github.com/varialus/godfly@v0.0.0-20130904042352-1934f9f095ab/src/pkg/text/template/exec.go (about) 1 // Copyright 2011 The Go Authors. All rights reserved. 2 // Use of this source code is governed by a BSD-style 3 // license that can be found in the LICENSE file. 4 5 package template 6 7 import ( 8 "bytes" 9 "fmt" 10 "io" 11 "reflect" 12 "runtime" 13 "sort" 14 "strings" 15 "text/template/parse" 16 ) 17 18 // state represents the state of an execution. It's not part of the 19 // template so that multiple executions of the same template 20 // can execute in parallel. 21 type state struct { 22 tmpl *Template 23 wr io.Writer 24 node parse.Node // current node, for errors 25 vars []variable // push-down stack of variable values. 26 } 27 28 // variable holds the dynamic value of a variable such as $, $x etc. 29 type variable struct { 30 name string 31 value reflect.Value 32 } 33 34 // push pushes a new variable on the stack. 35 func (s *state) push(name string, value reflect.Value) { 36 s.vars = append(s.vars, variable{name, value}) 37 } 38 39 // mark returns the length of the variable stack. 40 func (s *state) mark() int { 41 return len(s.vars) 42 } 43 44 // pop pops the variable stack up to the mark. 45 func (s *state) pop(mark int) { 46 s.vars = s.vars[0:mark] 47 } 48 49 // setVar overwrites the top-nth variable on the stack. Used by range iterations. 50 func (s *state) setVar(n int, value reflect.Value) { 51 s.vars[len(s.vars)-n].value = value 52 } 53 54 // varValue returns the value of the named variable. 55 func (s *state) varValue(name string) reflect.Value { 56 for i := s.mark() - 1; i >= 0; i-- { 57 if s.vars[i].name == name { 58 return s.vars[i].value 59 } 60 } 61 s.errorf("undefined variable: %s", name) 62 return zero 63 } 64 65 var zero reflect.Value 66 67 // at marks the state to be on node n, for error reporting. 68 func (s *state) at(node parse.Node) { 69 s.node = node 70 } 71 72 // doublePercent returns the string with %'s replaced by %%, if necessary, 73 // so it can be used safely inside a Printf format string. 74 func doublePercent(str string) string { 75 if strings.Contains(str, "%") { 76 str = strings.Replace(str, "%", "%%", -1) 77 } 78 return str 79 } 80 81 // errorf formats the error and terminates processing. 82 func (s *state) errorf(format string, args ...interface{}) { 83 name := doublePercent(s.tmpl.Name()) 84 if s.node == nil { 85 format = fmt.Sprintf("template: %s: %s", name, format) 86 } else { 87 location, context := s.tmpl.ErrorContext(s.node) 88 format = fmt.Sprintf("template: %s: executing %q at <%s>: %s", location, name, doublePercent(context), format) 89 } 90 panic(fmt.Errorf(format, args...)) 91 } 92 93 // errRecover is the handler that turns panics into returns from the top 94 // level of Parse. 95 func errRecover(errp *error) { 96 e := recover() 97 if e != nil { 98 switch err := e.(type) { 99 case runtime.Error: 100 panic(e) 101 case error: 102 *errp = err 103 default: 104 panic(e) 105 } 106 } 107 } 108 109 // ExecuteTemplate applies the template associated with t that has the given name 110 // to the specified data object and writes the output to wr. 111 func (t *Template) ExecuteTemplate(wr io.Writer, name string, data interface{}) error { 112 tmpl := t.tmpl[name] 113 if tmpl == nil { 114 return fmt.Errorf("template: no template %q associated with template %q", name, t.name) 115 } 116 return tmpl.Execute(wr, data) 117 } 118 119 // Execute applies a parsed template to the specified data object, 120 // and writes the output to wr. 121 func (t *Template) Execute(wr io.Writer, data interface{}) (err error) { 122 defer errRecover(&err) 123 value := reflect.ValueOf(data) 124 state := &state{ 125 tmpl: t, 126 wr: wr, 127 vars: []variable{{"$", value}}, 128 } 129 t.init() 130 if t.Tree == nil || t.Root == nil { 131 var b bytes.Buffer 132 for name, tmpl := range t.tmpl { 133 if tmpl.Tree == nil || tmpl.Root == nil { 134 continue 135 } 136 if b.Len() > 0 { 137 b.WriteString(", ") 138 } 139 fmt.Fprintf(&b, "%q", name) 140 } 141 var s string 142 if b.Len() > 0 { 143 s = "; defined templates are: " + b.String() 144 } 145 state.errorf("%q is an incomplete or empty template%s", t.Name(), s) 146 } 147 state.walk(value, t.Root) 148 return 149 } 150 151 // Walk functions step through the major pieces of the template structure, 152 // generating output as they go. 153 func (s *state) walk(dot reflect.Value, node parse.Node) { 154 s.at(node) 155 switch node := node.(type) { 156 case *parse.ActionNode: 157 // Do not pop variables so they persist until next end. 158 // Also, if the action declares variables, don't print the result. 159 val := s.evalPipeline(dot, node.Pipe) 160 if len(node.Pipe.Decl) == 0 { 161 s.printValue(node, val) 162 } 163 case *parse.IfNode: 164 s.walkIfOrWith(parse.NodeIf, dot, node.Pipe, node.List, node.ElseList) 165 case *parse.ListNode: 166 for _, node := range node.Nodes { 167 s.walk(dot, node) 168 } 169 case *parse.RangeNode: 170 s.walkRange(dot, node) 171 case *parse.TemplateNode: 172 s.walkTemplate(dot, node) 173 case *parse.TextNode: 174 if _, err := s.wr.Write(node.Text); err != nil { 175 s.errorf("%s", err) 176 } 177 case *parse.WithNode: 178 s.walkIfOrWith(parse.NodeWith, dot, node.Pipe, node.List, node.ElseList) 179 default: 180 s.errorf("unknown node: %s", node) 181 } 182 } 183 184 // walkIfOrWith walks an 'if' or 'with' node. The two control structures 185 // are identical in behavior except that 'with' sets dot. 186 func (s *state) walkIfOrWith(typ parse.NodeType, dot reflect.Value, pipe *parse.PipeNode, list, elseList *parse.ListNode) { 187 defer s.pop(s.mark()) 188 val := s.evalPipeline(dot, pipe) 189 truth, ok := isTrue(val) 190 if !ok { 191 s.errorf("if/with can't use %v", val) 192 } 193 if truth { 194 if typ == parse.NodeWith { 195 s.walk(val, list) 196 } else { 197 s.walk(dot, list) 198 } 199 } else if elseList != nil { 200 s.walk(dot, elseList) 201 } 202 } 203 204 // isTrue reports whether the value is 'true', in the sense of not the zero of its type, 205 // and whether the value has a meaningful truth value. 206 func isTrue(val reflect.Value) (truth, ok bool) { 207 if !val.IsValid() { 208 // Something like var x interface{}, never set. It's a form of nil. 209 return false, true 210 } 211 switch val.Kind() { 212 case reflect.Array, reflect.Map, reflect.Slice, reflect.String: 213 truth = val.Len() > 0 214 case reflect.Bool: 215 truth = val.Bool() 216 case reflect.Complex64, reflect.Complex128: 217 truth = val.Complex() != 0 218 case reflect.Chan, reflect.Func, reflect.Ptr, reflect.Interface: 219 truth = !val.IsNil() 220 case reflect.Int, reflect.Int8, reflect.Int16, reflect.Int32, reflect.Int64: 221 truth = val.Int() != 0 222 case reflect.Float32, reflect.Float64: 223 truth = val.Float() != 0 224 case reflect.Uint, reflect.Uint8, reflect.Uint16, reflect.Uint32, reflect.Uint64, reflect.Uintptr: 225 truth = val.Uint() != 0 226 case reflect.Struct: 227 truth = true // Struct values are always true. 228 default: 229 return 230 } 231 return truth, true 232 } 233 234 func (s *state) walkRange(dot reflect.Value, r *parse.RangeNode) { 235 s.at(r) 236 defer s.pop(s.mark()) 237 val, _ := indirect(s.evalPipeline(dot, r.Pipe)) 238 // mark top of stack before any variables in the body are pushed. 239 mark := s.mark() 240 oneIteration := func(index, elem reflect.Value) { 241 // Set top var (lexically the second if there are two) to the element. 242 if len(r.Pipe.Decl) > 0 { 243 s.setVar(1, elem) 244 } 245 // Set next var (lexically the first if there are two) to the index. 246 if len(r.Pipe.Decl) > 1 { 247 s.setVar(2, index) 248 } 249 s.walk(elem, r.List) 250 s.pop(mark) 251 } 252 switch val.Kind() { 253 case reflect.Array, reflect.Slice: 254 if val.Len() == 0 { 255 break 256 } 257 for i := 0; i < val.Len(); i++ { 258 oneIteration(reflect.ValueOf(i), val.Index(i)) 259 } 260 return 261 case reflect.Map: 262 if val.Len() == 0 { 263 break 264 } 265 for _, key := range sortKeys(val.MapKeys()) { 266 oneIteration(key, val.MapIndex(key)) 267 } 268 return 269 case reflect.Chan: 270 if val.IsNil() { 271 break 272 } 273 i := 0 274 for ; ; i++ { 275 elem, ok := val.Recv() 276 if !ok { 277 break 278 } 279 oneIteration(reflect.ValueOf(i), elem) 280 } 281 if i == 0 { 282 break 283 } 284 return 285 case reflect.Invalid: 286 break // An invalid value is likely a nil map, etc. and acts like an empty map. 287 default: 288 s.errorf("range can't iterate over %v", val) 289 } 290 if r.ElseList != nil { 291 s.walk(dot, r.ElseList) 292 } 293 } 294 295 func (s *state) walkTemplate(dot reflect.Value, t *parse.TemplateNode) { 296 s.at(t) 297 tmpl := s.tmpl.tmpl[t.Name] 298 if tmpl == nil { 299 s.errorf("template %q not defined", t.Name) 300 } 301 // Variables declared by the pipeline persist. 302 dot = s.evalPipeline(dot, t.Pipe) 303 newState := *s 304 newState.tmpl = tmpl 305 // No dynamic scoping: template invocations inherit no variables. 306 newState.vars = []variable{{"$", dot}} 307 newState.walk(dot, tmpl.Root) 308 } 309 310 // Eval functions evaluate pipelines, commands, and their elements and extract 311 // values from the data structure by examining fields, calling methods, and so on. 312 // The printing of those values happens only through walk functions. 313 314 // evalPipeline returns the value acquired by evaluating a pipeline. If the 315 // pipeline has a variable declaration, the variable will be pushed on the 316 // stack. Callers should therefore pop the stack after they are finished 317 // executing commands depending on the pipeline value. 318 func (s *state) evalPipeline(dot reflect.Value, pipe *parse.PipeNode) (value reflect.Value) { 319 if pipe == nil { 320 return 321 } 322 s.at(pipe) 323 for _, cmd := range pipe.Cmds { 324 value = s.evalCommand(dot, cmd, value) // previous value is this one's final arg. 325 // If the object has type interface{}, dig down one level to the thing inside. 326 if value.Kind() == reflect.Interface && value.Type().NumMethod() == 0 { 327 value = reflect.ValueOf(value.Interface()) // lovely! 328 } 329 } 330 for _, variable := range pipe.Decl { 331 s.push(variable.Ident[0], value) 332 } 333 return value 334 } 335 336 func (s *state) notAFunction(args []parse.Node, final reflect.Value) { 337 if len(args) > 1 || final.IsValid() { 338 s.errorf("can't give argument to non-function %s", args[0]) 339 } 340 } 341 342 func (s *state) evalCommand(dot reflect.Value, cmd *parse.CommandNode, final reflect.Value) reflect.Value { 343 firstWord := cmd.Args[0] 344 switch n := firstWord.(type) { 345 case *parse.FieldNode: 346 return s.evalFieldNode(dot, n, cmd.Args, final) 347 case *parse.ChainNode: 348 return s.evalChainNode(dot, n, cmd.Args, final) 349 case *parse.IdentifierNode: 350 // Must be a function. 351 return s.evalFunction(dot, n, cmd, cmd.Args, final) 352 case *parse.PipeNode: 353 // Parenthesized pipeline. The arguments are all inside the pipeline; final is ignored. 354 return s.evalPipeline(dot, n) 355 case *parse.VariableNode: 356 return s.evalVariableNode(dot, n, cmd.Args, final) 357 } 358 s.at(firstWord) 359 s.notAFunction(cmd.Args, final) 360 switch word := firstWord.(type) { 361 case *parse.BoolNode: 362 return reflect.ValueOf(word.True) 363 case *parse.DotNode: 364 return dot 365 case *parse.NilNode: 366 s.errorf("nil is not a command") 367 case *parse.NumberNode: 368 return s.idealConstant(word) 369 case *parse.StringNode: 370 return reflect.ValueOf(word.Text) 371 } 372 s.errorf("can't evaluate command %q", firstWord) 373 panic("not reached") 374 } 375 376 // idealConstant is called to return the value of a number in a context where 377 // we don't know the type. In that case, the syntax of the number tells us 378 // its type, and we use Go rules to resolve. Note there is no such thing as 379 // a uint ideal constant in this situation - the value must be of int type. 380 func (s *state) idealConstant(constant *parse.NumberNode) reflect.Value { 381 // These are ideal constants but we don't know the type 382 // and we have no context. (If it was a method argument, 383 // we'd know what we need.) The syntax guides us to some extent. 384 s.at(constant) 385 switch { 386 case constant.IsComplex: 387 return reflect.ValueOf(constant.Complex128) // incontrovertible. 388 case constant.IsFloat && strings.IndexAny(constant.Text, ".eE") >= 0: 389 return reflect.ValueOf(constant.Float64) 390 case constant.IsInt: 391 n := int(constant.Int64) 392 if int64(n) != constant.Int64 { 393 s.errorf("%s overflows int", constant.Text) 394 } 395 return reflect.ValueOf(n) 396 case constant.IsUint: 397 s.errorf("%s overflows int", constant.Text) 398 } 399 return zero 400 } 401 402 func (s *state) evalFieldNode(dot reflect.Value, field *parse.FieldNode, args []parse.Node, final reflect.Value) reflect.Value { 403 s.at(field) 404 return s.evalFieldChain(dot, dot, field, field.Ident, args, final) 405 } 406 407 func (s *state) evalChainNode(dot reflect.Value, chain *parse.ChainNode, args []parse.Node, final reflect.Value) reflect.Value { 408 s.at(chain) 409 // (pipe).Field1.Field2 has pipe as .Node, fields as .Field. Eval the pipeline, then the fields. 410 pipe := s.evalArg(dot, nil, chain.Node) 411 if len(chain.Field) == 0 { 412 s.errorf("internal error: no fields in evalChainNode") 413 } 414 return s.evalFieldChain(dot, pipe, chain, chain.Field, args, final) 415 } 416 417 func (s *state) evalVariableNode(dot reflect.Value, variable *parse.VariableNode, args []parse.Node, final reflect.Value) reflect.Value { 418 // $x.Field has $x as the first ident, Field as the second. Eval the var, then the fields. 419 s.at(variable) 420 value := s.varValue(variable.Ident[0]) 421 if len(variable.Ident) == 1 { 422 s.notAFunction(args, final) 423 return value 424 } 425 return s.evalFieldChain(dot, value, variable, variable.Ident[1:], args, final) 426 } 427 428 // evalFieldChain evaluates .X.Y.Z possibly followed by arguments. 429 // dot is the environment in which to evaluate arguments, while 430 // receiver is the value being walked along the chain. 431 func (s *state) evalFieldChain(dot, receiver reflect.Value, node parse.Node, ident []string, args []parse.Node, final reflect.Value) reflect.Value { 432 n := len(ident) 433 for i := 0; i < n-1; i++ { 434 receiver = s.evalField(dot, ident[i], node, nil, zero, receiver) 435 } 436 // Now if it's a method, it gets the arguments. 437 return s.evalField(dot, ident[n-1], node, args, final, receiver) 438 } 439 440 func (s *state) evalFunction(dot reflect.Value, node *parse.IdentifierNode, cmd parse.Node, args []parse.Node, final reflect.Value) reflect.Value { 441 s.at(node) 442 name := node.Ident 443 function, ok := findFunction(name, s.tmpl) 444 if !ok { 445 s.errorf("%q is not a defined function", name) 446 } 447 return s.evalCall(dot, function, cmd, name, args, final) 448 } 449 450 // evalField evaluates an expression like (.Field) or (.Field arg1 arg2). 451 // The 'final' argument represents the return value from the preceding 452 // value of the pipeline, if any. 453 func (s *state) evalField(dot reflect.Value, fieldName string, node parse.Node, args []parse.Node, final, receiver reflect.Value) reflect.Value { 454 if !receiver.IsValid() { 455 return zero 456 } 457 typ := receiver.Type() 458 receiver, _ = indirect(receiver) 459 // Unless it's an interface, need to get to a value of type *T to guarantee 460 // we see all methods of T and *T. 461 ptr := receiver 462 if ptr.Kind() != reflect.Interface && ptr.CanAddr() { 463 ptr = ptr.Addr() 464 } 465 if method := ptr.MethodByName(fieldName); method.IsValid() { 466 return s.evalCall(dot, method, node, fieldName, args, final) 467 } 468 hasArgs := len(args) > 1 || final.IsValid() 469 // It's not a method; must be a field of a struct or an element of a map. The receiver must not be nil. 470 receiver, isNil := indirect(receiver) 471 if isNil { 472 s.errorf("nil pointer evaluating %s.%s", typ, fieldName) 473 } 474 switch receiver.Kind() { 475 case reflect.Struct: 476 tField, ok := receiver.Type().FieldByName(fieldName) 477 if ok { 478 field := receiver.FieldByIndex(tField.Index) 479 if tField.PkgPath != "" { // field is unexported 480 s.errorf("%s is an unexported field of struct type %s", fieldName, typ) 481 } 482 // If it's a function, we must call it. 483 if hasArgs { 484 s.errorf("%s has arguments but cannot be invoked as function", fieldName) 485 } 486 return field 487 } 488 s.errorf("%s is not a field of struct type %s", fieldName, typ) 489 case reflect.Map: 490 // If it's a map, attempt to use the field name as a key. 491 nameVal := reflect.ValueOf(fieldName) 492 if nameVal.Type().AssignableTo(receiver.Type().Key()) { 493 if hasArgs { 494 s.errorf("%s is not a method but has arguments", fieldName) 495 } 496 return receiver.MapIndex(nameVal) 497 } 498 } 499 s.errorf("can't evaluate field %s in type %s", fieldName, typ) 500 panic("not reached") 501 } 502 503 var ( 504 errorType = reflect.TypeOf((*error)(nil)).Elem() 505 fmtStringerType = reflect.TypeOf((*fmt.Stringer)(nil)).Elem() 506 ) 507 508 // evalCall executes a function or method call. If it's a method, fun already has the receiver bound, so 509 // it looks just like a function call. The arg list, if non-nil, includes (in the manner of the shell), arg[0] 510 // as the function itself. 511 func (s *state) evalCall(dot, fun reflect.Value, node parse.Node, name string, args []parse.Node, final reflect.Value) reflect.Value { 512 if args != nil { 513 args = args[1:] // Zeroth arg is function name/node; not passed to function. 514 } 515 typ := fun.Type() 516 numIn := len(args) 517 if final.IsValid() { 518 numIn++ 519 } 520 numFixed := len(args) 521 if typ.IsVariadic() { 522 numFixed = typ.NumIn() - 1 // last arg is the variadic one. 523 if numIn < numFixed { 524 s.errorf("wrong number of args for %s: want at least %d got %d", name, typ.NumIn()-1, len(args)) 525 } 526 } else if numIn < typ.NumIn()-1 || !typ.IsVariadic() && numIn != typ.NumIn() { 527 s.errorf("wrong number of args for %s: want %d got %d", name, typ.NumIn(), len(args)) 528 } 529 if !goodFunc(typ) { 530 // TODO: This could still be a confusing error; maybe goodFunc should provide info. 531 s.errorf("can't call method/function %q with %d results", name, typ.NumOut()) 532 } 533 // Build the arg list. 534 argv := make([]reflect.Value, numIn) 535 // Args must be evaluated. Fixed args first. 536 i := 0 537 for ; i < numFixed; i++ { 538 argv[i] = s.evalArg(dot, typ.In(i), args[i]) 539 } 540 // Now the ... args. 541 if typ.IsVariadic() { 542 argType := typ.In(typ.NumIn() - 1).Elem() // Argument is a slice. 543 for ; i < len(args); i++ { 544 argv[i] = s.evalArg(dot, argType, args[i]) 545 } 546 } 547 // Add final value if necessary. 548 if final.IsValid() { 549 t := typ.In(typ.NumIn() - 1) 550 if typ.IsVariadic() { 551 t = t.Elem() 552 } 553 argv[i] = s.validateType(final, t) 554 } 555 result := fun.Call(argv) 556 // If we have an error that is not nil, stop execution and return that error to the caller. 557 if len(result) == 2 && !result[1].IsNil() { 558 s.at(node) 559 s.errorf("error calling %s: %s", name, result[1].Interface().(error)) 560 } 561 return result[0] 562 } 563 564 // canBeNil reports whether an untyped nil can be assigned to the type. See reflect.Zero. 565 func canBeNil(typ reflect.Type) bool { 566 switch typ.Kind() { 567 case reflect.Chan, reflect.Func, reflect.Interface, reflect.Map, reflect.Ptr, reflect.Slice: 568 return true 569 } 570 return false 571 } 572 573 // validateType guarantees that the value is valid and assignable to the type. 574 func (s *state) validateType(value reflect.Value, typ reflect.Type) reflect.Value { 575 if !value.IsValid() { 576 if typ == nil || canBeNil(typ) { 577 // An untyped nil interface{}. Accept as a proper nil value. 578 return reflect.Zero(typ) 579 } 580 s.errorf("invalid value; expected %s", typ) 581 } 582 if typ != nil && !value.Type().AssignableTo(typ) { 583 if value.Kind() == reflect.Interface && !value.IsNil() { 584 value = value.Elem() 585 if value.Type().AssignableTo(typ) { 586 return value 587 } 588 // fallthrough 589 } 590 // Does one dereference or indirection work? We could do more, as we 591 // do with method receivers, but that gets messy and method receivers 592 // are much more constrained, so it makes more sense there than here. 593 // Besides, one is almost always all you need. 594 switch { 595 case value.Kind() == reflect.Ptr && value.Type().Elem().AssignableTo(typ): 596 value = value.Elem() 597 case reflect.PtrTo(value.Type()).AssignableTo(typ) && value.CanAddr(): 598 value = value.Addr() 599 default: 600 s.errorf("wrong type for value; expected %s; got %s", typ, value.Type()) 601 } 602 } 603 return value 604 } 605 606 func (s *state) evalArg(dot reflect.Value, typ reflect.Type, n parse.Node) reflect.Value { 607 s.at(n) 608 switch arg := n.(type) { 609 case *parse.DotNode: 610 return s.validateType(dot, typ) 611 case *parse.NilNode: 612 if canBeNil(typ) { 613 return reflect.Zero(typ) 614 } 615 s.errorf("cannot assign nil to %s", typ) 616 case *parse.FieldNode: 617 return s.validateType(s.evalFieldNode(dot, arg, []parse.Node{n}, zero), typ) 618 case *parse.VariableNode: 619 return s.validateType(s.evalVariableNode(dot, arg, nil, zero), typ) 620 case *parse.PipeNode: 621 return s.validateType(s.evalPipeline(dot, arg), typ) 622 case *parse.IdentifierNode: 623 return s.evalFunction(dot, arg, arg, nil, zero) 624 } 625 switch typ.Kind() { 626 case reflect.Bool: 627 return s.evalBool(typ, n) 628 case reflect.Complex64, reflect.Complex128: 629 return s.evalComplex(typ, n) 630 case reflect.Float32, reflect.Float64: 631 return s.evalFloat(typ, n) 632 case reflect.Int, reflect.Int8, reflect.Int16, reflect.Int32, reflect.Int64: 633 return s.evalInteger(typ, n) 634 case reflect.Interface: 635 if typ.NumMethod() == 0 { 636 return s.evalEmptyInterface(dot, n) 637 } 638 case reflect.String: 639 return s.evalString(typ, n) 640 case reflect.Uint, reflect.Uint8, reflect.Uint16, reflect.Uint32, reflect.Uint64, reflect.Uintptr: 641 return s.evalUnsignedInteger(typ, n) 642 } 643 s.errorf("can't handle %s for arg of type %s", n, typ) 644 panic("not reached") 645 } 646 647 func (s *state) evalBool(typ reflect.Type, n parse.Node) reflect.Value { 648 s.at(n) 649 if n, ok := n.(*parse.BoolNode); ok { 650 value := reflect.New(typ).Elem() 651 value.SetBool(n.True) 652 return value 653 } 654 s.errorf("expected bool; found %s", n) 655 panic("not reached") 656 } 657 658 func (s *state) evalString(typ reflect.Type, n parse.Node) reflect.Value { 659 s.at(n) 660 if n, ok := n.(*parse.StringNode); ok { 661 value := reflect.New(typ).Elem() 662 value.SetString(n.Text) 663 return value 664 } 665 s.errorf("expected string; found %s", n) 666 panic("not reached") 667 } 668 669 func (s *state) evalInteger(typ reflect.Type, n parse.Node) reflect.Value { 670 s.at(n) 671 if n, ok := n.(*parse.NumberNode); ok && n.IsInt { 672 value := reflect.New(typ).Elem() 673 value.SetInt(n.Int64) 674 return value 675 } 676 s.errorf("expected integer; found %s", n) 677 panic("not reached") 678 } 679 680 func (s *state) evalUnsignedInteger(typ reflect.Type, n parse.Node) reflect.Value { 681 s.at(n) 682 if n, ok := n.(*parse.NumberNode); ok && n.IsUint { 683 value := reflect.New(typ).Elem() 684 value.SetUint(n.Uint64) 685 return value 686 } 687 s.errorf("expected unsigned integer; found %s", n) 688 panic("not reached") 689 } 690 691 func (s *state) evalFloat(typ reflect.Type, n parse.Node) reflect.Value { 692 s.at(n) 693 if n, ok := n.(*parse.NumberNode); ok && n.IsFloat { 694 value := reflect.New(typ).Elem() 695 value.SetFloat(n.Float64) 696 return value 697 } 698 s.errorf("expected float; found %s", n) 699 panic("not reached") 700 } 701 702 func (s *state) evalComplex(typ reflect.Type, n parse.Node) reflect.Value { 703 if n, ok := n.(*parse.NumberNode); ok && n.IsComplex { 704 value := reflect.New(typ).Elem() 705 value.SetComplex(n.Complex128) 706 return value 707 } 708 s.errorf("expected complex; found %s", n) 709 panic("not reached") 710 } 711 712 func (s *state) evalEmptyInterface(dot reflect.Value, n parse.Node) reflect.Value { 713 s.at(n) 714 switch n := n.(type) { 715 case *parse.BoolNode: 716 return reflect.ValueOf(n.True) 717 case *parse.DotNode: 718 return dot 719 case *parse.FieldNode: 720 return s.evalFieldNode(dot, n, nil, zero) 721 case *parse.IdentifierNode: 722 return s.evalFunction(dot, n, n, nil, zero) 723 case *parse.NilNode: 724 // NilNode is handled in evalArg, the only place that calls here. 725 s.errorf("evalEmptyInterface: nil (can't happen)") 726 case *parse.NumberNode: 727 return s.idealConstant(n) 728 case *parse.StringNode: 729 return reflect.ValueOf(n.Text) 730 case *parse.VariableNode: 731 return s.evalVariableNode(dot, n, nil, zero) 732 case *parse.PipeNode: 733 return s.evalPipeline(dot, n) 734 } 735 s.errorf("can't handle assignment of %s to empty interface argument", n) 736 panic("not reached") 737 } 738 739 // indirect returns the item at the end of indirection, and a bool to indicate if it's nil. 740 // We indirect through pointers and empty interfaces (only) because 741 // non-empty interfaces have methods we might need. 742 func indirect(v reflect.Value) (rv reflect.Value, isNil bool) { 743 for ; v.Kind() == reflect.Ptr || v.Kind() == reflect.Interface; v = v.Elem() { 744 if v.IsNil() { 745 return v, true 746 } 747 if v.Kind() == reflect.Interface && v.NumMethod() > 0 { 748 break 749 } 750 } 751 return v, false 752 } 753 754 // printValue writes the textual representation of the value to the output of 755 // the template. 756 func (s *state) printValue(n parse.Node, v reflect.Value) { 757 s.at(n) 758 iface, ok := printableValue(v) 759 if !ok { 760 s.errorf("can't print %s of type %s", n, v.Type()) 761 } 762 fmt.Fprint(s.wr, iface) 763 } 764 765 // printableValue returns the, possibly indirected, interface value inside v that 766 // is best for a call to formatted printer. 767 func printableValue(v reflect.Value) (interface{}, bool) { 768 if v.Kind() == reflect.Ptr { 769 v, _ = indirect(v) // fmt.Fprint handles nil. 770 } 771 if !v.IsValid() { 772 return "<no value>", true 773 } 774 775 if !v.Type().Implements(errorType) && !v.Type().Implements(fmtStringerType) { 776 if v.CanAddr() && (reflect.PtrTo(v.Type()).Implements(errorType) || reflect.PtrTo(v.Type()).Implements(fmtStringerType)) { 777 v = v.Addr() 778 } else { 779 switch v.Kind() { 780 case reflect.Chan, reflect.Func: 781 return nil, false 782 } 783 } 784 } 785 return v.Interface(), true 786 } 787 788 // Types to help sort the keys in a map for reproducible output. 789 790 type rvs []reflect.Value 791 792 func (x rvs) Len() int { return len(x) } 793 func (x rvs) Swap(i, j int) { x[i], x[j] = x[j], x[i] } 794 795 type rvInts struct{ rvs } 796 797 func (x rvInts) Less(i, j int) bool { return x.rvs[i].Int() < x.rvs[j].Int() } 798 799 type rvUints struct{ rvs } 800 801 func (x rvUints) Less(i, j int) bool { return x.rvs[i].Uint() < x.rvs[j].Uint() } 802 803 type rvFloats struct{ rvs } 804 805 func (x rvFloats) Less(i, j int) bool { return x.rvs[i].Float() < x.rvs[j].Float() } 806 807 type rvStrings struct{ rvs } 808 809 func (x rvStrings) Less(i, j int) bool { return x.rvs[i].String() < x.rvs[j].String() } 810 811 // sortKeys sorts (if it can) the slice of reflect.Values, which is a slice of map keys. 812 func sortKeys(v []reflect.Value) []reflect.Value { 813 if len(v) <= 1 { 814 return v 815 } 816 switch v[0].Kind() { 817 case reflect.Float32, reflect.Float64: 818 sort.Sort(rvFloats{v}) 819 case reflect.Int, reflect.Int8, reflect.Int16, reflect.Int32, reflect.Int64: 820 sort.Sort(rvInts{v}) 821 case reflect.String: 822 sort.Sort(rvStrings{v}) 823 case reflect.Uint, reflect.Uint8, reflect.Uint16, reflect.Uint32, reflect.Uint64, reflect.Uintptr: 824 sort.Sort(rvUints{v}) 825 } 826 return v 827 }