github.com/vishvananda/netlink@v1.3.1/xfrm_state_linux.go (about)

     1  package netlink
     2  
     3  import (
     4  	"errors"
     5  	"fmt"
     6  	"net"
     7  	"time"
     8  	"unsafe"
     9  
    10  	"github.com/vishvananda/netlink/nl"
    11  	"golang.org/x/sys/unix"
    12  )
    13  
    14  // XfrmStateAlgo represents the algorithm to use for the ipsec encryption.
    15  type XfrmStateAlgo struct {
    16  	Name        string
    17  	Key         []byte
    18  	TruncateLen int // Auth only
    19  	ICVLen      int // AEAD only
    20  }
    21  
    22  func (a XfrmStateAlgo) String() string {
    23  	base := fmt.Sprintf("{Name: %s, Key: 0x%x", a.Name, a.Key)
    24  	if a.TruncateLen != 0 {
    25  		base = fmt.Sprintf("%s, Truncate length: %d", base, a.TruncateLen)
    26  	}
    27  	if a.ICVLen != 0 {
    28  		base = fmt.Sprintf("%s, ICV length: %d", base, a.ICVLen)
    29  	}
    30  	return fmt.Sprintf("%s}", base)
    31  }
    32  
    33  // EncapType is an enum representing the optional packet encapsulation.
    34  type EncapType uint8
    35  
    36  const (
    37  	XFRM_ENCAP_ESPINUDP_NONIKE EncapType = iota + 1
    38  	XFRM_ENCAP_ESPINUDP
    39  )
    40  
    41  func (e EncapType) String() string {
    42  	switch e {
    43  	case XFRM_ENCAP_ESPINUDP_NONIKE:
    44  		return "espinudp-non-ike"
    45  	case XFRM_ENCAP_ESPINUDP:
    46  		return "espinudp"
    47  	}
    48  	return "unknown"
    49  }
    50  
    51  // XfrmStateEncap represents the encapsulation to use for the ipsec encryption.
    52  type XfrmStateEncap struct {
    53  	Type            EncapType
    54  	SrcPort         int
    55  	DstPort         int
    56  	OriginalAddress net.IP
    57  }
    58  
    59  func (e XfrmStateEncap) String() string {
    60  	return fmt.Sprintf("{Type: %s, Srcport: %d, DstPort: %d, OriginalAddress: %v}",
    61  		e.Type, e.SrcPort, e.DstPort, e.OriginalAddress)
    62  }
    63  
    64  // XfrmStateLimits represents the configured limits for the state.
    65  type XfrmStateLimits struct {
    66  	ByteSoft    uint64
    67  	ByteHard    uint64
    68  	PacketSoft  uint64
    69  	PacketHard  uint64
    70  	TimeSoft    uint64
    71  	TimeHard    uint64
    72  	TimeUseSoft uint64
    73  	TimeUseHard uint64
    74  }
    75  
    76  // XfrmStateStats represents the current number of bytes/packets
    77  // processed by this State, the State's installation and first use
    78  // time and the replay window counters.
    79  type XfrmStateStats struct {
    80  	ReplayWindow uint32
    81  	Replay       uint32
    82  	Failed       uint32
    83  	Bytes        uint64
    84  	Packets      uint64
    85  	AddTime      uint64
    86  	UseTime      uint64
    87  }
    88  
    89  // XfrmReplayState represents the sequence number states for
    90  // "legacy" anti-replay mode.
    91  type XfrmReplayState struct {
    92  	OSeq   uint32
    93  	Seq    uint32
    94  	BitMap uint32
    95  }
    96  
    97  func (r XfrmReplayState) String() string {
    98  	return fmt.Sprintf("{OSeq: 0x%x, Seq: 0x%x, BitMap: 0x%x}",
    99  		r.OSeq, r.Seq, r.BitMap)
   100  }
   101  
   102  // XfrmState represents the state of an ipsec policy. It optionally
   103  // contains an XfrmStateAlgo for encryption and one for authentication.
   104  type XfrmState struct {
   105  	Dst           net.IP
   106  	Src           net.IP
   107  	Proto         Proto
   108  	Mode          Mode
   109  	Spi           int
   110  	Reqid         int
   111  	ReplayWindow  int
   112  	Limits        XfrmStateLimits
   113  	Statistics    XfrmStateStats
   114  	Mark          *XfrmMark
   115  	OutputMark    *XfrmMark
   116  	SADir         SADir
   117  	Ifid          int
   118  	Pcpunum       *uint32
   119  	Auth          *XfrmStateAlgo
   120  	Crypt         *XfrmStateAlgo
   121  	Aead          *XfrmStateAlgo
   122  	Encap         *XfrmStateEncap
   123  	ESN           bool
   124  	DontEncapDSCP bool
   125  	OSeqMayWrap   bool
   126  	Replay        *XfrmReplayState
   127  	Selector      *XfrmPolicy
   128  }
   129  
   130  func (sa XfrmState) String() string {
   131  	return fmt.Sprintf("Dst: %v, Src: %v, Proto: %s, Mode: %s, SPI: 0x%x, ReqID: 0x%x, ReplayWindow: %d, Mark: %v, OutputMark: %v, SADir: %d, Ifid: %d, Pcpunum: %d, Auth: %v, Crypt: %v, Aead: %v, Encap: %v, ESN: %t, DontEncapDSCP: %t, OSeqMayWrap: %t, Replay: %v",
   132  		sa.Dst, sa.Src, sa.Proto, sa.Mode, sa.Spi, sa.Reqid, sa.ReplayWindow, sa.Mark, sa.OutputMark, sa.SADir, sa.Ifid, *sa.Pcpunum, sa.Auth, sa.Crypt, sa.Aead, sa.Encap, sa.ESN, sa.DontEncapDSCP, sa.OSeqMayWrap, sa.Replay)
   133  }
   134  func (sa XfrmState) Print(stats bool) string {
   135  	if !stats {
   136  		return sa.String()
   137  	}
   138  	at := time.Unix(int64(sa.Statistics.AddTime), 0).Format(time.UnixDate)
   139  	ut := "-"
   140  	if sa.Statistics.UseTime > 0 {
   141  		ut = time.Unix(int64(sa.Statistics.UseTime), 0).Format(time.UnixDate)
   142  	}
   143  	return fmt.Sprintf("%s, ByteSoft: %s, ByteHard: %s, PacketSoft: %s, PacketHard: %s, TimeSoft: %d, TimeHard: %d, TimeUseSoft: %d, TimeUseHard: %d, Bytes: %d, Packets: %d, "+
   144  		"AddTime: %s, UseTime: %s, ReplayWindow: %d, Replay: %d, Failed: %d",
   145  		sa.String(), printLimit(sa.Limits.ByteSoft), printLimit(sa.Limits.ByteHard), printLimit(sa.Limits.PacketSoft), printLimit(sa.Limits.PacketHard),
   146  		sa.Limits.TimeSoft, sa.Limits.TimeHard, sa.Limits.TimeUseSoft, sa.Limits.TimeUseHard, sa.Statistics.Bytes, sa.Statistics.Packets, at, ut,
   147  		sa.Statistics.ReplayWindow, sa.Statistics.Replay, sa.Statistics.Failed)
   148  }
   149  
   150  func printLimit(lmt uint64) string {
   151  	if lmt == ^uint64(0) {
   152  		return "(INF)"
   153  	}
   154  	return fmt.Sprintf("%d", lmt)
   155  }
   156  func writeStateAlgo(a *XfrmStateAlgo) []byte {
   157  	algo := nl.XfrmAlgo{
   158  		AlgKeyLen: uint32(len(a.Key) * 8),
   159  		AlgKey:    a.Key,
   160  	}
   161  	end := len(a.Name)
   162  	if end > 64 {
   163  		end = 64
   164  	}
   165  	copy(algo.AlgName[:end], a.Name)
   166  	return algo.Serialize()
   167  }
   168  
   169  func writeStateAlgoAuth(a *XfrmStateAlgo) []byte {
   170  	algo := nl.XfrmAlgoAuth{
   171  		AlgKeyLen:   uint32(len(a.Key) * 8),
   172  		AlgTruncLen: uint32(a.TruncateLen),
   173  		AlgKey:      a.Key,
   174  	}
   175  	end := len(a.Name)
   176  	if end > 64 {
   177  		end = 64
   178  	}
   179  	copy(algo.AlgName[:end], a.Name)
   180  	return algo.Serialize()
   181  }
   182  
   183  func writeStateAlgoAead(a *XfrmStateAlgo) []byte {
   184  	algo := nl.XfrmAlgoAEAD{
   185  		AlgKeyLen: uint32(len(a.Key) * 8),
   186  		AlgICVLen: uint32(a.ICVLen),
   187  		AlgKey:    a.Key,
   188  	}
   189  	end := len(a.Name)
   190  	if end > 64 {
   191  		end = 64
   192  	}
   193  	copy(algo.AlgName[:end], a.Name)
   194  	return algo.Serialize()
   195  }
   196  
   197  func writeMark(m *XfrmMark) []byte {
   198  	mark := &nl.XfrmMark{
   199  		Value: m.Value,
   200  		Mask:  m.Mask,
   201  	}
   202  	if mark.Mask == 0 {
   203  		mark.Mask = ^uint32(0)
   204  	}
   205  	return mark.Serialize()
   206  }
   207  
   208  func writeReplayEsn(replayWindow int) []byte {
   209  	replayEsn := &nl.XfrmReplayStateEsn{
   210  		OSeq:         0,
   211  		Seq:          0,
   212  		OSeqHi:       0,
   213  		SeqHi:        0,
   214  		ReplayWindow: uint32(replayWindow),
   215  	}
   216  
   217  	// Linux stores the bitmap to identify the already received sequence packets in blocks of uint32 elements.
   218  	// Therefore bitmap length is the minimum number of uint32 elements needed. The following is a ceiling operation.
   219  	bytesPerElem := int(unsafe.Sizeof(replayEsn.BmpLen)) // Any uint32 variable is good for this
   220  	replayEsn.BmpLen = uint32((replayWindow + (bytesPerElem * 8) - 1) / (bytesPerElem * 8))
   221  
   222  	return replayEsn.Serialize()
   223  }
   224  
   225  func writeReplay(r *XfrmReplayState) []byte {
   226  	return (&nl.XfrmReplayState{
   227  		OSeq:   r.OSeq,
   228  		Seq:    r.Seq,
   229  		BitMap: r.BitMap,
   230  	}).Serialize()
   231  }
   232  
   233  // XfrmStateAdd will add an xfrm state to the system.
   234  // Equivalent to: `ip xfrm state add $state`
   235  func XfrmStateAdd(state *XfrmState) error {
   236  	return pkgHandle.XfrmStateAdd(state)
   237  }
   238  
   239  // XfrmStateAdd will add an xfrm state to the system.
   240  // Equivalent to: `ip xfrm state add $state`
   241  func (h *Handle) XfrmStateAdd(state *XfrmState) error {
   242  	return h.xfrmStateAddOrUpdate(state, nl.XFRM_MSG_NEWSA)
   243  }
   244  
   245  // XfrmStateAllocSpi will allocate an xfrm state in the system.
   246  // Equivalent to: `ip xfrm state allocspi`
   247  func XfrmStateAllocSpi(state *XfrmState) (*XfrmState, error) {
   248  	return pkgHandle.xfrmStateAllocSpi(state)
   249  }
   250  
   251  // XfrmStateUpdate will update an xfrm state to the system.
   252  // Equivalent to: `ip xfrm state update $state`
   253  func XfrmStateUpdate(state *XfrmState) error {
   254  	return pkgHandle.XfrmStateUpdate(state)
   255  }
   256  
   257  // XfrmStateUpdate will update an xfrm state to the system.
   258  // Equivalent to: `ip xfrm state update $state`
   259  func (h *Handle) XfrmStateUpdate(state *XfrmState) error {
   260  	return h.xfrmStateAddOrUpdate(state, nl.XFRM_MSG_UPDSA)
   261  }
   262  
   263  func (h *Handle) xfrmStateAddOrUpdate(state *XfrmState, nlProto int) error {
   264  
   265  	// A state with spi 0 can't be deleted so don't allow it to be set
   266  	if state.Spi == 0 {
   267  		return fmt.Errorf("Spi must be set when adding xfrm state")
   268  	}
   269  	req := h.newNetlinkRequest(nlProto, unix.NLM_F_CREATE|unix.NLM_F_EXCL|unix.NLM_F_ACK)
   270  
   271  	msg := xfrmUsersaInfoFromXfrmState(state)
   272  
   273  	if state.ESN {
   274  		if state.ReplayWindow == 0 {
   275  			return fmt.Errorf("ESN flag set without ReplayWindow")
   276  		}
   277  		msg.Flags |= nl.XFRM_STATE_ESN
   278  		msg.ReplayWindow = 0
   279  	}
   280  
   281  	limitsToLft(state.Limits, &msg.Lft)
   282  	req.AddData(msg)
   283  
   284  	if state.Auth != nil {
   285  		out := nl.NewRtAttr(nl.XFRMA_ALG_AUTH_TRUNC, writeStateAlgoAuth(state.Auth))
   286  		req.AddData(out)
   287  	}
   288  	if state.Crypt != nil {
   289  		out := nl.NewRtAttr(nl.XFRMA_ALG_CRYPT, writeStateAlgo(state.Crypt))
   290  		req.AddData(out)
   291  	}
   292  	if state.Aead != nil {
   293  		out := nl.NewRtAttr(nl.XFRMA_ALG_AEAD, writeStateAlgoAead(state.Aead))
   294  		req.AddData(out)
   295  	}
   296  	if state.Encap != nil {
   297  		encapData := make([]byte, nl.SizeofXfrmEncapTmpl)
   298  		encap := nl.DeserializeXfrmEncapTmpl(encapData)
   299  		encap.EncapType = uint16(state.Encap.Type)
   300  		encap.EncapSport = nl.Swap16(uint16(state.Encap.SrcPort))
   301  		encap.EncapDport = nl.Swap16(uint16(state.Encap.DstPort))
   302  		encap.EncapOa.FromIP(state.Encap.OriginalAddress)
   303  		out := nl.NewRtAttr(nl.XFRMA_ENCAP, encapData)
   304  		req.AddData(out)
   305  	}
   306  	if state.Mark != nil {
   307  		out := nl.NewRtAttr(nl.XFRMA_MARK, writeMark(state.Mark))
   308  		req.AddData(out)
   309  	}
   310  	if state.ESN {
   311  		out := nl.NewRtAttr(nl.XFRMA_REPLAY_ESN_VAL, writeReplayEsn(state.ReplayWindow))
   312  		req.AddData(out)
   313  	}
   314  	if state.OutputMark != nil {
   315  		out := nl.NewRtAttr(nl.XFRMA_SET_MARK, nl.Uint32Attr(state.OutputMark.Value))
   316  		req.AddData(out)
   317  		if state.OutputMark.Mask != 0 {
   318  			out = nl.NewRtAttr(nl.XFRMA_SET_MARK_MASK, nl.Uint32Attr(state.OutputMark.Mask))
   319  			req.AddData(out)
   320  		}
   321  	}
   322  	if state.OSeqMayWrap || state.DontEncapDSCP {
   323  		var flags uint32
   324  		if state.DontEncapDSCP {
   325  			flags |= nl.XFRM_SA_XFLAG_DONT_ENCAP_DSCP
   326  		}
   327  		if state.OSeqMayWrap {
   328  			flags |= nl.XFRM_SA_XFLAG_OSEQ_MAY_WRAP
   329  		}
   330  		out := nl.NewRtAttr(nl.XFRMA_SA_EXTRA_FLAGS, nl.Uint32Attr(flags))
   331  		req.AddData(out)
   332  	}
   333  	if state.Replay != nil {
   334  		out := nl.NewRtAttr(nl.XFRMA_REPLAY_VAL, writeReplay(state.Replay))
   335  		req.AddData(out)
   336  	}
   337  
   338  	if state.SADir != 0 {
   339  		saDir := nl.NewRtAttr(nl.XFRMA_SA_DIR, nl.Uint8Attr(uint8(state.SADir)))
   340  		req.AddData(saDir)
   341  	}
   342  
   343  	if state.Ifid != 0 {
   344  		ifId := nl.NewRtAttr(nl.XFRMA_IF_ID, nl.Uint32Attr(uint32(state.Ifid)))
   345  		req.AddData(ifId)
   346  	}
   347  
   348  	if state.Pcpunum != nil {
   349  		pcpuNum := nl.NewRtAttr(nl.XFRMA_SA_PCPU, nl.Uint32Attr(uint32(*state.Pcpunum)))
   350  		req.AddData(pcpuNum)
   351  	}
   352  
   353  	_, err := req.Execute(unix.NETLINK_XFRM, 0)
   354  	return err
   355  }
   356  
   357  func (h *Handle) xfrmStateAllocSpi(state *XfrmState) (*XfrmState, error) {
   358  	req := h.newNetlinkRequest(nl.XFRM_MSG_ALLOCSPI,
   359  		unix.NLM_F_CREATE|unix.NLM_F_EXCL|unix.NLM_F_ACK)
   360  
   361  	msg := &nl.XfrmUserSpiInfo{}
   362  	msg.XfrmUsersaInfo = *(xfrmUsersaInfoFromXfrmState(state))
   363  	// 1-255 is reserved by IANA for future use
   364  	msg.Min = 0x100
   365  	msg.Max = 0xffffffff
   366  	req.AddData(msg)
   367  	if state.Mark != nil {
   368  		out := nl.NewRtAttr(nl.XFRMA_MARK, writeMark(state.Mark))
   369  		req.AddData(out)
   370  	}
   371  
   372  	msgs, err := req.Execute(unix.NETLINK_XFRM, 0)
   373  	if err != nil {
   374  		return nil, err
   375  	}
   376  
   377  	return parseXfrmState(msgs[0], FAMILY_ALL)
   378  }
   379  
   380  // XfrmStateDel will delete an xfrm state from the system. Note that
   381  // the Algos are ignored when matching the state to delete.
   382  // Equivalent to: `ip xfrm state del $state`
   383  func XfrmStateDel(state *XfrmState) error {
   384  	return pkgHandle.XfrmStateDel(state)
   385  }
   386  
   387  // XfrmStateDel will delete an xfrm state from the system. Note that
   388  // the Algos are ignored when matching the state to delete.
   389  // Equivalent to: `ip xfrm state del $state`
   390  func (h *Handle) XfrmStateDel(state *XfrmState) error {
   391  	_, err := h.xfrmStateGetOrDelete(state, nl.XFRM_MSG_DELSA)
   392  	return err
   393  }
   394  
   395  // XfrmStateList gets a list of xfrm states in the system.
   396  // Equivalent to: `ip [-4|-6] xfrm state show`.
   397  // The list can be filtered by ip family.
   398  //
   399  // If the returned error is [ErrDumpInterrupted], results may be inconsistent
   400  // or incomplete.
   401  func XfrmStateList(family int) ([]XfrmState, error) {
   402  	return pkgHandle.XfrmStateList(family)
   403  }
   404  
   405  // XfrmStateList gets a list of xfrm states in the system.
   406  // Equivalent to: `ip xfrm state show`.
   407  // The list can be filtered by ip family.
   408  //
   409  // If the returned error is [ErrDumpInterrupted], results may be inconsistent
   410  // or incomplete.
   411  func (h *Handle) XfrmStateList(family int) ([]XfrmState, error) {
   412  	req := h.newNetlinkRequest(nl.XFRM_MSG_GETSA, unix.NLM_F_DUMP)
   413  
   414  	msgs, executeErr := req.Execute(unix.NETLINK_XFRM, nl.XFRM_MSG_NEWSA)
   415  	if executeErr != nil && !errors.Is(executeErr, ErrDumpInterrupted) {
   416  		return nil, executeErr
   417  	}
   418  
   419  	var res []XfrmState
   420  	for _, m := range msgs {
   421  		if state, err := parseXfrmState(m, family); err == nil {
   422  			res = append(res, *state)
   423  		} else if err == familyError {
   424  			continue
   425  		} else {
   426  			return nil, err
   427  		}
   428  	}
   429  	return res, executeErr
   430  }
   431  
   432  // XfrmStateGet gets the xfrm state described by the ID, if found.
   433  // Equivalent to: `ip xfrm state get ID [ mark MARK [ mask MASK ] ]`.
   434  // Only the fields which constitue the SA ID must be filled in:
   435  // ID := [ src ADDR ] [ dst ADDR ] [ proto XFRM-PROTO ] [ spi SPI ]
   436  // mark is optional
   437  func XfrmStateGet(state *XfrmState) (*XfrmState, error) {
   438  	return pkgHandle.XfrmStateGet(state)
   439  }
   440  
   441  // XfrmStateGet gets the xfrm state described by the ID, if found.
   442  // Equivalent to: `ip xfrm state get ID [ mark MARK [ mask MASK ] ]`.
   443  // Only the fields which constitue the SA ID must be filled in:
   444  // ID := [ src ADDR ] [ dst ADDR ] [ proto XFRM-PROTO ] [ spi SPI ]
   445  // mark is optional
   446  func (h *Handle) XfrmStateGet(state *XfrmState) (*XfrmState, error) {
   447  	return h.xfrmStateGetOrDelete(state, nl.XFRM_MSG_GETSA)
   448  }
   449  
   450  func (h *Handle) xfrmStateGetOrDelete(state *XfrmState, nlProto int) (*XfrmState, error) {
   451  	req := h.newNetlinkRequest(nlProto, unix.NLM_F_ACK)
   452  
   453  	msg := &nl.XfrmUsersaId{}
   454  	msg.Family = uint16(nl.GetIPFamily(state.Dst))
   455  	msg.Daddr.FromIP(state.Dst)
   456  	msg.Proto = uint8(state.Proto)
   457  	msg.Spi = nl.Swap32(uint32(state.Spi))
   458  	req.AddData(msg)
   459  
   460  	if state.Mark != nil {
   461  		out := nl.NewRtAttr(nl.XFRMA_MARK, writeMark(state.Mark))
   462  		req.AddData(out)
   463  	}
   464  	if state.Src != nil {
   465  		out := nl.NewRtAttr(nl.XFRMA_SRCADDR, state.Src.To16())
   466  		req.AddData(out)
   467  	}
   468  
   469  	if state.Ifid != 0 {
   470  		ifId := nl.NewRtAttr(nl.XFRMA_IF_ID, nl.Uint32Attr(uint32(state.Ifid)))
   471  		req.AddData(ifId)
   472  	}
   473  
   474  	if state.Pcpunum != nil {
   475  		pcpuNum := nl.NewRtAttr(nl.XFRMA_SA_PCPU, nl.Uint32Attr(uint32(*state.Pcpunum)))
   476  		req.AddData(pcpuNum)
   477  	}
   478  
   479  	resType := nl.XFRM_MSG_NEWSA
   480  	if nlProto == nl.XFRM_MSG_DELSA {
   481  		resType = 0
   482  	}
   483  
   484  	msgs, err := req.Execute(unix.NETLINK_XFRM, uint16(resType))
   485  	if err != nil {
   486  		return nil, err
   487  	}
   488  
   489  	if nlProto == nl.XFRM_MSG_DELSA {
   490  		return nil, nil
   491  	}
   492  
   493  	s, err := parseXfrmState(msgs[0], FAMILY_ALL)
   494  	if err != nil {
   495  		return nil, err
   496  	}
   497  
   498  	return s, nil
   499  }
   500  
   501  var familyError = fmt.Errorf("family error")
   502  
   503  func xfrmStateFromXfrmUsersaInfo(msg *nl.XfrmUsersaInfo) *XfrmState {
   504  	var state XfrmState
   505  	state.Dst = msg.Id.Daddr.ToIP()
   506  	state.Src = msg.Saddr.ToIP()
   507  	state.Proto = Proto(msg.Id.Proto)
   508  	state.Mode = Mode(msg.Mode)
   509  	state.Spi = int(nl.Swap32(msg.Id.Spi))
   510  	state.Reqid = int(msg.Reqid)
   511  	state.ReplayWindow = int(msg.ReplayWindow)
   512  	lftToLimits(&msg.Lft, &state.Limits)
   513  	curToStats(&msg.Curlft, &msg.Stats, &state.Statistics)
   514  	state.Selector = &XfrmPolicy{
   515  		Dst:     msg.Sel.Daddr.ToIPNet(msg.Sel.PrefixlenD, msg.Sel.Family),
   516  		Src:     msg.Sel.Saddr.ToIPNet(msg.Sel.PrefixlenS, msg.Sel.Family),
   517  		Proto:   Proto(msg.Sel.Proto),
   518  		DstPort: int(nl.Swap16(msg.Sel.Dport)),
   519  		SrcPort: int(nl.Swap16(msg.Sel.Sport)),
   520  		Ifindex: int(msg.Sel.Ifindex),
   521  	}
   522  
   523  	return &state
   524  }
   525  
   526  func parseXfrmState(m []byte, family int) (*XfrmState, error) {
   527  	msg := nl.DeserializeXfrmUsersaInfo(m)
   528  	// This is mainly for the state dump
   529  	if family != FAMILY_ALL && family != int(msg.Family) {
   530  		return nil, familyError
   531  	}
   532  	state := xfrmStateFromXfrmUsersaInfo(msg)
   533  	attrs, err := nl.ParseRouteAttr(m[nl.SizeofXfrmUsersaInfo:])
   534  	if err != nil {
   535  		return nil, err
   536  	}
   537  
   538  	for _, attr := range attrs {
   539  		switch attr.Attr.Type {
   540  		case nl.XFRMA_ALG_AUTH, nl.XFRMA_ALG_CRYPT:
   541  			var resAlgo *XfrmStateAlgo
   542  			if attr.Attr.Type == nl.XFRMA_ALG_AUTH {
   543  				if state.Auth == nil {
   544  					state.Auth = new(XfrmStateAlgo)
   545  				}
   546  				resAlgo = state.Auth
   547  			} else {
   548  				state.Crypt = new(XfrmStateAlgo)
   549  				resAlgo = state.Crypt
   550  			}
   551  			algo := nl.DeserializeXfrmAlgo(attr.Value[:])
   552  			(*resAlgo).Name = nl.BytesToString(algo.AlgName[:])
   553  			(*resAlgo).Key = algo.AlgKey
   554  		case nl.XFRMA_ALG_AUTH_TRUNC:
   555  			if state.Auth == nil {
   556  				state.Auth = new(XfrmStateAlgo)
   557  			}
   558  			algo := nl.DeserializeXfrmAlgoAuth(attr.Value[:])
   559  			state.Auth.Name = nl.BytesToString(algo.AlgName[:])
   560  			state.Auth.Key = algo.AlgKey
   561  			state.Auth.TruncateLen = int(algo.AlgTruncLen)
   562  		case nl.XFRMA_ALG_AEAD:
   563  			state.Aead = new(XfrmStateAlgo)
   564  			algo := nl.DeserializeXfrmAlgoAEAD(attr.Value[:])
   565  			state.Aead.Name = nl.BytesToString(algo.AlgName[:])
   566  			state.Aead.Key = algo.AlgKey
   567  			state.Aead.ICVLen = int(algo.AlgICVLen)
   568  		case nl.XFRMA_ENCAP:
   569  			encap := nl.DeserializeXfrmEncapTmpl(attr.Value[:])
   570  			state.Encap = new(XfrmStateEncap)
   571  			state.Encap.Type = EncapType(encap.EncapType)
   572  			state.Encap.SrcPort = int(nl.Swap16(encap.EncapSport))
   573  			state.Encap.DstPort = int(nl.Swap16(encap.EncapDport))
   574  			state.Encap.OriginalAddress = encap.EncapOa.ToIP()
   575  		case nl.XFRMA_MARK:
   576  			mark := nl.DeserializeXfrmMark(attr.Value[:])
   577  			state.Mark = new(XfrmMark)
   578  			state.Mark.Value = mark.Value
   579  			state.Mark.Mask = mark.Mask
   580  		case nl.XFRMA_SA_EXTRA_FLAGS:
   581  			flags := native.Uint32(attr.Value)
   582  			if (flags & nl.XFRM_SA_XFLAG_DONT_ENCAP_DSCP) != 0 {
   583  				state.DontEncapDSCP = true
   584  			}
   585  			if (flags & nl.XFRM_SA_XFLAG_OSEQ_MAY_WRAP) != 0 {
   586  				state.OSeqMayWrap = true
   587  			}
   588  		case nl.XFRMA_SET_MARK:
   589  			if state.OutputMark == nil {
   590  				state.OutputMark = new(XfrmMark)
   591  			}
   592  			state.OutputMark.Value = native.Uint32(attr.Value)
   593  		case nl.XFRMA_SET_MARK_MASK:
   594  			if state.OutputMark == nil {
   595  				state.OutputMark = new(XfrmMark)
   596  			}
   597  			state.OutputMark.Mask = native.Uint32(attr.Value)
   598  			if state.OutputMark.Mask == 0xffffffff {
   599  				state.OutputMark.Mask = 0
   600  			}
   601  		case nl.XFRMA_SA_DIR:
   602  			state.SADir = SADir(attr.Value[0])
   603  		case nl.XFRMA_IF_ID:
   604  			state.Ifid = int(native.Uint32(attr.Value))
   605  		case nl.XFRMA_SA_PCPU:
   606  			pcpuNum := native.Uint32(attr.Value)
   607  			state.Pcpunum = &pcpuNum
   608  		case nl.XFRMA_REPLAY_VAL:
   609  			if state.Replay == nil {
   610  				state.Replay = new(XfrmReplayState)
   611  			}
   612  			replay := nl.DeserializeXfrmReplayState(attr.Value[:])
   613  			state.Replay.OSeq = replay.OSeq
   614  			state.Replay.Seq = replay.Seq
   615  			state.Replay.BitMap = replay.BitMap
   616  		}
   617  	}
   618  
   619  	return state, nil
   620  }
   621  
   622  // XfrmStateFlush will flush the xfrm state on the system.
   623  // proto = 0 means any transformation protocols
   624  // Equivalent to: `ip xfrm state flush [ proto XFRM-PROTO ]`
   625  func XfrmStateFlush(proto Proto) error {
   626  	return pkgHandle.XfrmStateFlush(proto)
   627  }
   628  
   629  // XfrmStateFlush will flush the xfrm state on the system.
   630  // proto = 0 means any transformation protocols
   631  // Equivalent to: `ip xfrm state flush [ proto XFRM-PROTO ]`
   632  func (h *Handle) XfrmStateFlush(proto Proto) error {
   633  	req := h.newNetlinkRequest(nl.XFRM_MSG_FLUSHSA, unix.NLM_F_ACK)
   634  
   635  	req.AddData(&nl.XfrmUsersaFlush{Proto: uint8(proto)})
   636  
   637  	_, err := req.Execute(unix.NETLINK_XFRM, 0)
   638  	return err
   639  }
   640  
   641  func limitsToLft(lmts XfrmStateLimits, lft *nl.XfrmLifetimeCfg) {
   642  	if lmts.ByteSoft != 0 {
   643  		lft.SoftByteLimit = lmts.ByteSoft
   644  	} else {
   645  		lft.SoftByteLimit = nl.XFRM_INF
   646  	}
   647  	if lmts.ByteHard != 0 {
   648  		lft.HardByteLimit = lmts.ByteHard
   649  	} else {
   650  		lft.HardByteLimit = nl.XFRM_INF
   651  	}
   652  	if lmts.PacketSoft != 0 {
   653  		lft.SoftPacketLimit = lmts.PacketSoft
   654  	} else {
   655  		lft.SoftPacketLimit = nl.XFRM_INF
   656  	}
   657  	if lmts.PacketHard != 0 {
   658  		lft.HardPacketLimit = lmts.PacketHard
   659  	} else {
   660  		lft.HardPacketLimit = nl.XFRM_INF
   661  	}
   662  	lft.SoftAddExpiresSeconds = lmts.TimeSoft
   663  	lft.HardAddExpiresSeconds = lmts.TimeHard
   664  	lft.SoftUseExpiresSeconds = lmts.TimeUseSoft
   665  	lft.HardUseExpiresSeconds = lmts.TimeUseHard
   666  }
   667  
   668  func lftToLimits(lft *nl.XfrmLifetimeCfg, lmts *XfrmStateLimits) {
   669  	*lmts = *(*XfrmStateLimits)(unsafe.Pointer(lft))
   670  }
   671  
   672  func curToStats(cur *nl.XfrmLifetimeCur, wstats *nl.XfrmStats, stats *XfrmStateStats) {
   673  	stats.Bytes = cur.Bytes
   674  	stats.Packets = cur.Packets
   675  	stats.AddTime = cur.AddTime
   676  	stats.UseTime = cur.UseTime
   677  	stats.ReplayWindow = wstats.ReplayWindow
   678  	stats.Replay = wstats.Replay
   679  	stats.Failed = wstats.IntegrityFailed
   680  }
   681  
   682  func xfrmUsersaInfoFromXfrmState(state *XfrmState) *nl.XfrmUsersaInfo {
   683  	msg := &nl.XfrmUsersaInfo{}
   684  	msg.Family = uint16(nl.GetIPFamily(state.Dst))
   685  	msg.Id.Daddr.FromIP(state.Dst)
   686  	msg.Saddr.FromIP(state.Src)
   687  	msg.Id.Proto = uint8(state.Proto)
   688  	msg.Mode = uint8(state.Mode)
   689  	msg.Id.Spi = nl.Swap32(uint32(state.Spi))
   690  	msg.Reqid = uint32(state.Reqid)
   691  	msg.ReplayWindow = uint8(state.ReplayWindow)
   692  	msg.Sel = nl.XfrmSelector{}
   693  	if state.Selector != nil {
   694  		selFromPolicy(&msg.Sel, state.Selector)
   695  	}
   696  	return msg
   697  }