST.
  1063  //
  1064  // See http://golang.org/issue/3595
  1065  func (c *conn) closeWriteAndWait() {
  1066  	c.finalFlush()
  1067  	if tcp, ok := c.rwc.(*net.TCPConn); ok {
  1068  		tcp.CloseWrite()
  1069  	}
  1070  	time.Sleep(rstAvoidanceDelay)
  1071  }
  1072  
  1073  // validNPN reports whether the proto is not a blacklisted Next
  1074  // Protocol Negotiation protocol.  Empty and built-in protocol types
  1075  // are blacklisted and can't be overridden with alternate
  1076  // implementations.
  1077  func validNPN(proto string) bool {
  1078  	switch proto {
  1079  	case "", "http/1.1", "http/1.0":
  1080  		return false
  1081  	}
  1082  	return true
  1083  }
  1084  
  1085  // Serve a new connection.
  1086  func (c *conn) serve() {
  1087  	defer func() {
  1088  		if err := recover(); err != nil {
  1089  			const size = 4096
  1090  			buf := make([]byte, size)
  1091  			buf = buf[:runtime.Stack(buf, false)]
  1092  			log.Printf("http: panic serving %v: %v\n%s", c.remoteAddr, err, buf)
  1093  		}
  1094  		if !c.hijacked() {
  1095  			c.close()
  1096  		}
  1097  	}()
  1098  
  1099  	if tlsConn, ok := c.rwc.(*tls.Conn); ok {
  1100  		if d := c.server.ReadTimeout; d != 0 {
  1101  			c.rwc.SetReadDeadline(time.Now().Add(d))
  1102  		}
  1103  		if d := c.server.WriteTimeout; d != 0 {
  1104  			c.rwc.SetWriteDeadline(time.Now().Add(d))
  1105  		}
  1106  		if err := tlsConn.Handshake(); err != nil {
  1107  			return
  1108  		}
  1109  		c.tlsState = new(tls.ConnectionState)
  1110  		*c.tlsState = tlsConn.ConnectionState()
  1111  		if proto := c.tlsState.NegotiatedProtocol; validNPN(proto) {
  1112  			if fn := c.server.TLSNextProto[proto]; fn != nil {
  1113  				h := initNPNRequest{tlsConn, serverHandler{c.server}}
  1114  				fn(c.server, tlsConn, h)
  1115  			}
  1116  			return
  1117  		}
  1118  	}
  1119  
  1120  	for {
  1121  		w, err := c.readRequest()
  1122  		if err != nil {
  1123  			if err == errTooLarge {
  1124  				// Their HTTP client may or may not be
  1125  				// able to read this if we're
  1126  				// responding to them and hanging up
  1127  				// while they're still writing their
  1128  				// request.  Undefined behavior.
  1129  				io.WriteString(c.rwc, "HTTP/1.1 413 Request Entity Too Large\r\n\r\n")
  1130  				c.closeWriteAndWait()
  1131  				break
  1132  			} else if err == io.EOF {
  1133  				break // Don't reply
  1134  			} else if neterr, ok := err.(net.Error); ok && neterr.Timeout() {
  1135  				break // Don't reply
  1136  			}
  1137  			io.WriteString(c.rwc, "HTTP/1.1 400 Bad Request\r\n\r\n")
  1138  			break
  1139  		}
  1140  
  1141  		// Expect 100 Continue support
  1142  		req := w.req
  1143  		if req.expectsContinue() {
  1144  			if req.ProtoAtLeast(1, 1) {
  1145  				// Wrap the Body reader with one that replies on the connection
  1146  				req.Body = &expectContinueReader{readCloser: req.Body, resp: w}
  1147  			}
  1148  			if req.ContentLength == 0 {
  1149  				w.Header().Set("Connection", "close")
  1150  				w.WriteHeader(StatusBadRequest)
  1151  				w.finishRequest()
  1152  				break
  1153  			}
  1154  			req.Header.Del("Expect")
  1155  		} else if req.Header.get("Expect") != "" {
  1156  			w.sendExpectationFailed()
  1157  			break
  1158  		}
  1159  
  1160  		// HTTP cannot have multiple simultaneous active requests.[*]
  1161  		// Until the server replies to this request, it can't read another,
  1162  		// so we might as well run the handler in this goroutine.
  1163  		// [*] Not strictly true: HTTP pipelining.  We could let them all process
  1164  		// in parallel even if their responses need to be serialized.
  1165  		serverHandler{c.server}.ServeHTTP(w, w.req)
  1166  		if c.hijacked() {
  1167  			return
  1168  		}
  1169  		w.finishRequest()
  1170  		if w.closeAfterReply {
  1171  			if w.requestBodyLimitHit {
  1172  				c.closeWriteAndWait()
  1173  			}
  1174  			break
  1175  		}
  1176  	}
  1177  }
  1178  
  1179  func (w *response) sendExpectationFailed() {
  1180  	// TODO(bradfitz): let ServeHTTP handlers handle
  1181  	// requests with non-standard expectation[s]? Seems
  1182  	// theoretical at best, and doesn't fit into the
  1183  	// current ServeHTTP model anyway.  We'd need to
  1184  	// make the ResponseWriter an optional
  1185  	// "ExpectReplier" interface or something.
  1186  	//
  1187  	// For now we'll just obey RFC 2616 14.20 which says
  1188  	// "If a server receives a request containing an
  1189  	// Expect field that includes an expectation-
  1190  	// extension that it does not support, it MUST
  1191  	// respond with a 417 (Expectation Failed) status."
  1192  	w.Header().Set("Connection", "close")
  1193  	w.WriteHeader(StatusExpectationFailed)
  1194  	w.finishRequest()
  1195  }
  1196  
  1197  // Hijack implements the Hijacker.Hijack method. Our response is both a ResponseWriter
  1198  // and a Hijacker.
  1199  func (w *response) Hijack() (rwc net.Conn, buf *bufio.ReadWriter, err error) {
  1200  	if w.wroteHeader {
  1201  		w.cw.flush()
  1202  	}
  1203  	return w.conn.hijack()
  1204  }
  1205  
  1206  func (w *response) CloseNotify() <-chan bool {
  1207  	return w.conn.closeNotify()
  1208  }
  1209  
  1210  // The HandlerFunc type is an adapter to allow the use of
  1211  // ordinary functions as HTTP handlers.  If f is a function
  1212  // with the appropriate signature, HandlerFunc(f) is a
  1213  // Handler object that calls f.
  1214  type HandlerFunc func(ResponseWriter, *Request)
  1215  
  1216  // ServeHTTP calls f(w, r).
  1217  func (f HandlerFunc) ServeHTTP(w ResponseWriter, r *Request) {
  1218  	f(w, r)
  1219  }
  1220  
  1221  // Helper handlers
  1222  
  1223  // Error replies to the request with the specified error message and HTTP code.
  1224  // The error message should be plain text.
  1225  func Error(w ResponseWriter, error string, code int) {
  1226  	w.Header().Set("Content-Type", "text/plain; charset=utf-8")
  1227  	w.WriteHeader(code)
  1228  	fmt.Fprintln(w, error)
  1229  }
  1230  
  1231  // NotFound replies to the request with an HTTP 404 not found error.
  1232  func NotFound(w ResponseWriter, r *Request) { Error(w, "404 page not found", StatusNotFound) }
  1233  
  1234  // NotFoundHandler returns a simple request handler
  1235  // that replies to each request with a ``404 page not found'' reply.
  1236  func NotFoundHandler() Handler { return HandlerFunc(NotFound) }
  1237  
  1238  // StripPrefix returns a handler that serves HTTP requests
  1239  // by removing the given prefix from the request URL's Path
  1240  // and invoking the handler h. StripPrefix handles a
  1241  // request for a path that doesn't begin with prefix by
  1242  // replying with an HTTP 404 not found error.
  1243  func StripPrefix(prefix string, h Handler) Handler {
  1244  	if prefix == "" {
  1245  		return h
  1246  	}
  1247  	return HandlerFunc(func(w ResponseWriter, r *Request) {
  1248  		if p := strings.TrimPrefix(r.URL.Path, prefix); len(p) < len(r.URL.Path) {
  1249  			r.URL.Path = p
  1250  			h.ServeHTTP(w, r)
  1251  		} else {
  1252  			NotFound(w, r)
  1253  		}
  1254  	})
  1255  }
  1256  
  1257  // Redirect replies to the request with a redirect to url,
  1258  // which may be a path relative to the request path.
  1259  func Redirect(w ResponseWriter, r *Request, urlStr string, code int) {
  1260  	if u, err := url.Parse(urlStr); err == nil {
  1261  		// If url was relative, make absolute by
  1262  		// combining with request path.
  1263  		// The browser would probably do this for us,
  1264  		// but doing it ourselves is more reliable.
  1265  
  1266  		// NOTE(rsc): RFC 2616 says that the Location
  1267  		// line must be an absolute URI, like
  1268  		// "http://www.google.com/redirect/",
  1269  		// not a path like "/redirect/".
  1270  		// Unfortunately, we don't know what to
  1271  		// put in the host name section to get the
  1272  		// client to connect to us again, so we can't
  1273  		// know the right absolute URI to send back.
  1274  		// Because of this problem, no one pays attention
  1275  		// to the RFC; they all send back just a new path.
  1276  		// So do we.
  1277  		oldpath := r.URL.Path
  1278  		if oldpath == "" { // should not happen, but avoid a crash if it does
  1279  			oldpath = "/"
  1280  		}
  1281  		if u.Scheme == "" {
  1282  			// no leading http://server
  1283  			if urlStr == "" || urlStr[0] != '/' {
  1284  				// make relative path absolute
  1285  				olddir, _ := path.Split(oldpath)
  1286  				urlStr = olddir + urlStr
  1287  			}
  1288  
  1289  			var query string
  1290  			if i := strings.Index(urlStr, "?"); i != -1 {
  1291  				urlStr, query = urlStr[:i], urlStr[i:]
  1292  			}
  1293  
  1294  			// clean up but preserve trailing slash
  1295  			trailing := strings.HasSuffix(urlStr, "/")
  1296  			urlStr = path.Clean(urlStr)
  1297  			if trailing && !strings.HasSuffix(urlStr, "/") {
  1298  				urlStr += "/"
  1299  			}
  1300  			urlStr += query
  1301  		}
  1302  	}
  1303  
  1304  	w.Header().Set("Location", urlStr)
  1305  	w.WriteHeader(code)
  1306  
  1307  	// RFC2616 recommends that a short note "SHOULD" be included in the
  1308  	// response because older user agents may not understand 301/307.
  1309  	// Shouldn't send the response for POST or HEAD; that leaves GET.
  1310  	if r.Method == "GET" {
  1311  		note := "<a href=\"" + htmlEscape(urlStr) + "\">" + statusText[code] + "</a>.\n"
  1312  		fmt.Fprintln(w, note)
  1313  	}
  1314  }
  1315  
  1316  var htmlReplacer = strings.NewReplacer(
  1317  	"&", "&amp;",
  1318  	"<", "&lt;",
  1319  	">", "&gt;",
  1320  	// "&#34;" is shorter than "&quot;".
  1321  	`"`, "&#34;",
  1322  	// "&#39;" is shorter than "&apos;" and apos was not in HTML until HTML5.
  1323  	"'", "&#39;",
  1324  )
  1325  
  1326  func htmlEscape(s string) string {
  1327  	return htmlReplacer.Replace(s)
  1328  }
  1329  
  1330  // Redirect to a fixed URL
  1331  type redirectHandler struct {
  1332  	url  string
  1333  	code int
  1334  }
  1335  
  1336  func (rh *redirectHandler) ServeHTTP(w ResponseWriter, r *Request) {
  1337  	Redirect(w, r, rh.url, rh.code)
  1338  }
  1339  
  1340  // RedirectHandler returns a request handler that redirects
  1341  // each request it receives to the given url using the given
  1342  // status code.
  1343  func RedirectHandler(url string, code int) Handler {
  1344  	return &redirectHandler{url, code}
  1345  }
  1346  
  1347  // ServeMux is an HTTP request multiplexer.
  1348  // It matches the URL of each incoming request against a list of registered
  1349  // patterns and calls the handler for the pattern that
  1350  // most closely matches the URL.
  1351  //
  1352  // Patterns name fixed, rooted paths, like "/favicon.ico",
  1353  // or rooted subtrees, like "/images/" (note the trailing slash).
  1354  // Longer patterns take precedence over shorter ones, so that
  1355  // if there are handlers registered for both "/images/"
  1356  // and "/images/thumbnails/", the latter handler will be
  1357  // called for paths beginning "/images/thumbnails/" and the
  1358  // former will receive requests for any other paths in the
  1359  // "/images/" subtree.
  1360  //
  1361  // Patterns may optionally begin with a host name, restricting matches to
  1362  // URLs on that host only.  Host-specific patterns take precedence over
  1363  // general patterns, so that a handler might register for the two patterns
  1364  // "/codesearch" and "codesearch.google.com/" without also taking over
  1365  // requests for "http://www.google.com/".
  1366  //
  1367  // ServeMux also takes care of sanitizing the URL request path,
  1368  // redirecting any request containing . or .. elements to an
  1369  // equivalent .- and ..-free URL.
  1370  type ServeMux struct {
  1371  	mu    sync.RWMutex
  1372  	m     map[string]muxEntry
  1373  	hosts bool // whether any patterns contain hostnames
  1374  }
  1375  
  1376  type muxEntry struct {
  1377  	explicit bool
  1378  	h        Handler
  1379  	pattern  string
  1380  }
  1381  
  1382  // NewServeMux allocates and returns a new ServeMux.
  1383  func NewServeMux() *ServeMux { return &ServeMux{m: make(map[string]muxEntry)} }
  1384  
  1385  // DefaultServeMux is the default ServeMux used by Serve.
  1386  var DefaultServeMux = NewServeMux()
  1387  
  1388  // Does path match pattern?
  1389  func pathMatch(pattern, path string) bool {
  1390  	if len(pattern) == 0 {
  1391  		// should not happen
  1392  		return false
  1393  	}
  1394  	n := len(pattern)
  1395  	if pattern[n-1] != '/' {
  1396  		return pattern == path
  1397  	}
  1398  	return len(path) >= n && path[0:n] == pattern
  1399  }
  1400  
  1401  // Return the canonical path for p, eliminating . and .. elements.
  1402  func cleanPath(p string) string {
  1403  	if p == "" {
  1404  		return "/"
  1405  	}
  1406  	if p[0] != '/' {
  1407  		p = "/" + p
  1408  	}
  1409  	np := path.Clean(p)
  1410  	// path.Clean removes trailing slash except for root;
  1411  	// put the trailing slash back if necessary.
  1412  	if p[len(p)-1] == '/' && np != "/" {
  1413  		np += "/"
  1414  	}
  1415  	return np
  1416  }
  1417  
  1418  // Find a handler on a handler map given a path string
  1419  // Most-specific (longest) pattern wins
  1420  func (mux *ServeMux) match(path string) (h Handler, pattern string) {
  1421  	var n = 0
  1422  	for k, v := range mux.m {
  1423  		if !pathMatch(k, path) {
  1424  			continue
  1425  		}
  1426  		if h == nil || len(k) > n {
  1427  			n = len(k)
  1428  			h = v.h
  1429  			pattern = v.pattern
  1430  		}
  1431  	}
  1432  	return
  1433  }
  1434  
  1435  // Handler returns the handler to use for the given request,
  1436  // consulting r.Method, r.Host, and r.URL.Path. It always returns
  1437  // a non-nil handler. If the path is not in its canonical form, the
  1438  // handler will be an internally-generated handler that redirects
  1439  // to the canonical path.
  1440  //
  1441  // Handler also returns the registered pattern that matches the
  1442  // request or, in the case of internally-generated redirects,
  1443  // the pattern that will match after following the redirect.
  1444  //
  1445  // If there is no registered handler that applies to the request,
  1446  // Handler returns a ``page not found'' handler and an empty pattern.
  1447  func (mux *ServeMux) Handler(r *Request) (h Handler, pattern string) {
  1448  	if r.Method != "CONNECT" {
  1449  		if p := cleanPath(r.URL.Path); p != r.URL.Path {
  1450  			_, pattern = mux.handler(r.Host, p)
  1451  			url := *r.URL
  1452  			url.Path = p
  1453  			return RedirectHandler(url.String(), StatusMovedPermanently), pattern
  1454  		}
  1455  	}
  1456  
  1457  	return mux.handler(r.Host, r.URL.Path)
  1458  }
  1459  
  1460  // handler is the main implementation of Handler.
  1461  // The path is known to be in canonical form, except for CONNECT methods.
  1462  func (mux *ServeMux) handler(host, path string) (h Handler, pattern string) {
  1463  	mux.mu.RLock()
  1464  	defer mux.mu.RUnlock()
  1465  
  1466  	// Host-specific pattern takes precedence over generic ones
  1467  	if mux.hosts {
  1468  		h, pattern = mux.match(host + path)
  1469  	}
  1470  	if h == nil {
  1471  		h, pattern = mux.match(path)
  1472  	}
  1473  	if h == nil {
  1474  		h, pattern = NotFoundHandler(), ""
  1475  	}
  1476  	return
  1477  }
  1478  
  1479  // ServeHTTP dispatches the request to the handler whose
  1480  // pattern most closely matches the request URL.
  1481  func (mux *ServeMux) ServeHTTP(w ResponseWriter, r *Request) {
  1482  	if r.RequestURI == "*" {
  1483  		if r.ProtoAtLeast(1, 1) {
  1484  			w.Header().Set("Connection", "close")
  1485  		}
  1486  		w.WriteHeader(StatusBadRequest)
  1487  		return
  1488  	}
  1489  	h, _ := mux.Handler(r)
  1490  	h.ServeHTTP(w, r)
  1491  }
  1492  
  1493  // Handle registers the handler for the given pattern.
  1494  // If a handler already exists for pattern, Handle panics.
  1495  func (mux *ServeMux) Handle(pattern string, handler Handler) {
  1496  	mux.mu.Lock()
  1497  	defer mux.mu.Unlock()
  1498  
  1499  	if pattern == "" {
  1500  		panic("http: invalid pattern " + pattern)
  1501  	}
  1502  	if handler == nil {
  1503  		panic("http: nil handler")
  1504  	}
  1505  	if mux.m[pattern].explicit {
  1506  		panic("http: multiple registrations for " + pattern)
  1507  	}
  1508  
  1509  	mux.m[pattern] = muxEntry{explicit: true, h: handler, pattern: pattern}
  1510  
  1511  	if pattern[0] != '/' {
  1512  		mux.hosts = true
  1513  	}
  1514  
  1515  	// Helpful behavior:
  1516  	// If pattern is /tree/, insert an implicit permanent redirect for /tree.
  1517  	// It can be overridden by an explicit registration.
  1518  	n := len(pattern)
  1519  	if n > 0 && pattern[n-1] == '/' && !mux.m[pattern[0:n-1]].explicit {
  1520  		// If pattern contains a host name, strip it and use remaining
  1521  		// path for redirect.
  1522  		path := pattern
  1523  		if pattern[0] != '/' {
  1524  			// In pattern, at least the last character is a '/', so
  1525  			// strings.Index can't be -1.
  1526  			path = pattern[strings.Index(pattern, "/"):]
  1527  		}
  1528  		mux.m[pattern[0:n-1]] = muxEntry{h: RedirectHandler(path, StatusMovedPermanently), pattern: pattern}
  1529  	}
  1530  }
  1531  
  1532  // HandleFunc registers the handler function for the given pattern.
  1533  func (mux *ServeMux) HandleFunc(pattern string, handler func(ResponseWriter, *Request)) {
  1534  	mux.Handle(pattern, HandlerFunc(handler))
  1535  }
  1536  
  1537  // Handle registers the handler for the given pattern
  1538  // in the DefaultServeMux.
  1539  // The documentation for ServeMux explains how patterns are matched.
  1540  func Handle(pattern string, handler Handler) { DefaultServeMux.Handle(pattern, handler) }
  1541  
  1542  // HandleFunc registers the handler function for the given pattern
  1543  // in the DefaultServeMux.
  1544  // The documentation for ServeMux explains how patterns are matched.
  1545  func HandleFunc(pattern string, handler func(ResponseWriter, *Request)) {
  1546  	DefaultServeMux.HandleFunc(pattern, handler)
  1547  }
  1548  
  1549  // Serve accepts incoming HTTP connections on the listener l,
  1550  // creating a new service goroutine for each.  The service goroutines
  1551  // read requests and then call handler to reply to them.
  1552  // Handler is typically nil, in which case the DefaultServeMux is used.
  1553  func Serve(l net.Listener, handler Handler) error {
  1554  	srv := &Server{Handler: handler}
  1555  	return srv.Serve(l)
  1556  }
  1557  
  1558  // A Server defines parameters for running an HTTP server.
  1559  type Server struct {
  1560  	Addr           string        // TCP address to listen on, ":http" if empty
  1561  	Handler        Handler       // handler to invoke, http.DefaultServeMux if nil
  1562  	ReadTimeout    time.Duration // maximum duration before timing out read of the request
  1563  	WriteTimeout   time.Duration // maximum duration before timing out write of the response
  1564  	MaxHeaderBytes int           // maximum size of request headers, DefaultMaxHeaderBytes if 0
  1565  	TLSConfig      *tls.Config   // optional TLS config, used by ListenAndServeTLS
  1566  
  1567  	// TLSNextProto optionally specifies a function to take over
  1568  	// ownership of the provided TLS connection when an NPN
  1569  	// protocol upgrade has occurred.  The map key is the protocol
  1570  	// name negotiated. The Handler argument should be used to
  1571  	// handle HTTP requests and will initialize the Request's TLS
  1572  	// and RemoteAddr if not already set.  The connection is
  1573  	// automatically closed when the function returns.
  1574  	TLSNextProto map[string]func(*Server, *tls.Conn, Handler)
  1575  }
  1576  
  1577  // serverHandler delegates to either the server's Handler or
  1578  // DefaultServeMux and also handles "OPTIONS *" requests.
  1579  type serverHandler struct {
  1580  	srv *Server
  1581  }
  1582  
  1583  func (sh serverHandler) ServeHTTP(rw ResponseWriter, req *Request) {
  1584  	handler := sh.srv.Handler
  1585  	if handler == nil {
  1586  		handler = DefaultServeMux
  1587  	}
  1588  	if req.RequestURI == "*" && req.Method == "OPTIONS" {
  1589  		handler = globalOptionsHandler{}
  1590  	}
  1591  	handler.ServeHTTP(rw, req)
  1592  }
  1593  
  1594  // ListenAndServe listens on the TCP network address srv.Addr and then
  1595  // calls Serve to handle requests on incoming connections.  If
  1596  // srv.Addr is blank, ":http" is used.
  1597  func (srv *Server) ListenAndServe() error {
  1598  	addr := srv.Addr
  1599  	if addr == "" {
  1600  		addr = ":http"
  1601  	}
  1602  	l, e := net.Listen("tcp", addr)
  1603  	if e != nil {
  1604  		return e
  1605  	}
  1606  	return srv.Serve(l)
  1607  }
  1608  
  1609  // Serve accepts incoming connections on the Listener l, creating a
  1610  // new service goroutine for each.  The service goroutines read requests and
  1611  // then call srv.Handler to reply to them.
  1612  func (srv *Server) Serve(l net.Listener) error {
  1613  	defer l.Close()
  1614  	var tempDelay time.Duration // how long to sleep on accept failure
  1615  	for {
  1616  		rw, e := l.Accept()
  1617  		if e != nil {
  1618  			if ne, ok := e.(net.Error); ok && ne.Temporary() {
  1619  				if tempDelay == 0 {
  1620  					tempDelay = 5 * time.Millisecond
  1621  				} else {
  1622  					tempDelay *= 2
  1623  				}
  1624  				if max := 1 * time.Second; tempDelay > max {
  1625  					tempDelay = max
  1626  				}
  1627  				log.Printf("http: Accept error: %v; retrying in %v", e, tempDelay)
  1628  				time.Sleep(tempDelay)
  1629  				continue
  1630  			}
  1631  			return e
  1632  		}
  1633  		tempDelay = 0
  1634  		c, err := srv.newConn(rw)
  1635  		if err != nil {
  1636  			continue
  1637  		}
  1638  		go c.serve()
  1639  	}
  1640  }
  1641  
  1642  // ListenAndServe listens on the TCP network address addr
  1643  // and then calls Serve with handler to handle requests
  1644  // on incoming connections.  Handler is typically nil,
  1645  // in which case the DefaultServeMux is used.
  1646  //
  1647  // A trivial example server is:
  1648  //
  1649  //	package main
  1650  //
  1651  //	import (
  1652  //		"io"
  1653  //		"net/http"
  1654  //		"log"
  1655  //	)
  1656  //
  1657  //	// hello world, the web server
  1658  //	func HelloServer(w http.ResponseWriter, req *http.Request) {
  1659  //		io.WriteString(w, "hello, world!\n")
  1660  //	}
  1661  //
  1662  //	func main() {
  1663  //		http.HandleFunc("/hello", HelloServer)
  1664  //		err := http.ListenAndServe(":12345", nil)
  1665  //		if err != nil {
  1666  //			log.Fatal("ListenAndServe: ", err)
  1667  //		}
  1668  //	}
  1669  func ListenAndServe(addr string, handler Handler) error {
  1670  	server := &Server{Addr: addr, Handler: handler}
  1671  	return server.ListenAndServe()
  1672  }
  1673  
  1674  // ListenAndServeTLS acts identically to ListenAndServe, except that it
  1675  // expects HTTPS connections. Additionally, files containing a certificate and
  1676  // matching private key for the server must be provided. If the certificate
  1677  // is signed by a certificate authority, the certFile should be the concatenation
  1678  // of the server's certificate followed by the CA's certificate.
  1679  //
  1680  // A trivial example server is:
  1681  //
  1682  //	import (
  1683  //		"log"
  1684  //		"net/http"
  1685  //	)
  1686  //
  1687  //	func handler(w http.ResponseWriter, req *http.Request) {
  1688  //		w.Header().Set("Content-Type", "text/plain")
  1689  //		w.Write([]byte("This is an example server.\n"))
  1690  //	}
  1691  //
  1692  //	func main() {
  1693  //		http.HandleFunc("/", handler)
  1694  //		log.Printf("About to listen on 10443. Go to https://127.0.0.1:10443/")
  1695  //		err := http.ListenAndServeTLS(":10443", "cert.pem", "key.pem", nil)
  1696  //		if err != nil {
  1697  //			log.Fatal(err)
  1698  //		}
  1699  //	}
  1700  //
  1701  // One can use generate_cert.go in crypto/tls to generate cert.pem and key.pem.
  1702  func ListenAndServeTLS(addr string, certFile string, keyFile string, handler Handler) error {
  1703  	server := &Server{Addr: addr, Handler: handler}
  1704  	return server.ListenAndServeTLS(certFile, keyFile)
  1705  }
  1706  
  1707  // ListenAndServeTLS listens on the TCP network address srv.Addr and
  1708  // then calls Serve to handle requests on incoming TLS connections.
  1709  //
  1710  // Filenames containing a certificate and matching private key for
  1711  // the server must be provided. If the certificate is signed by a
  1712  // certificate authority, the certFile should be the concatenation
  1713  // of the server's certificate followed by the CA's certificate.
  1714  //
  1715  // If srv.Addr is blank, ":https" is used.
  1716  func (srv *Server) ListenAndServeTLS(certFile, keyFile string) error {
  1717  	addr := srv.Addr
  1718  	if addr == "" {
  1719  		addr = ":https"
  1720  	}
  1721  	config := &tls.Config{}
  1722  	if srv.TLSConfig != nil {
  1723  		*config = *srv.TLSConfig
  1724  	}
  1725  	if config.NextProtos == nil {
  1726  		config.NextProtos = []string{"http/1.1"}
  1727  	}
  1728  
  1729  	var err error
  1730  	config.Certificates = make([]tls.Certificate, 1)
  1731  	config.Certificates[0], err = tls.LoadX509KeyPair(certFile, keyFile)
  1732  	if err != nil {
  1733  		return err
  1734  	}
  1735  
  1736  	conn, err := net.Listen("tcp", addr)
  1737  	if err != nil {
  1738  		return err
  1739  	}
  1740  
  1741  	tlsListener := tls.NewListener(conn, config)
  1742  	return srv.Serve(tlsListener)
  1743  }
  1744  
  1745  // TimeoutHandler returns a Handler that runs h with the given time limit.
  1746  //
  1747  // The new Handler calls h.ServeHTTP to handle each request, but if a
  1748  // call runs for longer than its time limit, the handler responds with
  1749  // a 503 Service Unavailable error and the given message in its body.
  1750  // (If msg is empty, a suitable default message will be sent.)
  1751  // After such a timeout, writes by h to its ResponseWriter will return
  1752  // ErrHandlerTimeout.
  1753  func TimeoutHandler(h Handler, dt time.Duration, msg string) Handler {
  1754  	f := func() <-chan time.Time {
  1755  		return time.After(dt)
  1756  	}
  1757  	return &timeoutHandler{h, f, msg}
  1758  }
  1759  
  1760  // ErrHandlerTimeout is returned on ResponseWriter Write calls
  1761  // in handlers which have timed out.
  1762  var ErrHandlerTimeout = errors.New("http: Handler timeout")
  1763  
  1764  type timeoutHandler struct {
  1765  	handler Handler
  1766  	timeout func() <-chan time.Time // returns channel producing a timeout
  1767  	body    string
  1768  }
  1769  
  1770  func (h *timeoutHandler) errorBody() string {
  1771  	if h.body != "" {
  1772  		return h.body
  1773  	}
  1774  	return "<html><head><title>Timeout</title></head><body><h1>Timeout</h1></body></html>"
  1775  }
  1776  
  1777  func (h *timeoutHandler) ServeHTTP(w ResponseWriter, r *Request) {
  1778  	done := make(chan bool, 1)
  1779  	tw := &timeoutWriter{w: w}
  1780  	go func() {
  1781  		h.handler.ServeHTTP(tw, r)
  1782  		done <- true
  1783  	}()
  1784  	select {
  1785  	case <-done:
  1786  		return
  1787  	case <-h.timeout():
  1788  		tw.mu.Lock()
  1789  		defer tw.mu.Unlock()
  1790  		if !tw.wroteHeader {
  1791  			tw.w.WriteHeader(StatusServiceUnavailable)
  1792  			tw.w.Write([]byte(h.errorBody()))
  1793  		}
  1794  		tw.timedOut = true
  1795  	}
  1796  }
  1797  
  1798  type timeoutWriter struct {
  1799  	w ResponseWriter
  1800  
  1801  	mu          sync.Mutex
  1802  	timedOut    bool
  1803  	wroteHeader bool
  1804  }
  1805  
  1806  func (tw *timeoutWriter) Header() Header {
  1807  	return tw.w.Header()
  1808  }
  1809  
  1810  func (tw *timeoutWriter) Write(p []byte) (int, error) {
  1811  	tw.mu.Lock()
  1812  	timedOut := tw.timedOut
  1813  	tw.mu.Unlock()
  1814  	if timedOut {
  1815  		return 0, ErrHandlerTimeout
  1816  	}
  1817  	return tw.w.Write(p)
  1818  }
  1819  
  1820  func (tw *timeoutWriter) WriteHeader(code int) {
  1821  	tw.mu.Lock()
  1822  	if tw.timedOut || tw.wroteHeader {
  1823  		tw.mu.Unlock()
  1824  		return
  1825  	}
  1826  	tw.wroteHeader = true
  1827  	tw.mu.Unlock()
  1828  	tw.w.WriteHeader(code)
  1829  }
  1830  
  1831  // globalOptionsHandler responds to "OPTIONS *" requests.
  1832  type globalOptionsHandler struct{}
  1833  
  1834  func (globalOptionsHandler) ServeHTTP(w ResponseWriter, r *Request) {
  1835  	w.Header().Set("Content-Length", "0")
  1836  	if r.ContentLength != 0 {
  1837  		// Read up to 4KB of OPTIONS body (as mentioned in the
  1838  		// spec as being reserved for future use), but anything
  1839  		// over that is considered a waste of server resources
  1840  		// (or an attack) and we abort and close the connection,
  1841  		// courtesy of MaxBytesReader's EOF behavior.
  1842  		mb := MaxBytesReader(w, r.Body, 4<<10)
  1843  		io.Copy(ioutil.Discard, mb)
  1844  	}
  1845  }
  1846  
  1847  // eofReader is a non-nil io.ReadCloser that always returns EOF.
  1848  // It embeds a *strings.Reader so it still has a WriteTo method
  1849  // and io.Copy won't need a buffer.
  1850  var eofReader = &struct {
  1851  	*strings.Reader
  1852  	io.Closer
  1853  }{
  1854  	strings.NewReader(""),
  1855  	ioutil.NopCloser(nil),
  1856  }
  1857  
  1858  // initNPNRequest is an HTTP handler that initializes certain
  1859  // uninitialized fields in its *Request. Such partially-initialized
  1860  // Requests come from NPN protocol handlers.
  1861  type initNPNRequest struct {
  1862  	c *tls.Conn
  1863  	h serverHandler
  1864  }
  1865  
  1866  func (h initNPNRequest) ServeHTTP(rw ResponseWriter, req *Request) {
  1867  	if req.TLS == nil {
  1868  		req.TLS = &tls.ConnectionState{}
  1869  		*req.TLS = h.c.ConnectionState()
  1870  	}
  1871  	if req.Body == nil {
  1872  		req.Body = eofReader
  1873  	}
  1874  	if req.RemoteAddr == "" {
  1875  		req.RemoteAddr = h.c.RemoteAddr().String()
  1876  	}
  1877  	h.h.ServeHTTP(rw, req)
  1878  }
  1879  
  1880  // loggingConn is used for debugging.
  1881  type loggingConn struct {
  1882  	name string
  1883  	net.Conn
  1884  }
  1885  
  1886  var (
  1887  	uniqNameMu   sync.Mutex
  1888  	uniqNameNext = make(map[string]int)
  1889  )
  1890  
  1891  func newLoggingConn(baseName string, c net.Conn) net.Conn {
  1892  	uniqNameMu.Lock()
  1893  	defer uniqNameMu.Unlock()
  1894  	uniqNameNext[baseName]++
  1895  	return &loggingConn{
  1896  		name: fmt.Sprintf("%s-%d", baseName, uniqNameNext[baseName]),
  1897  		Conn: c,
  1898  	}
  1899  }
  1900  
  1901  func (c *loggingConn) Write(p []byte) (n int, err error) {
  1902  	log.Printf("%s.Write(%d) = ....", c.name, len(p))
  1903  	n, err = c.Conn.Write(p)
  1904  	log.Printf("%s.Write(%d) = %d, %v", c.name, len(p), n, err)
  1905  	return
  1906  }
  1907  
  1908  func (c *loggingConn) Read(p []byte) (n int, err error) {
  1909  	log.Printf("%s.Read(%d) = ....", c.name, len(p))
  1910  	n, err = c.Conn.Read(p)
  1911  	log.Printf("%s.Read(%d) = %d, %v", c.name, len(p), n, err)
  1912  	return
  1913  }
  1914  
  1915  func (c *loggingConn) Close() (err error) {
  1916  	log.Printf("%s.Close() = ...", c.name)
  1917  	err = c.Conn.Close()
  1918  	log.Printf("%s.Close() = %v", c.name, err)
  1919  	return
  1920  }